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ABSTRACT: A subseasonal-to-seasonal (S2S) prediction system was recently developed using the 
GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. 
Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–
Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly 
correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the 
MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, 
and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, 
but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires at-
tention to the standing MJO given its large gap with its potential predictability (15 days). The 
slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and 
confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across 
the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric 
quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant 
westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill be-
tween these two QBO phases. The SPEAR model shows its capability, beyond the propagation, 
in predicting their initiation for different types of MJO along with discrete precursory convection 
anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the 
North Pacific and North America related to the standing, jumping, and fast-propagating MJO, 
but not the slow-propagating MJO. These findings highlight the complexities and challenges of 
incorporating MJO prediction into the operational prediction of meteorological variables.
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A pioneering work by Xie et al. (1963) revealed a local oscillatory signal with a prominent 
40–50-day period in the western Pacific that has strong modulation on tropical cyclone 
activities (also see Li et al. 2018). Madden and Julian (1971, 1972) discovered a global-

scale 40–50-day oscillatory mode with pronounced eastward propagation across the whole 
tropics, known as the Madden–Julian oscillation (MJO). The development and evolution of 
MJO involve interactions of convection, planetary boundary layer, wave dynamics, moisture, 
and radiation, and it is also significantly modified by multiscale interaction and air–sea 
coupling. Given the complexity of MJO, many theories have been proposed to explain the 
essential processes responsible for its existence, scale selection, and propagation (e.g., 
Jiang et al. 2020; Zhang et al. 2020).

Compared to synoptic weather variability, the MJO has longer persistence and an oscil-
latory nature, highlighting the importance of MJO prediction for subseasonal-to-seasonal 
(S2S) predictions of climate and extreme weather events. For example, the prediction of MJO 
has been demonstrated to be critical for the medium-range to the subseasonal prediction of 
tropical cyclones (Jiang et al. 2018; Lee et al. 2018, 2020; Vitart 2009; Xiang et al. 2015a). A 
skillful MJO prediction also benefits the prediction of phenomena including the North Atlantic 
Oscillation (Lin et al. 2010), atmospheric rivers (DeFlorio et al. 2018; Mundhenk et al. 2018), 
and the U.S. precipitation (Nardi et al. 2020).

Dynamical models have become the primary tool for MJO prediction. Extensive explo-
ration of the predictability of the MJO in dynamical models has achieved substantial ad-
vances in recent decades, while a big gap still remains between the prediction skill and the 
potential predictability (Kim et al. 2018, 2019; Neena et al. 2014; Vitart 2017). A myriad 
of factors influence MJO prediction, each different among models, such as the convection 
parameterization (Zhu et al. 2020), air–sea coupling (Fu et al. 2013; Harris et al. 2020; 
Zhu and Kumar 2019), and initialization (Ren et al. 2016; Wu et al. 2020). Additionally, 
the stratospheric quasi-biennial oscillation (QBO) can rectify the MJO activities (MJO days) 
and propagation, and influence its prediction skill (Lim et al. 2019; Marshall et al. 2017; 
Martin et al. 2021; S. Wang et al. 2019; Zhang and Zhang 2018). Some systematic biases 
in model mean states and feedback processes are shown to exert direct effects on the MJO 
prediction skill (Kim et al. 2019; Lim et al. 2018).

It is worth noting that individual MJO events vary markedly from event to event in their 
amplitude, life cycle, and propagation (Wang and Rui 1990). Kim et al. (2014) revealed that 
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some MJO events propagate across the Maritime Continent (MC) while some others do not. 
Actually, about  40% of the observed MJO events are blocked by the MC (Kerns and Chen 2020). 
On the basis of the substantially different propagation features of individual MJO events, 
B. Wang et al. (2019) separated the MJO events into four clusters using a clustering method 
(standing, jumping, slow-propagating, and fast-propagating events). The standing MJO is 
referring to the events with a locally oscillatory feature in the Indian Ocean without evident 
propagation. The jumping MJO represents the cases with a sudden migration of anomalous 
convection from the eastern Indian Ocean to the western Pacific. They claimed that their 
existence is controlled by different large-scale background mean states and interaction 
between tropical wave dynamics and convection. It prompts the question of whether the 
MJO prediction depends on the MJO propagation characteristic? The objective of this study 
is twofold: first, to introduce a recently developed prediction modeling system targeting S2S 
prediction, and second, to identify the potential skill dependence on MJO diversity using this 
prediction system.

The paper is organized as follows. The next section introduces the model, experiments, and 
methodology. The following sections describe the overall MJO prediction skill and the skill 
dependence on MJO diversity, respectively. Then, the model prediction of MJO propagation, 
initial development, and teleconnections in the context of MJO diversity are presented. The 
paper concludes with a summary and discussion.

Model, hindcast experiments, and methodology
Model and hindcast experiments. We use the Geophysical Fluid Dynamics Laboratory 
(GFDL) Seamless System for Prediction and Earth System Research (SPEAR) coupled model. 
The model was developed as the next generation GFDL modeling system for seasonal to mul-
tidecadal prediction and projection (Bushuk et al. 2021; Delworth et al. 2020; Lu et al. 2020; 
Murakami et al. 2020). To approach the seamless suite of prediction, here, we extend the 
research focus to the S2S time scale. The SPEAR model shares many components with the 
GFDL CM4.0 model (Held et al. 2019). In particular, SPEAR uses an atmospheric and land 
model identical to AM4.0/LM4.0 (Zhao et al. 2018a,b) but with a dynamical vegetation model 
and a lower-resolution MOM6 (Adcroft et al. 2019). There are three configurations of SPEAR 
that share the same ocean model (horizontal resolution of about 1° and 75 vertical levels) but 
with three different atmospheric horizontal resolutions, which are referred to as SPEAR_LO 
(1°), SPEAR_MED (0.5°), and SPEAR_HI (0.25°). SPEAR_MED uses a 0.5° AM4.0, which con-
tains 33 vertical levels with the top of the atmosphere at 1 hPa (Zhao 2020). SPEAR_MED 
has been demonstrated to produce realistic simulations of extreme weather statistics such as 
the frequency of tropical cyclones (Murakami et al. 2020), atmospheric rivers (Zhao 2020), 
and mesoscale convective systems (Dong et al. 2021). SPEAR_MED is used in this study for 
S2S prediction, and we refer to it as SPEAR hereinafter for simplicity. This model has shown 
a realistic MJO simulation from its control run (Delworth et al. 2020), offering an excellent 
opportunity to study the MJO prediction and some related issues. The reader is referred to 
Delworth et al. (2020) for additional details about this model.

Similar to Xiang et al. (2015b), initial conditions for the atmosphere and ocean were gener-
ated through a simple nudging technique toward observations with several years’ integration 
before prediction. The atmospheric nudging fields include winds, temperature, and specific 
humidity using the Modern-Era Retrospective Analysis for Research and Applications, ver-
sion 2 (MERRA-2), analysis data (6-hourly interval) (Gelaro et al. 2017). The sea surface tem-
perature (SST) is nudged to NOAA Optimum Interpolation 1/4° Daily SST Analysis (OISST v2) 
(Reynolds et al. 2007). Using the same SPEAR model, the ocean initialization for S2S prediction 
is much simpler than the seasonal-to-decadal prediction system that adopts a comprehensive 
ocean data assimilation system (Lu et al. 2020), allowing a later assessment of the potential 
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roles of subsurface ocean initialization on S2S prediction. Hindcasts were carried out every 
5 days from January 2000 to April 2019, and 10 ensemble members were generated by using 
perturbed nudging strengths for both the atmosphere and the ocean SST so that they differ 
from one another in the initial conditions. The nudging of circulation is applied to the whole 
atmosphere. However, the nudging of moisture field is confined in the free atmosphere with 
the lowest several model layers (roughly the boundary layer) unperturbed, considering the fact 
that the moisture field in analysis data are relatively less reliable than other variables and the 
nudging of moisture within boundary layer may induce large initial shock in a coupled system 
via strongly altering latent heat flux. Since the MJO is most pronounced in boreal wintertime, 
we focus on the period from November to the ensuing April. We made 708 hindcast events, 
and each has 10 members. We integrated each hindcast for 45 days.

Methodology. The observational anomalies were obtained by removing the time mean and 
the first three harmonics of the observational climatological annual cycle and subtracting 
the time-mean anomalies over the previous 120 days. The hindcast anomalies are calculated 
by removing the model hindcast climatology and also the previous 120 days’ time-mean 
anomalies.

The evaluation procedure for MJO prediction is similar to Xiang et al. (2015b) and adopts 
the widely used real-time multivariate MJO (RMM) index (Wheeler and Hendon 2004) as a 
metric to measure the MJO and its prediction. The anomalies of outgoing longwave radia-
tion (OLR) and 850- and 200-hPa zonal winds are then projected onto two observed lead-
ing multivariate empirical orthogonal function (EOF) modes to obtain the RMM indices 
(Wheeler and Hendon 2004) (Fig. ES1 in the online supplemental material). The first (second) 
mode represents the phases with anomalous convection in the Indian Ocean (western Pacific). 
The observed and predicted two RMM indices (RMM1 and RMM2) are then normalized by 
the standard deviation of the observed RMM indices. Using the above RMM indices as the 
predictands, the so-called bivariate anomaly correlation coefficient (ACC) and root-mean-
square error (RMSE) were used here to measure its forecast skill following Lin et al. (2008). 
The MJO amplitude is defined as RMM +RMM .2 21 2

For verification, the data we used comprise the NOAA daily mean interpolated OLR data 
(Liebmann and Smith 1996) and ERA-5 reanalysis data as observations (C3S 2017), including 
winds, 2-m air temperature (t2m), geopotential height, and specific humidity. All data are 
interpolated to 1° × 1° resolution for analysis.

Overall evaluation of the MJO prediction
Figure 1a shows the bivariate ACC of MJO prediction in boreal wintertime (November–April) 
evaluated based on all the hindcasts (708 cases with 10 ensemble members). The mean skill 
from a single member is about 23 days, as determined by the maximum lead time with the 
ACC exceeding 0.5. As expected, the ACC for the 10-member ensemble-mean is superior to 
individual members, with a prediction skill of 30 days. The prediction skill is nearly saturated 
when using five ensemble members (29 days), and additional ensemble members add little 
to the MJO prediction skill (Fig. ES2). The ensemble spread is much smaller than the RMSE 
(Fig. 1b), indicating an underdispersive ensemble that may limit the overall prediction skill of 
this system. The 10-member ensemble mean serves as the basis for all the following analyses, 
except where otherwise noted.

We further investigate the skill dependence on the MJO initial and target amplitude and 
phases. The skill has a much smaller difference between the initially strong (|RMM| > 1) and 
weak (|RMM| < 1) cases than the target strong and weak cases (Fig. 2a vs Fig. 2c). Here, the 
target cases are referring to the MJO events during the forecast period. In other words, the 
skill is more sensitive to the target MJO amplitude during the forecast period than its initial 
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amplitude. Note that some models experience 
strong sensitivity with initial amplitude, but 
some do not (Lim et al. 2018). The skill also 
differs among different MJO phases. A relatively 
higher skill is found when initiated at phases 
3 and 4 with the anomalous wet phase in the 
eastern Indian Ocean and MC. In comparison, 
the skill is relatively lower during phases 1 and 
2 when the anomalous intense convection oc-
curs in the western and central Indian Ocean 
(Fig. 2b). The skill is higher for the target phases 
3 and 4 than the target phases 5 and 6 (Fig. 2d). 
The above skill dependence on MJO amplitude 
and phase is generally similar to a previous 
version of the GFDL model (Xiang et al. 2015b).

The MJO prediction skill is determined by 
the error growth in amplitude and propagation 
speed. Here we examine the MJO amplitude 
and its phase angle error for initially strong 
MJO cases (Fig. 3). The phase angle error is 
estimated between the observed and predicted 
RMM index following Rashid et al. (2011). The 
predicted MJO amplitude agrees well with 
observation during the first 10 days but then 
decreases very rapidly (Fig. 3a) along with the 
increase of noise. During the first 25 days, the 
predicted mean amplitude is comparable but 
slightly weaker (by 7.7%) than observations. 
The mean phase angle error in the first 25 
days is −4.0° (Fig. 3c), with a magnitude gener-
ally smaller than 10.0° for individual phases 
(Fig. 3d). The individual member has a similar 
amplitude as observations (Fig. 3a), implying 
that the amplitude error from ensemble mean 
is largely attributed to the rapid increase of 
noise. Compared with a previous version of the GFDL model (Xiang et al. 2015b), the predicted 
amplitude error (phase angle error) in the first 25 days is reduced by 38% (5%), in agreement 
with an overall improved MJO prediction skill (30 vs 27 days).

Skill dependence on MJO diversity
Given the contrasting propagation behaviors for individual MJO events, it is natural to ques-
tion whether the MJO prediction is dependent on its propagation patterns. The first step to 
address this question is to identify individual MJO events. Following B. Wang et al. (2019), 
an MJO event is selected when the area-averaged OLR anomalies in the equatorial Indian 
Ocean (75°–95°E, 10°S–10°N) are negative and have an amplitude greater than one stan-
dard deviation for 5 successive days (roughly during the MJO phases 2 and 3). A K-means 
cluster analysis (Kaufman and Rousseeuw 2009) is then applied to classify the MJO events 
based on their propagation patterns. This analysis identifies four types of MJO events: stand-
ing, jumping, slow-propagating, and fast-propagating types (B. Wang et al. 2019). Eventu-
ally, 55 MJO events were identified during the studied period from January 2000 to April 

Fig. 1. MJO prediction skill during boreal wintertime 
(November–April) from 2000 to 2019 made by the GFDL 
SPEAR model. (a) The bivariate anomalous correlation 
coefficient (ACC) measured by the RMM index from in-
dividual members (gray) and 10-member ensemble mean 
(red). (b) The RMM index root-mean-square error (RMSE) 
from individual members (gray) and their ensemble mean 
(red). The blue line denotes the ensemble spread relative 
to the 10-member ensemble mean.
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2019, including 12 standing, 14 jumping, 15 slow-propagating, and 13 fast-propagating 
cases (Table 1). Their contrasting propagation features are apparent from the composite 
OLR anomalies centered in the midpoint of the selected events (day 0) (Figs. 4c–f).

Fig. 2. (a) The bivariate ACC for initially strong (red) and initially weak (black) MJO cases. (b) The 
ACC as a function of initial phases (x axis) and forecast lead days (y axis). (c) The bivariate ACC for 
target strong (red) and target weak (black) MJO cases as a function of forecast lag days. (d) The 
ACC as a function of target phases and forecast lag days. “Strong MJO” (weak MJO) is defined 
as all days with |RMM| > 1 (|RMM| < 1).

Fig. 3. Prediction of MJO amplitude and phase angle. (a) The time evolution of MJO amplitude 
as a function of forecast lead days for initially strong cases from observations (black) and model 
prediction from the ensemble mean (solid red) and mean of individual members (dashed red). 
(b) The observed (black bars) and predicted (red bars) MJO amplitude averaged over the first 25 
days for initially strong cases as a function of eight different MJO phases (x axis). (c) Prediction 
of MJO phase angle error (°) as a function of forecast lead time for the initially strong cases. 
(d) The predicted MJO phase error averaged over the first 25 days for initially strong cases as 
a function of eight different MJO phases (x axis).
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For each MJO cluster, we consider all the hindcasts initiated during the period between 
20 days before and 15 days after the midpoint of the selected event (day 0), approximately 
covering the life cycle of the selected cases. Since the hindcasts are carried out every 5 days, 
the total forecast case numbers are 88, 104, 116, and 92 for the standing, jumping, slow-
propagating, and fast-propagating MJO, respectively. Results show that the fast-propagating 
MJO possesses the best prediction skill of 38 days (Fig. 4a). The jumping MJO attains a 
similar prediction skill with the slow-propagating MJO (31 days), albeit the jumping MJO is 
categorized into the nonpropagating group (B. Wang et al. 2019). The standing MJO has the 
lowest skill (23 days). We conclude that the model tends to be more skillful in predicting 
the propagating and jumping MJO than the standing MJO.

The distinct MJO prediction skill among four clusters of MJO is possibly related to their 
potential predictability. Based on the perfect model assumption, the potential predictability 
can be estimated by taking one ensemble member as the truth and the ensemble mean of the 
other members as predictions. The four clusters of MJO exhibit similar potential predictability 
(38–39 days) (Fig. 4b), which obviously cannot explain the contrasting prediction skill as 
shown in Fig. 4a. We also infer that there is much larger room to improve the prediction of 
the standing MJO than the other types of MJO, and a further MJO skill enhancement in SPEAR 
primarily relies on advancing the standing MJO prediction.

More insights into the skill dependence on MJO types can be gained by examining the 
relationship between the MJO prediction and its amplitude (Fig. 5a). For the standing (fast-
propagating) MJO, the initially weak cases have relatively lower (higher) skills than the initially 
strong cases. However, for both the jumping and slow-propagating MJO the model shows a 
comparable skill between the initially weak and strong cases. The skill spread among dif-
ferent groups of MJO tends to be larger for the initially weak cases than the initially strong 
cases. Intriguingly, a very similar skill is found for these four types of MJO when initiated at 
very strong MJO (|RMM| > 1.5) (not shown). The MJO prediction is less sensitive to the target 
amplitude. The skill for target strong (weak) cases is around 35 (10) days for all four clusters 
of MJO (Fig. ES3). Therefore, the overall skill diversity (Fig. 4a) is primarily related to the skill 
difference for initially weak cases.

Table 1. The temporal midpoint of the selected four clusters of the observed MJO events. Each MJO 
case is defined when the area-averaged OLR anomalies in the equatorial Indian Ocean (75°–95°E, 
10°S–10°N) are below one standard deviation for 5 successive days. The total number of events is 
shown in the first row in the parentheses.

Standing (12) Jumping (14) Slow propagating (15) Fast propagating (13)

31 Jan 2003 22 Jan 2002 18 Nov 2000 30 Apr 2002

9 Nov 2003 21 Mar 2002 27 Jan 2001 13 Nov 2002

18 Feb 2005 1 Nov 2004 18 Nov 2001 9 Dec 2003

16 Nov 2008 4 Jan 2005 23 Dec 2002 29 Mar 2005

25 Nov 2010 12 Dec 2005 11 Jan 2006 25 Dec 2006

3 Feb 2011 23 Apr 2006 19 Mar 2006 9 Apr 2009

27 Nov 2011 27 Mar 2010 13 Dec 2007 9 Mar 2012

21 Dec 2011 30 Apr 2011 28 Jan 2008 5 Nov 2012

21 Apr 2012 27 Jan 2012 10 Nov 2009 27 Dec 2012

1 Jan 2017 6 Feb 2016 30 Dec 2009 18 Apr 2018

26 Feb 2017 15 Mar 2016 12 Feb 2010 19 Jan 2019

12 Apr 2017 28 Nov 2017 8 Feb 2013 3 Mar 2019

20 Jan 2018 31 Mar 2013 23 Apr 2019

5 Mar 2018 11 Feb 2015

5 Apr 2015

BW
Highlight
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The observed MJO amplitude differs substantially among different types of MJO. Figure 5b 
displays the observational MJO amplitude for individual groups during the whole forecast 
period (45 days) by counting all the selected cases. The fast-propagating MJO has the strongest 
amplitude, followed by the slow-propagating, the jumping MJO, and the standing MJO, which 
has the smallest mean MJO amplitude. Given this, there are more weak cases for the standing 
MJO than the other groups, which may account for the overall lower skill for the standing MJO 
considering the skill dependence on the amplitude. Compared to the fast-propagating MJO, 
the relatively lower skill for the slow-propagating MJO may reflect the MC prediction barrier 
effects (Kim et al. 2018; Weaver et al. 2011), and we will discuss this later.

One may wonder whether the relatively lower prediction skill for the standing MJO is related 
to the intrinsic limitation of the metrics used (bivariate ACC of RMM indices) that may not be 
appropriate to represent its standing feature in the Indian Ocean (Fig. 4c). To address this, we 
examine the prediction skill of convection and circulation anomalies in the equatorial Indian 
Ocean (Fig. ES4). The skill difference among the four MJO types is broadly consistent with 
that based on the bivariate ACC (Fig. ES4 vs Fig. 4a), confirming the robustness of the results.

Prediction of MJO propagation diversity and its interannual modulations
Prediction of the diverse MJO propagations and the underlying mechanisms. Figure 6 
compares the observed and predicted equatorial (10°S–10°N) propagation features of MJO 
initiated 5 days before the peak phase in the equatorial Indian Ocean (day −5). The broad 
features of the observed standing, jumping, and slow- and fast-propagating MJO events (top 
two rows) are predicted reasonably well when initiated at day −5 (bottom two rows) despite 
an underpredicted amplitude. One noticeable deficiency is the underpredicted propagation 

Fig. 4. Four types of MJO events and their prediction skills in the SPEAR model. (a) The ACC and (b) 
potential predictability for four clusters of MJO. (c)–(f) Longitude (x axis)–time (y axis) composite 
of equatorial (10°S–10°N) OLR anomalies (W m−2) for four types of MJO centered at day 0 when 
the domain-averaged OLR anomalies in the equatorial Indian Ocean (75°–95°E, 10°S–10°N) are 
below one standard deviation for 5 successive days.
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speed for the slow-propagating MJO initiated 
at day −5. The predicted convective anomalies 
gradually fade when reaching the MC without 
further propagation to the western Pacific 
(Fig. 6). For the slow-propagating MJO, the is-
sue of underpredicted convection anomalies 
tends to be more severe when initiated at day 
−10, together with a too slow propagation (Fig. 
ES5). This is partially responsible for the lower 
prediction skill than the fast-propagating MJO.

Extensive studies have been conducted to 
study the mechanisms for MJO propagations. 
One group accentuates the role of precondi-
tioning characterized by lower-tropospher-
ic moistening ahead of major convection 
(Benedict and Randall 2007; Hsu and Li 2012; 
Kiladis et al. 2005; Wang and Lee 2017). 
Figure 6 shows that for the standing and 
jumping MJO, the lower-tropospheric conver-
gence and moistening are in phase with the 
convective anomalies in the Indian Ocean, 
cohesive with their rather stationary feature 
in the Indian Ocean. For the jumping MJO, 
the anomalous convergence and moistening 
in the MC even slightly lead the major convec-
tion in the Indian Ocean, providing a pathway 
for the fast transition of convection from the 
Indian Ocean to the western Pacific. For both 
the slow and fast-propagating MJO, there is an 
evident premoistening characterized by lower-
tropospheric convergence and moistening 
located to the east of the major deep convec-
tion. The model prediction qualitatively agrees 
with observations, while the low-tropospheric 
convergence almost disappears to the east of 
150°E for all groups of MJO suggestive of a 
systematic model bias.

The premoistening is predominantly driven by the lower-tropospheric moisture convergence 
that is related to the Kelvin wave and the resultant equatorial low pressure at the top of the 
boundary layer (Haertel 2021; Hsu and Li 2012; Wang 1988; Wang and Lee 2017). Note that 
the convergence anomalies are mainly ascribable to zonal winds rather than meridional winds. 
We present, in Fig. 7, the spatial patterns of OLR, 850-hPa winds, and 850-hPa geopotential 
height anomalies. The model prediction initiated at day −5 generally resembles the observed 
characteristics for these four groups of MJO (Fig. 7).

Some indigenous features are identified among these four groups from observations (Fig. 7). 
The easterly wind anomalies over the MC and western Pacific are much weaker for the standing 
MJO than the other three groups. Given the strong zonal gradient of climatological moisture in 
the Indian Ocean, the westerly wind anomalies as a Rossby wave response induce a negative 
moisture advection and deteriorate the convection anomalies (Adames and Kim 2016), facili-
tating its phase transition. Meanwhile, the increased atmospheric stability due to convective 

Fig. 5. Prediction skill dependence of MJO diversity on the 
initial amplitude. (a) The ACC for four types of MJO initiated 
at strong (|RMM| > 1; solid) and weak (|RMM| < 1; dash) 

cases. (b) The observed MJO amplitude ++ ..11 22RMM RMM 222  

for four groups of MJO as a function of forecast lead days 
(x axis) by counting all the selected cases (initiated be-
tween 20 days before and 15 days after day 0). There are 
42, 59, 85, and 67 initially strong cases and 46, 45, 31, and 
25 initially weak cases for the standing, jumping, slow-
propagating, and fast-propagating MJO, respectively.
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heating and the resultant decreased SST also contribute to its phase transition. The above 
physical processes represent a discharge–recharge process responsible for its local oscilla-
tory feature (Bladé and Hartmann 1993). The jumping MJO possesses a weak Rossby wave 
response but with a far-reaching Kelvin wave component. Unlike the propagating MJO, the 
jumping MJO’s easterly anomalies are confined in the western Pacific without penetrating the 
MC. The newly formed convection anomalies in the western Pacific are relatively independent 
of the preceding major convection in the Indian Ocean (Fig. 7). Another notable difference is 
that the drying anomalies in the MC and western Pacific are significantly weaker for both the 
standing and jumping MJO than the propagating MJO, which may have some consequences 
on the MJO propagation (Kim et al. 2014). For the fast-propagating MJO, the major convec-
tion is coupled to the strong Kelvin waves during the whole period when traversing the MC 

Fig. 6. MJO propagation and proposed mechanisms seen from the equatorial (10°S–10°N) anomalies as a function of lon-
gitude (x axis) and time lag (y axis; days) composited for four types of MJO. The first row shows observed OLR anomalies 
(shading; W m−2) and 850-hPa zonal winds (contours with an interval of 0.6 m s−1). The second row depicts observed lower-
tropospheric divergence (shading; 10−6 S−1) averaged over two levels (850 and 925 hPa) and specific humidity (contours 
with an interval of 0.2 g kg−1) averaged over two levels (700 and 825 hPa). The bottom two rows are similar to the top 
two but for model predictions initiated at day −5 (5 days before the peak phase in the Indian Ocean). The black stippling 
denotes the regions at the 10% significance level for OLR and lower-tropospheric divergence anomalies.
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(Fig. 7). It has a rather meridionally symmetric pattern of anomalous convection during the 
first week. The major convection even migrates to the Northern Hemisphere together with a 
northwest–southeast-tilted structure at weeks 2 and 3.

The observed and predicted features for different kinds of MJO suggest that the tropical 
wave dynamics and its interaction with the lower-tropospheric moisture may play an im-
portant role in MJO propagation, a point emphasized by the so-called convection–dynam-
ics–moisture trio-interaction theory (Wang et al. 2016). However, it is also noticed that for 
the slow-propagating MJO, the anomalous moisture anomalies tend to decouple from the 
Kelvin wave during week 3, accompanied by southeastward detouring convection–circula-
tion anomalies to the south of MC. We argue that some other processes may contribute to 
its further eastward propagation from observations for the slow-propagating MJO, such as 

Fig. 7. Comparison of observed and predicted anomalies during the first 4 weeks initiated at day −5. The observed com-
posite anomalies of OLR (W m−2), 850-hPa winds (m s−1; not shown when wind speed is less than 0.5 m s−1), and 850-hPa 
geopotential height (contours; m2 s−2) during the (first row) first, (second row) second, (third row) third, and (fourth row) 
fourth weeks starting from day −5. The bottom four rows are similar to the top four but for model predictions initiated 
at day −5. The MJO type is indicated at the top of each column. The black stippling denotes the regions at the 10% sig-
nificance level for OLR anomalies.
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the horizontal advection (Kim et al. 2017) or wind-induced surface heat exchange (WISHE) 
given the mean westerly winds in this region. However, the model presumably has difficulty 
capturing these possible processes, leading to the rapid termination of MJO in the eastern 
MC (Figs. 6 and 7). It is concluded that the slow-propagating MJO suffers the MC prediction 
barrier from model predictions, while the fast-propagating MJO seemingly does not have this 
problem. The fast-propagating MJO has a larger zonal scale than the slow-propagating event, 
contributing to its faster propagation speed (Adames and Kim 2016; Chen and Wang 2020).

Observed and predicted impacts of ENSO and QBO on MJO diversity. What are the root 
causes for the diversified propagation for different types of MJO? Why are the equatorial waves 
so different for different types of MJO? One possibility is due to the regulation of interannual 
variability (Fig. 8). Here interannual variability is approximately estimated as the difference 
between the averaged 30-day unfiltered anomalies and the averaged 30-day anomalies 
with the previous 120-day anomalies removed. B. Wang et al. (2019) found that the stand-
ing (fast-propagating) MJO is related to a La Niña (central Pacific El Niño) background mean 
state, while no statistically significant SST anomalies are found in the equatorial Pacific. The 
results are overall consistent with B. Wang et al. (2019) but we also notice there is a significant 

Fig. 8. Regulation of ENSO and stratospheric QBO on MJO diversity. (a)–(d) The observed interan-
nual SST (°C; shading) and OLR anomalies (W m−2; contours) between day −15 and day +15. (e)–(h) 
The observed interannual 50-hPa zonal wind anomalies (m s−1) between day −15 and day +15. The 
MJO type is indicated at the left of each row. The black stippling denotes the regions at the 10% 
significance level for SST anomalies in (a)–(d) and 50-hPa zonal wind anomalies in (e)–(h). Note 
that all cases initialized from November to April are used here.
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SST cooling in the far eastern Pacific for the slow-propagating MJO (Fig. 8c), a signature of 
an increased zonal SST gradient similar to that for the fast-propagating MJO (Fig. 8d). The 
convection anomalies are dynamically coherent with the lower-boundary SST changes for 
different clusters of MJO. The modulation of El Niño–Southern Oscillation (ENSO) on MJO is 
arguably through two processes: the resultant expansion/shrinkage of the warm pool area 
that may alter the spatial scale of MJO (Lyu et al. 2021; B. Wang et al. 2019), and the change 
of mean moisture and vertical shear over the MC (Liu et al. 2020; Wei and Ren 2019).

Besides ENSO, the role of stratospheric QBO on the MJO activities (MJO frequency, duration, 
amplitude, and propagation) has been articulated recently given the tight QBO–MJO connec-
tion in boreal wintertime (Liu et al. 2014; Yoo and Son 2016; Zhang and Zhang 2018). The 
QBO–MJO coupling becomes even more prominent in recent decades (Klotzbach et al. 2019). 
Here we found that the occurrence of standing MJO coincides with significant westerly QBO 
phases (WQBO) (Fig. 8e), in agreement with the conclusion that there is more MC barrier effect 
during WQBO than EQBO (Zhang and Zhang 2018). The occurrence of slow-propagating MJO 
is related to significant easterly QBO phases (EQBO) (Fig. 8g). However, there is no significant 
relationship between the QBO and the other two clusters of MJO (this conclusion is valid even 
for December–February when the QBO–MJO connection is most robust) (Figs. 8f,h).

The model accurately predicts the corresponding interannual variability associated with 
ENSO and QBO (Fig. ES6). Similar to the literature (Lim et al. 2019; Marshall et al. 2017), 
the impacts of QBO on the MJO prediction skill is clearly shown with a higher prediction 
skill during EQBO than WQBO (31 vs 27 days) (Fig. ES7). This is also consistent with the 
finding that the model has better prediction skills for the slow-propagating MJO than the 
standing MJO (Fig. 4a). Regarding the physical mechanisms to explain the role of QBO on 
MJO, several possible mechanisms have been proposed including the upper-tropospheric 
stability, cloud radiative feedbacks, QBO wind anomalies, and the changes to wave propaga-
tion (Martin et al. 2021; Yoo and Son 2016; Zhang and Zhang 2018). However, they remain 
largely untested and there is no consensus on a particular mechanism that can explain all 
the observed QBO–MJO connections. About how QBO modulates these four types of MJO is 
an open question. Given the limited sample size of MJO cases (Table 1), the robustness needs 
to be confirmed by considering more MJO cases.

Predicting the initial development and identifying the precursors
This section focuses on understanding the predictability of the initial development in the 
Indian Ocean and identifying its potential precursors. First, we assessed the model’s skill in 
predicting the target peak phase of MJO (around day 0) with different lead times (Fig. 9). For 
the standing MJO, the anomalous enhanced convection in the Indian Ocean is highly predict-
able even with a 20-day lead time. For the jumping MJO, the predicted active convection in 
the eastern Indian Ocean is weak and less robust for a 20-day lead forecast. The prediction 
of the second convection center in the western Pacific is even more challenging, and both the 
15- and 20-day lead forecasts fail to capture it. For both the slow and fast-propagating MJO, 
the drying anomalies in the western Pacific are less predictable than the wetting anomalies in 
the Indian Ocean. One issue for the slow-propagating MJO is that the westerly wind anomalies 
to the west of the convection center are substantially underpredicted. This may contribute to 
the slowdown of its eastward propagation because of the associated underestimated zonal 
moisture advection. Note that the selected cases are not completely the same at different lead 
times given the data availability from model hindcasts.

Why does the model have the ability in predicting the initial development of diversified 
MJO? What are the precursory signals for these four types of MJO? We further examine the time 
evolution of preceding convection and circulation anomalies from observations (Fig. 10). As a 
common precursor for all types of MJO, the prevailing easterly wind anomalies in the Indian 
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Ocean drive the coupled system more subtly toward a state in which the anomalous convec-
tion is favored in the Indian Ocean (Fig. 10). The convection anomalies exhibit distinctive 
precursory conditions that may distinguish the occurrence of different types of MJO. For the 
standing MJO, pronounced drying anomalies cover nearly the whole tropical Indian Ocean 
between day −20 and day −10 (Fig. 10, green boxes in the first column), which decay rapidly 
from day −15 to day −10 before the onset of the wet phase at around day −10. This indicates that 
the wet phase is preceded by a local dry phase as an oscillatory mode. For the jumping MJO, 
relatively small-scale convection anomalies are detected in the southern central equatorial 
Indian Ocean (Fig. 10, green boxes in the second column), and the resultant easterly winds 
anomalies are responsible for the onset of the wet phase of MJO in the southwest Indian Ocean.

The slow-propagating MJO displays a significant dry phase in the central-to-eastern Indian 
Ocean during the period between day −20 and day −10 (Fig. 10, green boxes in the third col-
umn), which exhibits a clear eastward propagation across the MC to the western Pacific. Note 
that the dry phase does not show the southward detouring feature near the MC distinguished 
from its wet phase. For the fast-propagating MJO, the major loading of suppressed convection 
is anchored in the MC and western Pacific (Fig. 10, green boxes in the fourth column) without 
an apparent propagation before the initial development of the wet phase in the Indian Ocean. 
Given the distinctive time evolution of the convection anomalies (Fig. 10), it is inferred that 

Fig. 9. Model’s skill in predicting the target peak phase in the equatorial Indian Ocean (at around day 0) with different 
lead times for the four types of MJO. The first row shows the observed composite anomalies of OLR (shading; W m−2) and 
850 hPa winds (m s−1; not shown when wind speed is less than 0.5 m s−1) averaged over days 1–5 for the four MJO clusters. 
The second to fifth rows are the composite results from model predictions with a lead time of 5 to 20 days, respectively. 
The black stippling denotes the regions at the 10% significance level for composite OLR anomalies.
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the standing and slow-propagating MJO are mostly “successive MJO,” while the jumping and 
fast-propagating MJO are mainly “primary MJO.” Here the successive MJO is referring to the 
cases with a preceding event and the primary MJO represents the cases originating from the 
Indian Ocean (Matthews 2008). The model generally predicts a similar time evolution of 
convection and circulation anomalies as observations for all types of MJO when initiated at 
day −20 (Fig. 10).

Prediction of teleconnections
The impacts of the MJO are not just within the tropics but also in the extratropics as well. 
The MJO’s extratropical circulation signature has been studied extensively, and many ef-
forts have been made to unravel the physical processes that underlie the establishment of 

Fig. 10. Observed precursors for the four types of MJO. The first row shows the observed composite anomalies of OLR 
(shading; W m−2) and 850-hPa winds (m s−1; not shown when wind speed is less than 0.5 m s−1) averaged over the period 
between day −5 and day −1 for four MJO clusters. The second to fourth rows are similar but for 10, 15, and 20 days before 
the peak phase. The bottom four rows are similar but for the time evolutions of forecast initiated at day −20. The black 
stippling denotes the regions at the 10% significance level for composite OLR anomalies. Green boxes in the lowest panels 
for both observations and model forecast denote the key regions with precursory OLR signals.
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the teleconnections forced by MJO (Ferranti et al. 1990; Stan et al. 2017; Tseng et al. 2019). 
However, many current climate models still have difficulty in realistically simulating MJO, 
and the error in the Pacific subtropical jet greatly limits the ability to faithfully produce the 
MJO teleconnection patterns (Henderson et al. 2017; Wang et al. 2020). A skillful prediction 
of the relevant tropical convection could allow the prediction of its remote teleconnections 
to become possible.

Chen (2021) has examined the observational circulation anomalies associated with these 
four types of MJO. Here one example is shown to illustrate the observed and predicted dis-
tinctive t2m and 500-hPa geopotential height anomalies (averaged 11–20 days after day 0) 
associated with these four types of MJO by focusing on the Pacific–North America sector 
(Fig. 11). For the standing MJO, robust cold t2m anomalies are observed near the Chukchi 
Sea, northern Canada, and the adjacent seas (Fig. 11a). The jumping MJO excites a zonal wave 
train circulation over the northeastern Pacific–North America–North Atlantic sector, with a 
coherent zonal dipole pattern of t2m anomalies in North America and a significant warming 
over the Greenland Sea and Norwegian Sea regions (Fig. 11b). The slow- and fast-propagating 
MJO have a similar teleconnection pathway in the Pacific–North America sector, reminiscent 
of a typical pattern of the North Pacific Oscillation (NPO) mode with a low pressure system 
over Alaska and the Bering Sea and high pressure in northern North America (Rogers 1981). 
Compared to the slow-propagating MJO, the fast-propagating MJO induces a slightly southward 
shifted warming in North America (Fig. 11d vs Fig. 11c). For the fast-propagating MJO, the 
circulation and surface temperature anomalies in the North Atlantic sector project onto the 
positive phase of North Atlantic Oscillation (NAO) (Fig. 11d), as documented in many previ-
ous studies (Cassou 2008; Lin et al. 2009). It is of interest to note that the teleconnections 
associated with the standing and propagating MJO resemble very similar patterns with two 
leading EOF modes of the wintertime cold extremes in North America (Xiang et al. 2020). 
This implies that the MJO is one of the major drivers and also a key predictability source for 
the wintertime extremes in North America but that the occurrence of such extremes may be 
sensitive to the MJO type.

The remarkable teleconnection differences highlight the importance of accurately 
predicting the propagation characteristic of MJO in the tropics. Inspection of the model 
hindcasts initiated at around day 0 (strongest convection in the Indian Ocean) reveals a 
considerable skill in predicting the distinguished circulation and temperature anomalies 
for the standing, jumping, and fast-propagating MJO (Fig. 11). However, the model struggles 
to predict the teleconnections associated with the slow-propagating MJO (Fig. 11g). The 
corresponding pattern correlations between the observed and predicted t2m anomalies 
are 0.57 (standing), 0.64 (jumping), 0.19 (slow-propagating), and 0.55 (fast-propagating), 
respectively. We also examined the same time period as in Fig. 11 but initiated at day −5 
and found that the model has some skill in predicting the associated teleconnections for the 
standing and fast-propagating MJO, while the model is limited in its ability to predict the 
teleconnections for both the jumping and slow-propagating MJO (not shown). The detailed 
processes leading to the limited skill in predicting its teleconnection remain elusive and 
require further investigation.

Summary and discussion
Conclusions. Improvements in MJO prediction skills are critical for developing prediction prod-
ucts for various weather and climate phenomena. This study introduces a newly developed 
S2S prediction system using the GFDL SPEAR global coupled model. The wintertime (Novem-
ber–April) MJO prediction is evaluated using 20-yr hindcasts (2000–19). Results show that the 
model skillfully predicts the MJO for 30 days before the bivariate ACC of the RMM index drops 
to 0.5 (Fig. 1). The MJO prediction skill is dependent on the MJO propagation features (Fig. 4). 
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The fast-propagating MJO has the best skill of 38 days, followed by the slow-propagating MJO 
and jumping MJO (31 days), and then the standing MJO (23 days). The diversified skills for 
different types of MJO are related to their contrasting skills initiated at weak MJO and their 
amplitude difference (Fig. 5). To further improve the MJO prediction in SPEAR, the key is to 
advance the prediction of standing MJO given its large gap with its potential predictability 
(15 days) (Fig. 4). The slow-propagating MJO detours southward when traversing the MC and 
suffers the MC prediction barrier effect, while the fast-propagating MJO propagates across 
the central MC without the MC prediction barrier issue (Figs. 6 and 7). The intensity of Kelvin 
waves and the zonal spatial scales, potentially modulated by the background interannual 
variability, are essential in determining their different propagations (Figs. 7 and 8). The MJO 

Fig. 11. Observed and predicted teleconnection patterns associated with the four types of MJO. (a)–(d) The composite 
observational anomalies of 2-m temperature (shading; °C) and 500-hPa geopotential height (contours; m2 s−2) averaged 
over 11–20 days after the peak phase (between day 11 and 20) for the four types of MJO. (e)–(h) As in (a)–(d), but for 
model predictions initiated at peak phase (around day 0). The correlation skills of 2-m temperature anomalies are shown 
in parentheses in (e)–(h).
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diversity is modulated by interannual variabilities from ENSO and QBO. In particular, we 
found that the occurrence of the standing MJO coincides with significant WQBO phases and 
the slow-propagating MJO is corresponding to significant EQBO phases. The modulation of 
QBO on MJO diversity partially explains the contrasting MJO prediction skill between two 
QBO phases.

The SPEAR model exhibits its capability not only in predicting the diversified MJO propaga-
tion (Figs. 6 and 7) but also in predicting its initial development in the Indian Ocean (Fig. 9) 
accompanying by contrasting precursory convection signals (Fig. 10). Distinct teleconnec-
tions in the northern extratropics are revealed for these four types of MJO, and the SPEAR 
model realistically predicts its extratropical teleconnection for the standing, jumping, and 
fast-propagating MJO (averaged 11–20 days after day 0) (Fig. 11). However, the model has 
little skill in predicting its observed teleconnections for the slow-propagating MJO despite 
a useful MJO prediction skill of 31 days. It highlights the complexities and challenges of 
applying a skillful MJO prediction to the operational prediction of MJO impacts, such as the 
meteorological variables—t2m and precipitation.

Discussion. Why do the slow-propagating and fast-propagating MJO differ in their propaga-
tion pathway when crossing the MC: one through the southern MC and the other through the 
central MC (Fig. 7)? There are two possible reasons for this. First, for the fast-propagating 
MJO, the suppressed interannual convective variability to the south of MC may prohibit its 
southward pathway when crossing the MC (Fig. 8d), resulting in a rather equatorially sym-
metric propagation over the central MC (Fig. 7). Second, the propagation pathway can be 
modulated by the seasonal variation of the background mean state. Kim et al. (2017) found 
that the MJO preferentially detours southward near the MC during December–February (DJF), 
predominantly related to the meridional mean moisture gradient. Here we reveal the seasonal 
preference about the occurrence frequency of different types of MJO. There are more slow-
propagating cases in DJF than March–April (MA) (9 vs 3), but fewer fast-propagating MJO 
cases in DJF than MA (4 vs 7) (Table 1), consistent with (Chen 2021). It also implies the MJO 
propagation speed may have seasonal dependence with fast (slow) propagation speed in DJF 
(MA). Meanwhile, there are fewer standing MJO cases in MA than DJF (Table 1). The seasonal 
preference indicates that the background mean state in MA tends to be more favorable for its 
eastward propagation of MJO than in DJF. Compared to the fast-propagating MJO, the more 
severe MC prediction barrier problem for the slow-propagating MJO is possibly linked to a 
more severe mean state bias in DJF than MA. Identifying the potential role and processes 
of seasonality in regulating the MJO diversity calls for deliberation. There are several other 
issues that are not addressed here. For example, why does the QBO have pronounced influ-
ences on the standing and slow-propagating MJO but not on the other two types of MJO (the 
seasonal preference of the occurrence of different MJO types may partially explain this as the 
connection between QBO and MJO is most prominent in DJF)? Why does the model have dif-
ficulty in predicting the teleconnections associated with the slow-propagating MJO? Whether 
and to what extent these findings can be applied to other dynamical models is another issue 
calling for further studies.

Though the SPEAR model produces a comparable or even better MJO prediction skill than 
the majority of current operational S2S prediction models (Kim et al. 2018; Vitart 2017), 
there are also some caveats and limitations for the current configuration, developed for high 
performance computing constraints. For example, the model has a relatively coarse vertical 
resolution (33 levels) with a low top atmosphere. The initialization is relatively simple, and the 
land is not explicitly initialized, although it can be constrained by the atmospheric nudging. 
The system also suffers the underdispersive issue (the ensemble spread is much smaller than 
the RMSE) common to many models. These caveats, however, may provide an opportunity to 
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identify the roles of a better representation of the stratosphere and a sophisticated initializa-
tion in S2S prediction and should be explored.

Understanding and isolating skills with a global model are critical for further model de-
velopment. We hope that this work provides a framework to identify potential issues for MJO 
prediction in individual models by examining diversified MJO, which may provide guidance 
for further model development. Given the different impacts from these four types of MJO, 
operational forecasters may need to consider more than just the RMM index when monitoring 
the MJO and forecasting its impacts.

The SPEAR seasonal prediction system (Delworth et al. 2020; Lu et al. 2020) is operationally 
participating in the North American Multi-Model Ensemble (NMME) (Kirtman et al. 2014), but 
was first developed for research. By developing SPEAR for S2S prediction, we have created 
a new system for shorter-range prediction that could similarly be used in research to further 
development in operational modeling. Importantly, the SPEAR model shares two key model 
components with the Unified Forecast System (UFS) model: the Finite-Volume Cubed-Sphere 
(FV3) dynamical core (Lin 2004) and MOM6 ocean model (Adcroft et al. 2019). Thus, knowl-
edge derived from the development and use of SPEAR can be used to assist in the development 
and application of the UFS model.
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