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ABSTRACT: This study investigates future changes in daily precipitation extremes and the involved physics over the
global land monsoon (GM) region using climate models from phase 6 of the Coupled Model Intercomparison Project
(CMIP6). The daily precipitation extreme is identified by the cutoff scale, measuring the extreme tail of the precipitation
distribution. Compared to the historical period, multimodel results reveal a continuous increase in precipitation extremes
under four scenarios, with a progressively higher fraction of precipitation exceeding the historical cutoff scale when moving
into the future. The rise of the cutoff scale by the end of the century is reduced by 57.8% in the moderate emission scenario
relative to the highest scenario, underscoring the social benefit in reducing emissions. The cutoff scale sensitivity, defined
by the increasing rates of the cutoff scale over the GM region to the global mean surface temperature increase, is nearly
independent of the projected periods and emission scenarios, roughly 8.0% K21 by averaging all periods and scenarios. To
understand the cause of the changes, we applied a physical scaling diagnostic to decompose them into thermodynamic and
dynamic contributions. We find that thermodynamics and dynamics have comparable contributions to the intensified pre-
cipitation extremes in the GM region. Changes in thermodynamic scaling contribute to a spatially uniform increase pattern,
while changes in dynamic scaling dominate the regional differences in the increased precipitation extremes. Furthermore,
the large intermodel spread of the projection is primarily attributed to variations of dynamic scaling among models.
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1. Introduction

The intensity of extreme precipitation is projected to
increase with a much higher rate than the mean precipitation
as the climate warms, close to the increasing rate (7.5% K21)
of atmospheric water vapor content (Allen and Ingram 2002;
Trenberth et al. 2003; Pall et al. 2007; Pendergrass et al. 2015;
Giorgi et al. 2019). During past decades, great efforts have
been devoted to investigating changes in the mean and
extreme precipitation over monsoon regions as monsoon-
related rainfall supports nearly 62% of the global population
(Vera et al. 2006; Kitoh et al. 2013; Zhang et al. 2018; Ni and
Hsu 2018; Deng et al. 2018; Seth et al. 2019; Zhang and Zhou
2019; Moon and Ha 2020; Chen et al. 2020; Wang et al. 2020).
As indicated by Fig. 1, the global land monsoon (GM) region
includes seven major land monsoon regions: the northern
Africa, southern Africa, South Asia, East Asia, Australia,
North America, and South America monsoon regions. Over
the GM region, the mean response rates of Rx1day (the
annual maximum 1-day precipitation) and Rx5day (the

annual maximum 5-day precipitation) for the period
1901–2010 are estimated to be 7.5% and 4.8% K21, respec-
tively (Zhang and Zhou 2019). This excessive increase in
extreme precipitation can aggravate the flood risk over the
monsoon regions and bring severe societal and economic
losses (Kirsch et al. 2012; IPCC 2014; Mishra and Shah 2018).
For example, on 21 July 2012, the extreme precipitation that
occurred in Beijing led to an enormous economic loss of
nearly $2 billion (Zhang et al. 2013). Thus, providing a reli-
able assessment for the changes in extreme precipitation over
the GM region and understanding the involved physical
mechanisms are essential to improving future prospects of
food risk and disaster mitigation.

Conventional thresholds, such as the 95th or 99th percentile
of precipitation (R95p, R99p), Rx1day, and Rx5day, are often
used as the criteria to investigate the future changes of
extreme precipitation (Kitoh et al. 2013; Freychet et al. 2015;
Wu et al. 2015; Zhang et al. 2018; Chevuturi et al. 2018; Lee
et al. 2018; Lui et al. 2019; Ha et al. 2020). These indices are
used for practical reasons (e.g., risk assessment) but are not
physically motivated. Moreover, quantitative conclusions are
generally index-dependent. For example, multimodel results
show that during the period 2006–2100, the linear trends of
global mean R95p and Rx5day over land under global warm-
ing are 21.1% and 4.9% K21, respectively (Wang et al. 2017).
In central India, robust enhancements of Rx5day (11.3%
K21) and R95p (8.47% K21) can be found during the 2075–99
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period, relative to the period 1979–2003 (Lui et al. 2019).
Over China, R99p and R95p are reported to increase about
21.6% and 11.9% K21 in the period 2006–99 relative to the
period 1961–2005 (Wu et al. 2015). Moreover, it should be
noted that these indices (e.g., uniform R95p, R99p) may have
different implications in different regions (Pendergrass
2018). For instance, in San Diego, California, where the
events with precipitation exceeding the 95th percentile
account for almost 90% of total annual precipitation
(Pendergrass 2018), we can hardly use R95p as the extreme
index there. In other words, changes of a specific percentile
may not accurately reflect changes in the extreme tail of the
probability distribution of precipitation (Contractor et al.
2018; Alexander et al. 2019).

Motivated by these limitations, the cutoff scale is proposed to
be used as the indicator of precipitation extremes (Deluca and
Corral 2010, 2014; Peters et al. 2001, 2010; Stechmann and
Neelin 2011, 2014; Neelin et al. 2017; Martinez-Villalobos
and Neelin 2018). With the increase of precipitation size, the
probability density function (PDF) of daily precipitation
gradually decays and sharply falls after a characteristic cutoff
scale (Martinez-Villalobos and Neelin 2019, 2021; Chang et al.
2020). Hence, the extreme tail in precipitation PDF can be
directly indicated by the cutoff scale. Physically, the existence
of the cutoff scale is due to the balance between precipitation
loss and variation of moisture convergence (Neelin et al.
2017; Martinez-Villalobos and Neelin 2019). The cutoff scale
may correspond to different precipitation percentiles (Chang
et al. 2020). As moisture convergence variance increases with
global warming, the upshift in the extreme tail of the proba-
bility distribution can be well represented by an extension of
the cutoff scale (Neelin et al. 2017; Martinez-Villalobos and
Neelin 2018; Chang et al. 2020), which provides insight into
future changes in precipitation extremes. For this reason, it is
of interest to use the cutoff scale to explore the future

changes in precipitation extremes and the associated uncer-
tainties in the GM and individual monsoon regions.

To understand the underlying mechanisms explaining
changes in the cutoff scale, we use a physical scaling diagnos-
tic to decompose precipitation extremes into thermodynamic
and dynamic components (O’Gorman and Schneider 2009a,b;
Sugiyama et al. 2010). This method has been proved to be
effective in quantifying the contributions of thermodynamics
and dynamics in precipitating processes (Pfahl et al. 2017; Ali
and Mishra 2018).

The remainder of this study is organized as follows.
Descriptions of datasets and methods are provided in section 2.
Section 3 presents the projected increases of extreme precipita-
tion and further reveals the contributions of dynamics and ther-
modynamics in these changes. Finally, concluding remarks are
given in section 4.

2. Data and methods

a. Model data

In this study, the CMIP6 archive (Eyring et al. 2016) is used
as the primary dataset to investigate future changes in precipita-
tion extremes. We have first evaluated the performance of the
25 available CMIP6 models in simulating monsoon precipitation
during the historical period 1995–2014 according to the metrics
proposed by previous studies (Wang and Ding 2008; Wang et al.
2020), namely, the annual mean, summer [June–September
(JJAS)] mean, winter [December–March (DJFM)] mean, and
summer-minus-winter precipitation (see Figs. S1–S4 in the
online supplemental material). Finally, we chosen 21 models
with better performance (Table S1 in the online supplemental
material). To examine changes in cutoff scale, we use daily pre-
cipitation and monthly surface temperature from 21 CMIP6
models, including the historical simulations and the projections

FIG. 1. The global land monsoon region (red dots) defined according to rainfall characteristics
based on monthly GPCP precipitation for the period 1979–2014. The equator (dashed line) sepa-
rates the Northern Hemisphere land monsoon region (NAF, SAS, EAS, and NAM) from the
Southern Hemisphere land monsoon region (SAF, AUS, and SAM), and SAS and EAS are sep-
arated by 208N and 1008E.
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under four scenarios, namely the Shared Socioeconomic Path-
way 1–2.6 (SSP1–2.6), SSP2–4.5, SSP3–7.0, and SSP5–8.5
(O’Neill et al. 2016; Table S1). The historical period 1995–2014
and three future periods, referred to as the near-term (2021–40),
midterm (2041–60), and long-term (2080–99) periods, are used
for the analysis.

In applying the precipitation extremes scaling, daily air tem-
perature and vertical velocity at all eight pressure levels (1000,
850, 700, 500, 250, 100, 50, and 10 hPa) and monthly surface
pressure from 15 out of 21 CMIP6 models are used. Note that
only one realization of each model is used, although we discuss
the effect of using more realizations (see below). The resulting
fields from each model are interpolated to a grid of 2.58 3 2.58
to calculate the multimodel ensemble mean.

b. Definition of the GM region

Following Wang et al. (2011), we have defined the GM
domain as the regions where the local summer-minus-winter
precipitation intensity exceeds 2.5 mm day21 and the ratio of
summer total to annual total precipitation is greater than
55%. Here, the summer is from May to September, and the
winter is from November to March in the Northern Hemi-
sphere, and vice versa in the Southern Hemisphere. The GM
domain (Fig. 1), used in this study, is calculated based on the
monthly precipitation data from the Global Precipitation Cli-
matology Project version 2.3 (GPCP v2.3; Adler et al. 2003)
for the period 1979–2014. We also calculated the monsoon
region based on the multimodel mean monthly precipitation
of the 21 CMIP6 models for the period 1995–2014, and there
is almost no difference in GM domain between the two data-
sets (Fig. S5). Moreover, the GM domain can be divided into
seven subregions, the northern Africa (NAF), southern
Africa (SAF), South Asia (SAS), East Asia (EAS), Australia
(AUS), North America (NAM), and South America (SAM)
monsoon regions (Fig. 1).

c. Cutoff scale and daily precipitation PDF

As previous studies have shown, the probability of daily
precipitation intensity (pP) tends to follow gamma distribu-
tions (Cho et al. 2004; Martinez-Villalobos and Neelin 2019):

pP ∝ P2tPexp 2P=PL
( )

, (1)

where P represents daily precipitation, tP is the power-law expo-
nent controlling the decline rate of the precipitation PDF in the
low and moderate range, and PL is the cutoff scale of daily pre-
cipitation, where the probability density starts to decline sharply.

The daily precipitation cutoff PL is found to be propor-
tional to the moment ratio PM (Stechmann and Neelin 2014;
Neelin et al. 2017; Martinez-Villalobos and Neelin 2019),
which is defined as

PM � 〈P2〉
〈P〉 , (2)

with 〈P2〉 and 〈P〉 representing the variance and mean over all
wet days (P$ 0.1 mm).

To quantify the risk of extreme precipitation, we calculate
the risk ratio (e.g., Neelin et al. 2017) between the future
period and the historical period, expressed as

rP P̂( ) �

�‘

P̂
p′′
P′dP′

�‘

P̂
p′
P
′ dP′

: (3)

The term rP P̂( ) is the conditional ratio of probability of the
daily precipitation larger than P̂, with p′′

P
′ and p′

P′ represent-
ing the probability density of the future period and the histori-
cal period (over wet days), respectively. If rP P̂( ). 1:0
rP P̂( ), 1:0
[ ]

, a higher (lower) fraction of precipitation larger
than P̂ can be found in the future period.

d. Precipitation extremes scaling

A physical scaling diagnostic is applied to decompose them
into thermodynamic and dynamic contributions and to under-
stand the reasons for the changes in precipitation extremes.
As described by previous studies (O’Gorman and Schneider
2009a; Pfahl et al. 2017), extreme precipitation Pe, greater
than the cutoff scale in this study, at each grid point can be
estimated by a vertical integration of the product of the corre-
sponding vertical velocity ve and vertical derivative of satura-
tion specific humidity qs when the saturation equivalent
potential temperature u* is constant:

Pe∼ 2 ve
dqs
dp

∣∣∣∣
u*

{ }
, (4)

where {·} represents the mass-weighted vertical integration
over tropospheric levels with ascending motion (ve , 0).
Here the tropopause is defined as the highest level with
the lapse rate of 2 K km21 and below 50 hPa. The right-
hand term of (4) is an estimation of the column-integrated
net condensation rate. The thermodynamic scaling can be
estimated by keeping the vertical velocity ve as constant
(i.e., the mean value of all days when extreme precipitation
occurs in the historical period of 1995–2014), while
dynamic contribution can be achieved by subtracting the
changes in thermodynamic scaling from the changes in the
full scaling.

3. Results

a. Climatology of daily precipitation cutoff scale

Figure 2 gives the spatial distribution of multimodel ensem-
ble mean values of PM for the period 1995–2014. High values
are found in India, East Asia, Australia, the West African
monsoon region, southeastern Africa, and subtropical South
America (Fig. 2a), and PM has moderate values in the equato-
rial regions where mean rainfall is high. Even though the
modeled PM absolute values may deviate from observations
(Martinez-Villalobos and Neelin 2021), the spatial distribu-
tion of PM resembles that of the Rx1day from gauge-based
gridded data (Fig. S6). For seven monsoon subregions, when
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taking each region as a whole, larger values are located in the
SAS, AUS, and EAS monsoon regions, while smaller values
are found in the SAM, NAF, NAM, and SAF monsoon
regions (Fig. 2b). Moreover, the spatial correlations (the
median value of 21 models) between PM and the 99th and
99.9th percentiles of daily precipitation (P99 and P99.9) over
the GM region are all greater than 0.85, significant at 95%
confidence interval, for all periods and scenarios (Fig. S7).
This indicates that PM accurately represents the high percen-
tiles of precipitation (i.e., extreme precipitation). As men-
tioned above, the values of the cutoff scale, representing the
interplay between column moisture convergence and mois-
ture loss (by precipitation), vary with local climate conditions.
In Figs. 2c and 2d, we see that the precipitation percentile cor-
responding to PM for each grid point is different, and it ranges
from 78.2nd to 90.6th for the seven monsoon divisions, indi-
cating that a uniform extreme percentile (e.g., the 95th) may
represent varying degrees of “extreme” for different monsoon
regions. Note that the corresponding percentiles of PM are
usually lower than those of PL, but both exhibit a consistent
spatial pattern (Fig. S8).

b. Changes of the cutoff scale over the GM region

Previous studies have shown that the changes in the shape
of the extreme tail can be well represented by rescaling the
cutoff scale in observations and climate models (Neelin et al.
2017; Martinez-Villalobos and Neelin 2018; Chang et al.
2020). Moreover, a recent study (Martinez-Villalobos and
Neelin 2021) has shown that the CMIP6 ensemble simulates
well the extreme tail and PL spatial pattern (although with a
bias in magnitude), boosting confidence in the use of CMIP6
to evaluate future fractional changes in precipitation
extremes. Compared to the historical period, percent changes

in PM, calculated by averaging percent changes across all
available models, for the three periods (near-term, midterm,
and long-term) under four scenarios (SSP1–2.6, SSP2–4.5,
SSP3–7.0, and SSP5–8.5), are displayed in Fig. 3. Not surpris-
ingly, the increasing trends of PM, projected over most regions
become larger from the near term to the long term and from
the lowest-emission (SSP1–2.6) to the highest-emission
(SSP5–8.5) scenario. A detailed comparison of the increasing
magnitudes of PM under the SSP2–4.5 and SSP5–8.5 scenarios
is presented in Table 1. In the long-term projection, for
instance, the overall increase (41.2% 6 19.8%, mean 6 stan-
dard error) under the SSP5–8.5 scenario over the whole GM
region is in sharp contrast with that of the SSP2–4.5 (17.4% 6

7.4%), implying a greatly reduced risk (57.8%) of extreme
precipitation for a moderate-emission scenario. Such a strong
increase in precipitation extremes greatly exceeds the
enhancement (5.75%) of the mean precipitation under the
SSP5–8.5 scenario (Chen et al. 2020). However, differences
exist for individual monsoon regions. In the case of the long-
term projection under the SSP5–8.5 scenario, the largest
increases of the cutoff scale are found over NAF (59.3% 6

34.8%) and SAS (50.2% 6 33.0%), whereas NAM and SAM
witness smaller increases, 27.4% 6 21.4% and 33.1% 6

18.5% respectively.
Figure 4 displays the response rates of PM, normalized by

the increase in global mean surface temperature, for the
whole GM region and its subregions. As can be seen, changes
in the response rates are modest over the whole GM region
and most subregions as the period or scenario varies (Fig. 4).
For example, over the whole GM region (Table 2), the sce-
nario-averaged response rate is only 19% less comparing the
near-term (7.3% 6 2.6% K21) to the long-term projection
(8.7% 6 2.9% K21). A similarly subtle change is also seen in

FIG. 2. Multimodel mean of (a) PM climatology at each grid point and (b) PM climatology for the seven monsoon
regions during the historical period 1995–2014. Multimodel mean of the nearest precipitation percentile to the cutoff
scale PM (with a 0.1-percentile interval) (c) for each grid point and (d) seven monsoon regions during the historical
period 1995–2014. The red lines in (a) and (c) denote the boundaries of global land monsoon region.
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the time-averaged rate from the low (7.3% 6 2.2% K21) to
the high (8.6%6 2.8% K21) emission scenario, and the statis-
tically indistinguishable changes in response rates among
different scenarios are also noted by Pendergrass et al.
(2015). When taking the model spread into account, the pro-
jected response rate of PM is nearly period-independent and
scenario-independent over the whole GM region, and can
be approximated to a constant 8.0% K21 by averaging all
periods and scenarios, which is about 7.3 times higher than
the sensitivity (1.1% K21) of mean monsoon precipitation
(Wang et al. 2020). Moreover, such features can also be
found in most monsoon subregions. However, in the SAS
and AUS regions, from the near term to the long term, the

scenario-averaged sensitivity has a robust fractional
increase of 43% and 39%, respectively, while for the NAF
region the time-averaged sensitivity is characterized with a
strong fractional increase of 65% from the lowest to the
highest emission scenario.

The projection of extreme monsoon precipitation may be
affected by internal variability (Zhou et al. 2020). To
understand the influence of the internal variability on the
projection uncertainty, we make use of nine available mod-
els with at least three realizations (Table S2). By comparing
the uncertainty (i.e., the standard deviation) in the increas-
ing rates of single realization and multiple realizations,
we found that the internal variability has little effect on

TABLE 1. Multimodel mean fractional changes of PM over the whole GM region and its subregions in the near-term, midterm, and
long-term projections under SSP2–4.5 and SSP5–8.5 scenarios. Values are shown as the mean 6 the standard error.

Region

SSP2–4.5 SSP5–8.5

Near-term Midterm Long-term Near-term Midterm Long-term

GM 5.3% 6 2.5% 10.5% 6 4.5% 17.4% 6 7.4% 5.9% 6 2.4% 14.3% 6 5.7% 41.2% 6 19.8%
NAF 8.7% 6 5.4% 15.1% 6 8.3% 21.2% 6 10.4% 12.2% 6 7.4% 25.4% 6 13.5% 59.3% 6 34.8%
SAF 4.7% 6 3.0% 9.0% 6 5.0% 15.1% 6 7.0% 6.2% 6 3.9% 13.9% 6 7.5% 33.2% 6 15.0%
SAS 6.4% 6 5.6% 12.3% 6 7.4% 19.3% 6 10.8% 5.8% 6 3.9% 14.3% 6 8.3% 50.2% 6 33.0%
EAS 6.0% 6 2.9% 10.2% 6 4.5% 17.0% 6 8.0% 6.3% 6 3.4% 13.5% 6 6.2% 36.8% 6 16.3%
AUS 3.5% 6 5.4% 9.8% 6 8.6% 19.6% 6 13.3% 5.5% 6 7.8% 12.6% 6 9.3% 37.1% 6 29.1%
NAM 3.4% 6 3.8% 8.7% 6 6.9% 13.0% 6 8.8% 3.3% 6 3.7% 9.4% 6 5.6% 27.4% 6 21.4%
SAM 4.8% 6 3.7% 9.3% 6 5.3% 16.0% 6 9.7% 5.1% 6 3.5% 12.6% 6 7.0% 33.1% 6 18.5%

FIG. 3. Multimodel mean fractional changes of PM over the GM region in the (left) near-term, (center) midterm, and (right) long-term pro-
jections under four scenarios relative to the historical period of 1995–2014.
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the uncertainty of projections in precipitation extremes
(Table S3).

c. Changes of daily precipitation PDFs and risk of
extreme precipitation

Changes in the cutoff scale can be regarded as the indica-
tor of changes in the extreme tail of the daily precipitation
probability distribution. With the extension of the cutoff
scale, distinct upshifts of the extreme right tail of daily

precipitation PDFs are identified over the whole GM
region in the long-term projection (Fig. 5). Moreover, the
rescaled historical PDFs (the blue dotted line) with only
rescaling historical PL by the multimodel averaged increase
of PM, well matched the long-term projection PDFs (the
blue solid line). For all four scenarios, the extreme tail
demonstrates a consistent upward shift, implying a higher
fraction of daily precipitation extremes over the GM region
(Fig. 5a). This feature holds true for all seven individual

FIG. 4. The response rates of PM, normalized by global mean surface temperature changes, over the whole GM
region and seven monsoon subregions, in three periods and four scenarios. The bars denote the 10th–90th percentiles,
and the boxes represent the 25th–75th percentiles in the CMIP6 models. The center lines in the boxes indicate the
50th percentile.
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monsoon regions, although the magnitude of the increase
differs (Fig. 5b). Consistent with the largest increase in the
cutoff scale over NAF, the most salient extension in the
extreme tail of daily precipitation PDF is also observed
there.

Figure 6 shows the risk ratios over the whole GM region
for the long-term projections under all scenarios. In accor-
dance with theory (Martinez-Villalobos and Neelin 2019) and
observed risk ratios (Martinez-Villalobos and Neelin 2018;
Chang et al. 2020), a rapid increase is seen in the extreme pre-
cipitation above the cutoff scale, with a stronger magnitude
under the highest SSP5–8.5 emission scenario (Fig. 6). For
example, for extreme precipitation exceeding the historical
99.9th percentile of precipitation P99.9, in the long-term

projection the risk would increase to 3.61 (median value)
times that in the historical period under the SSP5–8.5 sce-
nario. This increase is 70% larger compared to the one pro-
jected under the SSP2–4.5 scenario (2.12) (Fig. 6). Regionally,
higher risks in the long-term projection under the SSP5–8.5
scenario are witnessed in the NAF (4.97), NAM (3.9), EAS
(4.16), and SAM (4.94) regions (Fig. S9).

d. Dynamic and thermodynamic contributions to future
increases of precipitation extremes

To reveal mechanisms explaining these increases in precipita-
tion extremes, we use the scaling relationship [(4)] to decompose
the extreme precipitation into dynamic and thermodynamic con-
tributions. Here the thermodynamic contribution only means the

TABLE 2. The scenario-averaged and time-averaged response rates over the whole GM region and its subregions, derived from
multimodel mean results. Values are shown as the mean 6 the standard error.

Region

Scenario-averaged response rate (% K21) Time-averaged response rate (% K21)

Near-term Midterm Long-term SSP1–2.6 SSP2–4.5 SSP3–7.0 SSP5–8.5

GM 7.3 6 2.6 8.1 6 2.4 8.7 6 2.9 7.3 6 2.2 7.7 6 2.5 8.5 6 2.9 8.6 6 2.8
NAF 12.6 6 7.8 12.6 6 6.5 12.0 6 6.6 9.2 6 6.0 11.3 6 5.8 13.9 6 7.7 15.2 6 8.3
SAF 6.7 6 3.5 7.0 6 3.2 7.4 6 2.8 5.8 6 3.2 6.7 6 2.9 7.8 6 3.4 7.9 6 3.3
SAS 7.0 6 5.1 8.7 6 4.0 10.0 6 5.2 7.8 6 4.3 8.7 6 4.8 8.8 6 5.2 9.0 6 4.8
EAS 8.5 6 3.9 8.1 6 3.2 8.6 6 3.2 8.3 6 3.9 8.2 6 3.3 8.6 6 3.3 8.4 6 3.3
AUS 5.9 6 8.3 6.9 6 5.3 8.2 6 5.8 5.5 6 6.4 7.0 6 6.0 7.6 6 6.3 7.7 6 7.2
NAM 5.2 6 4.4 6.1 6 3.1 6.2 6 4.3 6.4 6 4.1 5.7 6 3.7 5.7 6 3.9 5.4 6 3.8
SAM 6.7 6 4.9 7.2 6 3.5 7.4 6 3.9 7.0 6 4.1 6.9 6 4.0 7.3 6 4.4 7.2 6 4.0

FIG. 5. (a) The PDFs of daily precipitation in the long term over the whole GM region under four scenarios
(SSP1–2.6 PDFs3 1025, SSP2–4.5 PDFs3 1021, SSP3–7.0 PDFs3 103, SSP5–8.5 PDFs3 107). (b) The PDFs of daily
precipitation in the long term over the seven monsoon subregions under the SSP5–8.5 scenario (NAF PDFs 3 1017,
SAF PDFs3 1013, SAS PDFs3 109, EAS PDFs3 105, AUS PDFs3 101, NAM PDFs3 1023, SAM PDFs3 1027).
For the solid lines and bars in (a) and (b), the red represents the historical period 1995–2014 and the blue represents
the long term. The solid red lines and blue lines are fitted by (1), and the blue dotted lines are rescaled from historical
period based on (1), with only rescaling PL by the multimodel averaged changes of PM. The bars represent the results
from 21 CMIP6 models (10th–90th percentiles) and the circles indicate the median value.

C HANG E T A L . 184515 MARCH 2022



effect of the specific humidity change. As shown in Fig. 7,
the scaling relationship accurately reproduces the spatial
distribution of mean extreme precipitation larger than
PM during the historical period 1995–2014 (Figs. 7a,b;
spatial correlation of 0.97 and root-mean-square difference
of 2.7 mm day21). Moreover, the effectiveness of the scaling
relationship in reproducing the changes in extreme precipi-
tation is also accurately verified (Figs. 7c,d; spatial correla-
tion of 0.88 and root-mean-square difference of 24%). Note
that the precipitation extremes scaling also works well for
other scenarios and periods with spatial correlations all
greater than 0.8 (Table S4).

For the increases in precipitation extremes of the whole
GM region, contributions from the thermodynamics are

comparable to those of dynamics (Fig. 8). The results of the
multimodel mean show that the averaged thermodynamic and
dynamic contributions across all three periods and all four
scenarios account for about 51.5% and 48.5% in the changes
of full scaling, respectively (Table S5). However, the relative
importance of thermodynamic and dynamic contributions
varies with regions. Regionally, changes in thermodynamic
scaling dominate the increase in the SAF, EAS, NAM,
and SAM regions, while changes in dynamic scaling are of
more importance in the SAS, NAF, and AUS regions
(Fig. 8), which is also verified by Table S5. In addition, over
the GM region we show that the large intermodel scatter of
the changes in precipitation extremes is highly consistent
with that of the changes in the full scaling (Fig. 9). This dis-
tinct intermodel difference in the full-scaling changes
exhibits a much stronger correlation with those of the
changes in dynamic than thermodynamic scaling among
models (Fig. 9; see also Fig. S10). Thus, the large inter-
model spread of the projection in precipitation extremes is
dominated by the uncertainty of dynamic contribution
among models.

Compared to the homogeneous increase in thermody-
namic scaling, changes in dynamic scaling exhibit pro-
nounced regional contrast (Fig. 10). Overall, for the GM
region, positive contributions from thermodynamics and
dynamics are seen in most regions. However, the uneven
spatial distribution in extreme precipitation changes
mainly comes from the dynamic contribution (Fig. S11),
which is also shown by previous studies (Pfahl et al. 2017;
Wang et al. 2020). These spatial changes in thermodynamic
and dynamic scaling correspond well to the changes in
averaged vertically integrated saturation specific humidity
qs and vertical velocity ve (ve , 0) of all days when extreme
precipitation occurs, respectively (Fig. S12). Zonally, the

FIG. 6. The risk ratios (median value) calculated following (3)
over the whole GM region in the long term under four scenarios.
The black vertical line denotes the PL of the multimodel mean
in the historical period 1995–2014 and the coordinate of the top
x axis is marked with different precipitation percentiles of the
multimodel mean in the historical period 1995–2014.

FIG. 7. Multimodel mean (a) precipitation extremes and (b) full scaling of extreme precipitation derived using (4)
for all days with daily precipitation exceeding PM in 1995–2014. Multimodel mean of fractional changes relative to the
period 1995–2014 of (c) precipitation extremes and (d) full scaling for all days with daily precipitation exceeding PM in
the long term under SSP2–4.5 scenario. The red lines denote the boundaries of the global land monsoon region.
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increasing magnitude in thermodynamic scaling is nearly
invariant with latitudes. In contrast, the magnitude of
dynamic contribution shows a larger meridional fluctuation
(Fig. 10), which dominates the regional difference of changes
in precipitation extremes for the monsoon regions of differ-
ent latitudes. Moreover, the zonal-mean dynamic contribu-
tion over the GM region is dominated by the dynamic
changes of the SAS, NAF, and AUS monsoon regions
(Fig. S8).

4. Conclusions and discussion

In this study, we have examined changes in the daily precip-
itation cutoff scale to investigate global warming increases in
precipitation extremes over the global land monsoon (GM)
region in the CMIP6 ensemble.

For the GM region, the increasing magnitude of the cutoff
scale is projected to be enhanced from the near term to the
long term and from the low- to high-emission scenario. The
increase in cutoff scale is associated with an upward shift in
the daily precipitation PDF extreme tail. To first order, this
upward shift can be economically captured by a simple rescal-
ing of the PDF.

While the frequency of precipitation extremes will increase
under any scenario considered, efforts to mitigate future
warming can still produce a sizable positive impact. For exam-
ple, we see a fractional reduction of 57.8% (17.4% 6 7.4% vs
41.2% 6 19.8%) in the cutoff scale in the SSP2–4.5 scenario
compared with the SSP5–8.5 scenario in the long-term projec-
tion. This reduction can have a substantial effect on the fre-
quency of the most extreme events, with days above 100 mm
(approximately 99.9th percentile in historical period) in the
GM region being about 1.7 times (median) more frequent in
the SSP5–8.5 scenario than in the SSP2–4.5 scenario by the
end of the century. Such features are also observed in seven
individual monsoon subregions, in some cases with larger

increases (NAF, NAM, EAS, and SAM), but the magnitude
differs.

The response rates of the cutoff scale, normalized by
increases in global mean surface temperature, are nearly
time-invariant and scenario-invariant over the GM region,
which is roughly 8.0% K21. From the near-term to the
long-term projection, a narrow range of 7.3%–8.7% K21 is
found for the scenario-averaged rates, and meanwhile a
similar subtle fluctuation of 7.3%–8.6% K21 occurs in
the time-averaged response rates from the SSP1–2.6 to
SSP5–8.5 scenario. Similar near invariance in the periods
or scenarios is also found in most monsoon subregions
with the exceptions of NAF (the response rates vary with
scenarios), SAS, and AUS (the response rates vary with
periods) monsoon regions. This finding has important
implications for determining the GM and regional mon-
soon response to anthropogenic forcing. Moreover, we
show that the uncertainty in response rates is almost
independent of internal variability, which may be masked
by the large intermodel spread in projections. In addition,
the effect of internal variability is also suppressed
since changes are calculated based on the value of a
20-yr period.

Changes in the cutoff scale were separated in thermody-
namic and dynamic contributions. For the GM region,
the results from multimodel mean show that these contribu-
tions are comparable in the intensification of extreme
precipitation. This is different from the enhancement of
mean monsoon precipitation, which is apparently domi-
nated by the contribution from thermodynamics (Chen
et al. 2020). Regionally, the thermodynamic contribution
dominates over the SAF, EAS, NAM, and SAM, while the
dynamic contribution dominates over SAS, NAF, and
AUS. Moreover, the thermodynamic scaling contributes to
a uniform increase in extreme precipitation for all monsoon
regions, while the dynamic scaling is responsible for the

FIG. 8. Fractional changes relative to the period 1995–2014 in precipitation extremes, full scaling, thermodynamic
scaling, and dynamic scaling for all days with daily precipitation exceeding PM over the whole GM region and its subre-
gions in the long-term under SSP2–4.5 and SSP5–8.5 scenarios. The bars denote the 10th–90th percentiles, and the
boxes represent the spread of the 15 CMIP6 models (from the 25th to the 75th percentiles; the center lines indicate the
50th percentile). The histograms with colors indicate the multimodel ensemble mean.
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regional variations. Also, the large intermodel scatter
in the changes of precipitation extremes is also mainly con-
tributed by the dynamic scaling. Overall, in response to cli-
mate warming, positive thermodynamics and dynamics

combined contribute to an increasing rate of ∼8.0% K21

in precipitation extremes for GM domain, implying an
increasing risk beyond what we would expect simply by
an increase in water vapor under any scenario.

FIG. 9. Fractional changes in precipitation extremes scaling for each model vs changes in (top) precipitation
extremes, (middle) thermodynamic scaling, and (bottom) dynamic scaling over the whole GM region under the
SSP2–4.5 and SSP5–8.5 scenarios. The solid lines represent the linear fit, with correlation coefficient (r). The asterisk
represents a 5% of significance level and double asterisk represents a 1% of significance level.
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