
1. Introduction
The Asian monsoon is one of Earth's most active climate systems, with considerable air–sea–land interaction, and 
plays an important role in global water and energy cycles. It has been established that the interannual-interdecadal 
variations of Asian summer monsoon are primarily driven by the internal variability of the coupled climate system, 
such as the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation, the Atlantic Multidecadal 
Oscillation (e.g., Dong & Ding, 2016; Goswami et al., 2006; Lu et al., 2006; Wang et al., 2000). The role of the 
anthropogenic forcing on the trend of Asian monsoon has also been extensively investigated (Wang et al., 2021). 
However, there are relatively few studies on the low-frequency Asian monsoon variability under natural external 
forcings, and the associated mechanisms remain elusive.

Observations have shown significant statistical correlations between the 11-year solar cycle and the climate 
system. For example, the Coupled Model Inter-comparison Project 5 (CMIP5) simulations and HadCRUT4 data 

Abstract Solar activity affects Asian summer monsoon (ASM) at various time scales. However, it remains 
unknown if and how solar activity can influence ASM on the centennial time scale. Using the Community 
Earth System Model, we conduct a solar activity forced Holocene transient simulation with an acceleration 
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Plain Language Summary More than 300 years have passed since the last solar minimum 
(Maunder grand solar minima, ∼1,650–1,715), and now we are around the maximum solar period. This means 
that the centennial solar cycle may potentially influence the past, recent, and future climate. However, due to 
the limited temporal length of instrumental data and the scattered spatial distribution of reconstructions, if and 
how solar activity can influence Asian summer monsoon (ASM) on the centennial time scale is under debate. 
This study carried out the Holocene transient simulation under solar activity forcing for the first time, using 
the Community Earth System Model (CESM). We found that the ASM exhibits a significant 300–600-year 
periodicity under solar forcing during the middle–late Holocene. The leading mode of the multi-centennial 
ASM variation shows a “wet tropics–dry subtropics” pattern, which lags solar activity by about a quarter cycle. 
The physical process is that solar activity modulates the ENSO-like sea surface temperature over tropical 
Pacific, developing an anomalous western North Pacific cyclone, which causes a delayed ASM precipitation 
change. These findings may have implications for predicting the influence of the anticipated future solar 
activity on the Asian monsoon system.
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showed that the global mean temperature change lags behind solar activity by approximately 1–2 years (Misios 
et al., 2016). In the Pacific region, a La Niña-like state occurred in the peaks of 11-year solar variability, while an 
anomalous equatorial Pacific warming was found a few years after each peak (Meehl & Arblaster, 2009; Meehl 
et al., 2009). However, due to the limited temporal length of observations, less attention has been paid to centen-
nial solar variability.

Studies of the high-resolution global reconstructions of temperature and precipitation during the past 2,000 years 
suggested a significant 200-year climatic cycle with a lagged response to the solar activity by 0–20 years; these 
include proxies from Qinghai, central Asia, and continental Siberian Altai (Breitenmoser et al., 2012). J. Liu 
et al. (2009), Z. Liu et al. (2009) documented a quasi-bicentennial oscillation in global monsoon precipitation 
during the last millennium, caused by changes in the land–sea thermal contrast and hemispheric temperature 
gradient induced by the 200-year solar cycle (de Vries cycle). This de Vries cycle has been widely found in the 

𝐴𝐴 Δ 14C and  10Be records (e.g., Wagner et al., 2001). Additionally, studies has also investigated the impacts of the 
de Vries cycle on drought events over eastern China (Sun et al., 2017), global ocean temperature (Seidenglanz 
et al., 2012), and the Intertropical Convergence Zone (Novello et al., 2016).

The solar irradiance reconstruction for the past 10 ka suggests that in addition to the 200-year periodicity, there 
exists about 500-year cycle of solar activity (Steinhilber et al., 2012; Vieira et al., 2011). Considerable 500-year 
variability was found in the dry/wet records over the Asian monsoon region, such as the proxies over Northeast 
China (Xu et al., 2019), Eastern China (Wang et al., 2005), South Korea (Park, 2017), southern Qinghai-Tibet 
Plateau (Sun et al., 2020), which was suggested to be associated with solar activity. For example, solar activity 
leads the δ 18O record from Dongge cave by about 22 years (Steinhilber et al., 2012) and leads Indian monsoon 
precipitation by a few hundred years (Tiwari et al., 2015). Some studies also found a significant ∼500-year cycle 
of the ENSO variance, coincident with periodic solar activity, further affecting the Asian summer monsoon 
(ASM) (Zhu et al., 2017). However, restricted by the uneven and scattered spatial distribution of reconstructions, 
the knowledge of ASM's multi-centennial variability has been limited on regional scales. Proxy data–model 
comparison is needed to better understand the evolution, spatial characteristics, and dynamic mechanisms of 
multi-centennial climate variability. Previous modeling work has mainly focused on the climatic trend during the 
Holocene (e.g., Cheng et al., 2021; Liu et al., 2014; Sun, Wang, et al., 2019); however, analysis of multi-centennial 
ASM variability remains a missing area of study, and solar activity forcing is also rarely considered in Holocene 
transient simulations. How the multi-centennial solar activity (∼500 years) affects the ASM variability remains 
unknown.

The present study aims to address the following questions: (a) What are the spatiotemporal characteristics of ASM 
variation on the multi-centennial time scale during the Holocene? (b) Could solar activity drive multi-centennial 
ASM changes? (c) If so, how does solar activity affect the ASM multi-centennial variation? Here we used 
high-resolution dry/wet proxies over the ASM region and conducted Holocene transient experiments with an 
acceleration factor of 10 under orbital forcing and solar activity forcing to detect the responses of the ASM to the 
total solar irradiance (TSI) and understand the underlying physical processes.

2. Methods
2.1. Model Simulation

This study used the Community Earth System Model 1 (CESM1), with a resolution of T31_g37. The atmospheric 
model (CAM) had a global range of 48 × 96 grids and 26 vertical levels, while the oceanic model (POP) had a 
range of 116 × 100 grids with 60 vertical levels. A control (Ctrl) experiment was conducted to run for 1,550 years 
based on pre-industrial (PI) background conditions. The simulated global precipitation, temperature, atmospheric 
circulation, and ENSO variability were similar to observed data (e.g., Sun, Liu et al., 2019).

Next, we set the Earth's orbital parameters to the values of 12 ka BP and conducted a 400-year spin-up run, 
starting at the equilibrium state of the Ctrl experiment. Then, we performed an orbital forcing (ORB) experiment, 
forced by the Earth's orbital parameters varying from 12 to 0 ka BP. It should be noted that an acceleration factor 
of 10 was used for varying the orbital parameters (Lorenz & Lohmann, 2004), so the duration of the ORB exper-
iment was 1,200 model years. Similarly, we added the solar forcing and ran another experiment (ORB + TSI), 
varying both orbital parameters and total solar irradiance (Figure S2a in Supporting Information S1); an accel-
eration factor of 10 was again applied. Because the time length of the solar forcing we used was about the last 
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11.5 ka (Vieira et al., 2011), the ORB + TSI experiment was run from 11 to 0 ka BP. The original solar forcing 
is 10-year resolution. Following the transient modeling work by He et al. (2021), we used the ORB + TSI minus 
ORB experiments to isolate the net effect of solar activity (TSI).

Additionally, we also used the simulation of transient climate evolution over the last 21,000 years (TraCE-21ka) 
for comparison (J. Liu et al., 2009, Z. Liu et al., 2009). The TraCE-21ka contains five experiments, including four 
single forcing sensitivity experiments of Earth orbital parameters, greenhouse gases, ice sheets, and meltwater, 
plus an all-forcing experiment driven by these four external forcings.

2.2. Study Area and Proxy Data

The instrumental data included monthly mean precipitation from the Global Precipitation Climatology Project 
version 2.3 (Adler et al., 2003). The Asian monsoon precipitation domain was computed using the last 30 years 
of climatology from the GPCP. Specifically, the ASM region was defined by the Asian region where the May–
September (local summer) mean precipitation minus the November–March (winter) mean precipitation exceeded 
2 mm day −1, and the May–September precipitation exceeded 55% of annual precipitation (Wang & Ding, 2008).

We also collected high temporal resolution dry/wet proxy data over the Asian monsoon region, which were 
compiled from the published literature (Table S1 in Supporting Information S1). The temporal resolutions of 
these data were approximately equal to, or less than, several decades, which was sufficient to reflect climatic 
variability on a centennial time scale. Proxy data were linearly interpolated to 10-year resolution, and data of 
Dykoski et al. (2005), Tiwari et al. (2015), Wang et al. (2005), and Zhu et al. (2017) were multiplied by negative 
1 to represent wet condition.

2.3. Extracting Signals of Multi-Centennial Variation

To extract the 300–600-year multi-centennial frequencies, a method of subtracting the 400-year running mean 
from the 150-year running mean was applied to the modeling results. Compared with the 300–600-year bandpass 
filtered data, we found our method better preserved the multi-centennial power and magnitude, consistent with 
previous studies (Shi et al., 2019). Statistical tests for the correlation and regression were based on the effective 
degrees of freedom (Bretherton et al., 1999).

3. Results
3.1. Spatiotemporal Variations of ASM on the Multi-Centennial Time Scale

The multi-centennial periodicities of the ASM and their spatial distribution were examined using proxy data 
reconstructions (Figure 1). Most of the proxy records suggested a multi-centennial variation with a relatively 
broad range of energy peaks ranging from 300 to 600 years. Examples included the proxies over northeast Asia 
(Li et al., 2020; Xu et al., 2019), southeastern China (Huang et al., 2019; Wang et al., 2005), the southern Qinghai–
Tibet Plateau (Ming et al., 2020; Sun et al., 2020), and the Indian monsoon regions (Tiwari et al., 2015) (Figure 1a). 
In central China, quasi-millennial (∼800–961 years) (Tan et al., 2018; Zhang et al., 2020) and quasi-bicentennial 
cycles (Zhang et al., 2013) were found (Table S1 in Supporting Information S1), which might be related to the 
Eddy cycle (∼1,000 years) and de Vries cycle (∼200 years), respectively (Bond et al., 2001; Wagner et al., 2001). 
Meanwhile, the time range of eight of the sets of proxy data was from the middle Holocene to late Holocene, 
and seven sets showed marked multi-centennial periodicities (Table S1 in Supporting Information S1). We also 
divided other proxies into early–mid and mid–late Holocene, and found stronger multi-centennial periodicities of 
300–600 years during the mid–late Holocene, compared with the early–mid Holocene (Figure S1 in Supporting 
Information S1); these might be associated with enhanced multi-centennial variability of solar activity (Figure 
S2 in Supporting Information S1).

To identify the effect of solar activity contributing to multi-centennial ASM variability, we investigated the 
simulated summer (June–July–August, JJA) mean ASM land precipitation in the ORB and TSI experiments. The 
precipitation generally showed few multi-centennial signals in the ORB (Figure 2a–2c) and Ctrl experiments, 
suggesting that orbital forcing and its modulated internal variability are not able to reproduce multi-centennial 
ASM variability. However, under TSI, the ASM precipitation displayed significant peaks on approximately 
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Figure 1. Periodicities of Asian dry/wet reconstructions during the Holocene. (a) Locations of reconstruction data used in this study (details shown in Table S1 in 
Supporting Information S1). Red dots denote that the reconstructions contain a 300–600-year cycle, otherwise they are marked as black. Blue lines outline the Asian 
summer monsoon (ASM) land region. (b–m) Power spectrum analysis of each reconstructed data set. The dashed red line in each panel represents the 90% confidence 
level. The blue shadings mark the 300–600-year cycle.

Figure 2. Simulated periodicities of Asian summer monsoon (ASM) land precipitation during the Holocene. Power spectrum analysis of June–July–August (JJA) ASM 
land precipitation during 11–0 ka (a), 11–6 ka (b), and 6–0 ka BP (c), respectively, under the impact of ORB. (d–f) are the same as (a–c), but under the impact of total 
solar irradiance (TSI). The analysis is performed on the unfiltered data. The dashed red line in each panel represents the 90% confidence level.
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380-year and 460-year cycles during the Holocene (Figure  2d), especially during the mid-late Holocene 
(Figure 2f), which is consistent with the proxy reconstructions. This result is similar to that in the TSI + ORB 
experiment (Figure not shown). We also examined the influence of other external forcings on multi-centennial 
ASM variability in the TraCE-21ka, where there was no solar activity change in the all-forcing or single-forcing 
experiments. No significant centennial to multi-centennial peaks in the ASM precipitation during the Holocene 
were found under the individual orbital, greenhouse gases, ice sheet, and melting water forcings, as well as in 
the all-forcing experiments (Figure S3 in Supporting Information S1). This implies that multi-centennial ASM 
variability is primarily affected by solar activity.

The spatial pattern of ASM variation on a multi-centennial time scale was investigated by utilizing the empirical 
orthogonal function (EOF) of ASM precipitation (Figure 3a). Under the influence of TSI, the EOF1 showed an 
overall zonally elongated “wet tropics–dry subtropics” pattern, with wet conditions over India and Southeast 
Asia while dry anomalies in central China, which is a characteristic feature of ASM across time scales (e.g., 
Wang et al., 2008). There was a more in-phase relationship between the Indian summer monsoon (ISM) and the 
Southeast Asian monsoon.

Further analysis of regressed precipitation and atmospheric circulation on the normalized PC1 suggested that the 
precipitation anomaly pattern was associated with the development of a zonally elongated cyclonic anomaly over 
the western North Pacific (WNP), along 20°N (Figure 3b). A pressure trough extends from the tropical WNP to 
northern India, enhancing the precipitation over the tropical Asia and WNP. The spatial patterns can be similar 
using a method of 300–600-year Lanczos bandpass filtering (Figure S4 in Supporting Information S1). We argue 

Figure 3. Spatial pattern of Asian summer monsoon (ASM) precipitation and circulation under the impact of total solar irradiance (TSI). (a) The EOF1 pattern of 
June–July–August (JJA) mean precipitation anomalies on a multi-centennial time scale during the period 6–0 ka BP. A method of subtracting the 400-year running 
mean from the 150-year running mean was applied before analysis. (b) Regressed JJA mean precipitation (mm day −1, shading) and 850 hPa winds (m s −1, vectors) on 
the normalized PC1. Only the significant results with confidence levels exceeding 90% (two-tailed Student's t-test) are displayed. Blue boxes represent the region of 
the Wang and Fan 36 index, which is defined by U850 in (5°–15°N, 90°–130°E) minus U850 in (22.5°–32.5°N, 110°–140°E). (c) Time series of PC1 (blue line) and WF 
index (red line). The correlation coefficient between the PC1 and WF index is 0.92.
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that this WNP cyclonic anomaly could be the key circulation system responsible for the centennial variation in 
ASM precipitation.

To measure the strength of the WNP cyclonic anomaly, we used the meridional shear vorticity index proposed 
by Wang & Fan (1999) (WF index hereafter), which is defined by U850 in (5°–15°N, 90°–130°E) minus U850 
in (22.5°–32.5°N, 110°–140°E) (Figure 3b). This index depicts variations in the coupled EA monsoon system, 
comprising the WNP subtropical high, WNP monsoon trough, and the EA subtropical front (Wang et al., 2008). 
The WF index exhibited strong multi-centennial variations and the correlation coefficient between the PC1 of ASM 
precipitation and the WF index was 0.92 (Figure 3c). Both of the WF index and PC1 show the multi-centennial 
periodicities of 300–600 years during 6–0 ka BP (Figure not shown), which is similar to the solar forcing. There-
fore, we use the WF index (the WNP cyclonic anomaly) as measures of ASM multi-centennial variation.

3.2. Solar Forcing Leads the ASM System

How are ASM precipitation and WNP circulation system related to the solar activity on the multi-centennial time 
scale? Figure 4 shows the lead-lag correlation coefficients between them. Precipitation inferred by different proxy 
data generally suggests a positive correlation with solar forcing on the multi-centennial time scale (Figure 4a). 
Specifically, proxy data show that solar forcing leads precipitation by about 50–60 years (Liu et al., 2016; Tiwari 
et al., 2015) or 130–180 years (Dykoski et al., 2005; Xu et al., 2019). However, some other proxy data show an 
apparent simultaneous correlation between the data of Zhu et al. (2017) and Ming et al. (2020) and solar activity.

In modeling results, a significant correlation appeared at year 50 and reached a peak at approximately year 90, 
implying that solar forcing leads the WF index by approximately 90 years. This result suggests that solar forcing 
may drive the multi-centennial WNP circulation and the associated ASM variation with a distinctive lead of 
90 years (about one-quarter of the cycle). This simulated one-quarter-cycle delay between the ASM response 
and solar activity seems to resemble those between the multi-decadal and centennial variability and solar activity 
reflected in proxy data.

Similarly, on the multi-centennial time scale, previous modeling studies also found that ocean surface temper-
ature lags the 90-year and 200-year solar forcing within 20 and 44 years, respectively, while a centennial delay 
occurs in the deep ocean (Seidenglanz et al., 2012). On the decadal time scale, some studies found an approx-
imate quarter cycle delay in the climate system (e.g., NAO, European temperature, North Atlantic and tropical 
Pacific climate) under the 11-year solar cycle (Andrews et al., 2015; Shindell et al., 2020). Nevertheless, some 
high-resolution reconstructions have showed climatic lags of 10–30 years under the 200-year solar periodicity 
(Breitenmoser et al., 2012), which is less than a quarter cycle. Because a 10-year acceleration was used in our 
experiments, the phase lag can be exaggerated.

Figure 4. Impact of solar forcing on the temporal variation of Asian summer monsoon (ASM) during 6–0 ka BP. (a) Lead correlation coefficient between solar forcing 
and precipitation inferred by proxy data. Proxy data were linearly interpolated to 10-year resolution, and a method of subtracting the 400-year running mean from the 
150-year running mean was applied before analysis. Proxy data of Dykoski et al. (2005), Tiwari et al. (2015), Wang et al. (2005), and Zhu et al. (2017) were multiplied 
by negative 1 to represent wet condition. Red filled circles mark the peak values of correlation coefficients, which are significant at the 90% confidence level (r test). (b) 
Lead correlation coefficient between solar forcing and WF index in the model simulation. The blue dashed line represents the result under TSI + ORB, while the blue 
solid line represent the result under total solar irradiance (TSI). The black dashed lines denote significance at the 90% confidence level (r test).
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To quantify the simulated monsoon response to solar irradiation change, we first checked the intensity of 
multi-centennial solar activity. During 6–0 ka BP, the intensity change of 300–600-year periodicity of solar activ-
ity was about 0.5 W m −2 (approximate 95% confidence intervals). Second, we used the 90-year-lag WF index, 
South Asian-western North Pacific (SA-WNP, 10°N–25°N, 75°E–160°E) precipitation, and central East Asian 
(EA) (25°N–35°N, 105°E–140°E) precipitation to represent the characteristics of the period with the strongest 
monsoon response to solar forcing (Figure S5 in Supporting Information S1). For an increase of 1 W m −2 total 
solar irradiance, the WF index and SA-WNP precipitation will increase about 1.91 m s −1 and 0.81 mm d −1, 
respectively, while the central EA precipitation will decrease about −0.67 mm d −1. This ASM response is larger 
than that under 11-year solar cycle in the solar-forcing runs in CESM-LME (Otto-Bliesner et al., 2016). It is also 
possible that the 10-year accelerated simulation might amplify this response.

3.3. Possible Mechanism of Multi-Centennial ASM Variation Under Solar Forcing

Next, we examined the multi-centennial spatial evolution of ASM precipitation and atmospheric circulation in the 
simulation. From year −90 to 0, the anomalous precipitation developed and wet conditions over a tropical rain 
belt extending from the Philippine Sea, via Southeast Asia, to northeastern India (Figures 5a–5d). There was a 
suppressed precipitation belt over subtropical EA, extending from the middle–lower reaches of the Yangtze River 
valley to southern Japan. This land part of the “wet tropics–dry subtropics” pattern closely resembled the EOF1 
of the ASM precipitation (Figure 3a). Meanwhile, a deepened and northward shifted monsoon trough (conver-
gence zone) caused enhanced moisture convergence and precipitation along 20°N from the WNP to northern 
India (Figures  5a–5d). Correspondingly, the subtropical high shifted northward and an anticyclonic anomaly 

Figure 5. The spatial evolution of Asian summer monsoon (ASM) and the associated sea surface temperature (SST) pattern. (a–d) Regressed June–July–August (JJA) 
mean precipitation (mm day −1, shading) and 850 hPa winds (m s −1, vectors) on the normalized WF index. The labels “−30 years,” “−60 years,” and “−90 years” denote 
that the WF index lags precipitation and winds by 30, 60, and 90 years, respectively. Only the significant results with confidence levels exceeding 90% (two-tailed 
Student's t-test) are displayed. (e–h) Correlation maps of JJA mean SST (°C, shading) with the WF index. The dots denote results that are significant at the 90% 
confidence level (r test). (i–l) Correlation maps of JJA mean SST (°C, shading) with the solar forcing. The labels “30 years,” “60 years,” and “90 years” denote that the 
solar forcing leads SST by 30, 60, and 90 years, respectively.
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ridge was established along 35°N, extending from south of Japan westward to eastern China. This anomalous 
subtropical ridge suppresses EA subtropical frontal precipitation in the Yangtze River Valley and strengthens 
precipitation in northeast China. This coupled circulation pattern over the western Pacific–EA sector is also 
known as the Pacific–Japan pattern (Nitta, 1987). This meridional teleconnection pattern is accompanied by a 
local meridional circulation anomaly and a weakened upper-level subtropical westerly, which favors ascending 
motion over Northern China (Figure S6 in Supporting Information S1). The subtropical and extratropical precip-
itation anomalies arise from the meridional influence of tropical convective activities (Song et al., 2018; Wang 
et al., 2001). Thus, the delayed response of the prominent WNP anomalous cyclone can be responsible for the 
ASM precipitation on a multi-centennial time scale.

Because sea surface temperature (SST) could play an important role in modulating the WNP circulation systems, 
we analyzed the correlation map of global SST with the WF index (Figure 5e–5h). In general, the more significant 
correlation coefficient occurs in the tropical Pacific region from year −90 to 0. In year −90, cooling (negative 
correlation) occurs over the equatorial eastern Pacific, suggesting a La Niña-like Pacific SST pattern (Figure 5e). 
The anomalous 850 hPa winds are insignificant over the WNP region. From year −60 to 0, the SST warmed 
over the tropical western Pacific, increased precipitation and associated anomalous cyclone developed over the 
Philippine Sea (Figure 5f–5h). This WNP anomalous cyclone can be a Rossby wave response to the precipitation 
heating (Gill, 1980). This result indicates the important role of tropical western Pacific warming in developing 
the WNP cyclonic anomaly.

Then, the evolution of the “solar-related” SST anomalies was examined for comprehending this tropical SST 
response. We found the significant multi-centennial periodicities of the ENSO-like zonal SST gradient under 
the effect of TSI during the mid–late Holocene (Figure not shown), which is similar to the periodicities of solar 
forcing and simulated ASM variation. In the peaks of solar activity (year 0), significant cooling occurred over the 
equatorial eastern Pacific (Figure 5i), which was similar to the correlation map between SST and the WF index 
in year −90 (Figure 5e). For an increase of 1 W m −2 total solar irradiance, the Niño 3.4 index will decrease about 
0.22°C, which can be similar to previous simulated result (e.g., Meehl & Arblaster, 2009; Meehl et al., 2009). We 
found that the strength of surface net downward heat flux can be negligible over the equatorial central-eastern 
Pacific, suggesting the role of ocean dynamics in causing the eastern Pacific SST cooling.

The “ocean thermostat” theory (Clement et al., 1996) might be responsible for the La Niña-like pattern at the 
solar peak. Solar forcing enhances the equatorial east–west SST gradient through enhancing the oceanic cold 
upwelling anomalies over the equatorial central eastern Pacific (Figure S7e in Supporting Information  S1), 
which reduces the cold tongue SST. The enhanced zonal SST gradient induces anomalous equatorial easterlies 
and warms the western Pacific by thermocline adjustment, which in turn increases the SST gradient and acti-
vates the Bjerknes feedback (Figures S7a and S7b in Supporting Information S1). Meehl et al. (2003) found a 
solar-enhanced subtropical evaporation could intensify the Walker circulation, which may also enhance the La 
Niña-like pattern. Then, from year −60 to 0, warming over the western Pacific develops and induces the anoma-
lous WNP cyclone (Figures S7b–S7d in Supporting Information S1). This mechanism was also found to be active 
during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) under solar-volcanic forcings (Liu 
et al., 2013; Mann et al., 2009).

Therefore, the solar-induced tropical SST and wind patterns (Figure 5i–5l and S7 in Supporting Information S1) 
are consistent with that during the development stage of ASM (Figure 5a–5h), confirming that solar activity 
modulates the tropical Pacific SST, developing an anomalous WNP cyclone, which causes a delayed ASM 
precipitation change.

4. Conclusion and Discussion
This work has investigated the impact of solar activity on ASM multi-centennial variation during the Holocene, 
based on orbital parameter and solar activity forcing experiments, multi-proxy records, and TraCE-21ka simu-
lations. The transient simulation shows a clear 300–600-year cycle of ASM precipitation during the mid–late 
Holocene under the influence of TSI. This finding is supported by multiple high-resolution reconstructions. 
On the multi-centennial time scale, the leading mode of ASM variation shows a “wet tropics–dry subtropics” 
pattern, which lags solar activity by 90 years. The centennial variability of WNP cyclone is the critical circulation 
system responsible for the centennial ASM variability. The WNP anomalous cyclone, with a trough extending to 
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central India, enhances south Asia–WNP precipitation. It also results in the northward shift of the climatological 
subtropical high, weakening the upper-level subtropical westerly. It decreases precipitation over central China and 
increases precipitation over northeast China. The development of warm western tropical Pacific SST pattern is 
the essential cause of the anomalous WNP cyclone, which is modulated by solar forcing. Thus, we suggest that 
on the multi-centennial time scale, solar activity first modulates the tropical Pacific SST, which further develops 
the anomalous WNP cyclone and causes a delayed ASM response.

On the multi-centennial time scale, the overall spatial pattern of ASM precipitation is dominated by the “wet 
tropics–dry subtropics” pattern in the TSI experiment (Figure 3). The simulated ASM pattern is similar to recon-
structions over southern Asia, the southeast Qinghai–Tibet Plateau, and northeast Asia, most of which suggest 
a 300–600-year cycle and correlate well with solar activity (e.g., Dykoski et al., 2005; Liu et al., 2016; Tiwari 
et al., 2015; Xu et al., 2019). However, the number of high-resolution reconstruction data is limited, and there is 
still some uncertainty in their correlation with solar activity. Moreover, the resolutions of model and multi-model 
ensembles need to be further developed in the future, which would be conducive to a more detailed description 
of physical processes and a reduction in uncertainty on a centennial time scale.

About 300 years have passed since the last solar minimum (Maunder grand solar minima, ∼1,650–1,715), and 
now we are in the maximum solar period (Matthes et al., 2017). The empirical forecast predicted a similar solar 
irradiation minimum at the end of the 21st century (Abreu et  al.,  2008; Matthes et  al.,  2017). It means that 
the multi-centennial solar cycle might significantly impact the future climate. Thus, it is urgent to understand 
the impact of this multi-centennial solar cycle on the ASM variability, which might have significance for the 
long-term projection of future changes in the Asian monsoon.

Data Availability Statement
The GPCP observations are archived at https://www.esrl.noaa.gov/psd/data/gridded. The TraCE-21ka simu-
lations are archived at https://www.earthsystemgrid.org. Modeling data supporting our findings can be found 
at https://doi.org/10.5281/zenodo.5782792. The proxy data are all derived from the previous published work, 
which can be downloaded at https://www.ncei.noaa.gov/products/paleoclimatology/climate-reconstruction (with 
a name search).
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