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Abstract  24 

 25 

It has been a common practice to predict total tropical cyclone (TC) genesis 26 

frequency over the entire western North Pacific (WNP). Here we show that TC genesis 27 

(TCG) exhibits distinct regional variability and sources of predictability. Therefore, we 28 

divide the WNP into four quadrants with 140°E and 17°N being dividing lines plus 29 

South China Sea (SCS) to predict five sub-regional as well as the entire WNP TCG 30 

frequency. Besides the well-known ENSO-induced seesaw relationship between the 31 

TCGs in the southeast and northwest quadrants, we found (a) an enhanced TCG in the 32 

northeast WNP is associated with a pronounced anomalous cyclonic circulation, which 33 

is maintained through its interaction with the underlying sea surface temperature (SST) 34 

anomalies; (b) an active TCG in the southwest WNP is accompanied by a zonally 35 

elongated positive vorticity anomaly and SST warming over the equatorial eastern 36 

Pacific; and (c) the SCS TCG is influenced by the upper-level South Asia High through 37 

modulating large-scale environmental parameters. Physically meaningful predictors are 38 

identified and a set of empirical prediction models for TCG frequency is established for 39 

each sub-region. Both the cross-validated reforecast for 1965-2000 and independent 40 

forecast for 2001-2016 show significant temporal correlation skills. Moreover, the sum 41 

of the predicted TCG frequency in five sub-regions yields a basin-wide TCG frequency 42 

prediction with a temporal correlation skill of 0.76 for the independent forecast period 43 

of 2001-2016. The results indicate its potential utility to improve the TC forecasting in 44 

the WNP. 45 

 46 

 47 

 48 

 49 
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1. Introduction 50 

 51 

The WNP hosts about one-third of global named TCs per year (Gray 1968; Chan 52 

2005) and experiences large year to year fluctuation in the total tropical storm days 53 

(Wang et al. 2010). Billions of people living in Pacific islands and Asian coastal regions 54 

are frequently subject to TC-induced disasters (Zhang et al. 2009; Peduzzi et al. 2012). 55 

Skillful seasonal prediction for TC activity would immensely benefit disaster mitigation 56 

(King et al. 2010). Therefore, achieving skillful seasonal forecasting products has been 57 

at the heart of TC research community since the 1970s (Nicholls 1979; Gray 1984; 58 

Chan et al. 1998; Camargo et al. 2007a, 2010; Zhan et al. 2012).   59 

For the WNP, seasonal forecasting of TC activity was first attempted by the 60 

National Climate Center of China Meteorological Administration at the early 1990s 61 

(Zhan et al. 2012). Then, Chan et al. (1998) first issued seasonal forecasting products 62 

for the WNP by taking large-scale atmospheric and oceanic conditions into their 63 

statistical prediction model. Currently, various strategies including statistical method, 64 

coupled dynamic model and the so-called hybrid statistical-dynamical approach, have 65 

been used to make seasonal outlook for  the WNP TC activity (Chan et al. 1998, 2001; 66 

Camargo et al. 2007a, 2010; Chen and Lin 2013; Zhan and Wang 2016; Zhang et al. 67 

2016b). While the coupled dynamic models gradually show valuable prediction skill in 68 

recent decades (Chen and Lin 2013; Vecchi et al. 2014; Camp et al. 2015; Manganello 69 

et al. 2016), the statistical approach is still the principal way to issue TC seasonal 70 

forecast over the WNP (Chan et al. 1998, 2001; Camargo et al. 2007a, 2010; Fan and 71 

Wang 2009; Lu et al. 2010; Zhan et al. 2012; Zhan and Wang 2016; Kim et al. 2017; 72 

Zhang et al. 2018; Wang and Wang 2019).  73 

Various factors have been used to predict the TCG frequency over the WNP, 74 
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including El Niño–Southern Oscillation (ENSO) (Chan et al. 1998, 2001; Wang and 75 

Chan 2002; Zhao 2016; Zhao and Wang 2016; Wang et al. 2019a,b; Zhao and Wang 76 

2019),  North Pacific Oscillation (Wang et al. 2007b; Chen et al. 2015; Zhang et al. 77 

2018), Antarctic Oscillation (Ho et al. 2005; Wang and Fan 2007) and the Hadley 78 

circulation (Zhou and Cui 2008). More recently, the Pacific Meridional Mode (PMM, 79 

Zhang et al. 2016a, 2017), SST variations in the Indian ocean (Du et al. 2011; Zhan et 80 

al. 2011a; Tao et al. 2012), North Atlantic (Huo et al. 2015; Yu et al. 2015), and the 81 

SST gradient between the southwestern Pacific and the western Pacific warm pool 82 

(Zhou and Cui 2010; Zhan et al. 2013) have been suggested to be potential predictors 83 

for TCG frequency over the WNP. Recently, Wang and Wang (2019) found that the 84 

two leading modes of WNP subtropical high integrate the influences of the trans-basin 85 

SST variations, including North Indian Ocean(Zhan et al. 2011b; Du et al. 2011), North 86 

Pacific (Lander 1994; Wang and Chan 2002) and North Atlantic (Huo et al. 2015), on 87 

the WNP TC activity. Therefore, the WNP subtropical high can establish a unified 88 

framework for the seasonal forecasting of WNP TC activity (Wang and Wang 2019). 89 

All of the aforementioned statistical prediction schemes usually take the basin-90 

wide TCG frequency over the whole WNP as the targeted predictand. However, TCG 91 

over the WNP experiences distinct regional feature (Wang and Chan 2002; Kim et al. 92 

2010) and the predictability sources of TCG in individual WNP sub-regions may differ 93 

from each other (Kim et al. 2009; Lu et al. 2010). Variations of the TCG frequency in 94 

individual sub-regions are usually not in phase, even anti-varied in some specific sub-95 

regions (Figure not shown). In fact, even to the same climate factor, TCGs in different 96 

sub-regions respond differently due to the diverse responses in local large-scale 97 

conditions over the vast WNP (Wang and Chan 2002). The non-unified variation in 98 

sub-regions might make it difficult to predict the TCG frequency over the entire WNP 99 
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as a whole. In addition, TC disasters vary regionally (Pielke et al. 2008; Zhang et al. 100 

2009; Peduzzi et al. 2012), thus the basin-wide TC activity metrics usually act as a poor 101 

indicator to those in sub-regions (Vecchi et al. 2014; Kossin 2017). The utility of these 102 

statistical forecasts would therefore be enhanced if seasonal TCG on scales finer than 103 

basin-wide could be skillfully predicted (Vecchi et al. 2014). Therefore, the primary 104 

objectives of this study are to investigate the predictability sources of regional TCG 105 

frequency, and further establish empirical models to predict the seasonal TCG 106 

frequency in individual sub-regions over the WNP.  107 

In the next section, we describe the data and methods to establish and evaluate 108 

the prediction models. Section 3 explores the physical interpretation of TCG in 109 

individual sub-regions from the perspective of large-scale conditions.  Section 4 110 

presents the identified predictors for each of five sub-regions. The region-dependent 111 

seasonal forecasts and its predicting skill are shown in section 5 and a summary of the 112 

results and discussions are presented in section 6. 113 

 114 

2. Data and method  115 

2.1 Data and definition of sub-regions 116 

TCG frequency is derived from the Joint Typhoon Warming Center (JTWC), 117 

which provides six-hourly records of positions (latitudes and longitudes) and maximum 118 

sustain wind speeds of TCs. TCs in this study are defined as tropical storms whose 119 

maximum wind speed reach or exceed 17.2 m s-1. Monthly atmospheric data from the 120 

National Centers for Environmental Prediction (NCEP)-National Center for 121 

Atmospheric Research (NCAR) reanalysis (Kalnay et al. 1996) and SST from the 122 

Extended Reconstruction SST (ERSST) version 4 (Huang et al. 2015) are used to 123 
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interpret the impacts of large-scale conditions on TCG and identify the potential 124 

predictors.  125 

The analysis period is from 1965 to 2016, and we focus on the peak season (July-126 

September, Wang and Chan 2002,Wang and Wu 2012) of TCG over the WNP (0°-127 

40°N,100°E-180°). 1965 is taken as the starting year because satellite monitoring 128 

became routine around this year and TCs would be unlikely to be missed (Wang and 129 

Chan 2002; Chan 2006). The WNP is divided into five sub-regions (Fig.1), South China 130 

Sea (0°-25°N,100°E-120°E), southwest WNP (0°-17°N,120°E-140°E), northwest 131 

WNP (17°N-40°N,120°E-140°E), southeast WNP (0°-17°N,140°E-180°) and 132 

northwest WNP (17°N-40°N,140°E-180°) following Wang and Chan (2002).  133 

 134 

2.2 Methods to build and validate empirical models  135 

Following Wang et al. (2015), correlation maps between the predictands (i.e., TCG 136 

frequency in five sub-regions during July-September) and anomalous large-scale 137 

conditions (SST, 2-m temperature, sea level pressure (SLP) and 850 hPa wind) prior to 138 

July are used to identify the potential predictors. Monthly/bi-monthly mean anomalies 139 

and tendency in large-scale conditions are taken as the potential predictive signals. Two 140 

types of predictors were used: (a) the persistent signals (represented by the seasonal 141 

mean) that indicate the slow variation of the lower boundary anomalies which will 142 

“persist” into the ensuing season, and (b) the tendency signals (represented by the 143 

difference in two months mean) that signify the tendency of following evolution. The 144 

potential predictive signals are identified as a potential predictor if there is a large-area 145 

of grid points where the correlation coefficient is significant at 95% confidence level 146 

(Lee et al. 2013; Yim et al. 2014; Wang et al. 2015b). After the above-mentioned two 147 
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steps, several identified physical meaningful predictors are considered as candidates. 148 

Then, stepwise regression, which can ascertain the relative independency of predictors 149 

and the best combination of the predictors, is used to build the empirical model for each 150 

sub-region. A 95% confidence level for Fisher’s F test is used as the criterion to select 151 

predictors (Yim et al. 2014; Wang et al. 2015b). The lead-lag correlation between 152 

predictors and July-September mean large-scale circulation and environmental 153 

parameters are used to understand the cause-effect relationships between the predictors 154 

and predictand. Two validation methods, including cross-validated reforecast and 155 

independent forecast, are adopted to evaluate the prediction skills of empirical models 156 

(Wang et al. 2013; Yim et al. 2014). The cross-validated reforecast is obtained by first 157 

building the empirical model with samples excluding three years each time, and then 158 

use the derived empirical model to predict the TCG frequency for the three withheld 159 

years (Michaelsen 1987). These processes are then repeated for all other years to obtain 160 

the cross-validated reforecast for 1965–2000. The independent forecast is then 161 

conducted for the rest 16-year period (2001–2016). Both the predictors selection and 162 

empirical model building is based on the samples during 1965–2000. The temporal 163 

correlation coefficient (TCC) and Mean Square Skill Score (MSSS) are used to measure 164 

the deterministic seasonal forecast skill (Murphy 1988). The MSSS compares the Mean 165 

Square Error (MSE) of the forecast to the MSE of climatology and thus reflects the 166 

forecast skill relative to the “forecasts” of climatology. Statistical significance of 167 

correlation is assessed using the two-tailed Student’s t-test (Wilks 2006).  168 

 169 

3.  Physical interpretation of regional TCG frequency over the WNP 170 

 Large-scale atmospheric and oceanic conditions play a crucial role in TCG over 171 
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the WNP (Gray 1968; Emanuel and Nolan 2004; Murakami and Wang 2010). In this 172 

section, we examine the anomalous large-scale circulation patterns and the 173 

corresponding boundary conditions concurring with the anomalous TCG frequency in 174 

individual sub-regions, which can help us gain insight into the physical linkage between 175 

the predictor and TCG frequency.  176 

 177 

3.1 The northwest and southeast WNP 178 

 It has long been known that TCG in the northwest and southeast WNP is tightly 179 

linked to the ENSO phenomenon (Lander 1994; Wang and Chan 2002; Camargo et al. 180 

2007b; Zhao et al. 2010; Wang and Wu 2016, 2018a). Generally, the favorable large-181 

scale circulation pattern for TCG in the northwest and southeast WNP are consistent 182 

with previous studies (Figs. 2-3).  183 

An active TCG in the northwest WNP is usually concurrent with a La Niña-like 184 

pattern in SST anomalies (Fig. 2a). The anomalous convective heating related to SST 185 

cooling over the equatorial central Pacific and SST warming over the Marine Continent 186 

can extend the subtropical high eastward through stimulating Rossby and Kelvin wave 187 

responses, respectively (Wang et al. 2013). The subtropical high ridge extends to the 188 

Philippines, generating cyclonic shear vorticity to its western flank (Fig. 2a) and 189 

favoring TCG in the northwest WNP. At the upper troposphere, the anomalous 190 

southeasterly in south China and northwesterly to its east generate strong upper-level 191 

divergence in the northwest WNP (Fig. 2b). The associated anomalous ascending 192 

motion is favorable for TCG (Wang and Chan 2002).  193 

The large-scale circulations concurring with the active TCG in the southeast 194 

WNP are tightly linked to the developing phase of El Niño (Fig.3a).  Specially, The 195 
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SST warming over the equatorial central-eastern Pacific can, through increasing 196 

convective heating, generate pronounced equatorial westerly anomalies in the western 197 

Pacific as Rossby response (Figs. 3a). The meridional shear vorticity of the anomalous 198 

westerly serves to favor TCG in the southeast WNP. At the upper troposphere, the 199 

anomalous anti-cyclone over the eastern WNP indicates the eastward migration in the 200 

tropical upper troposphere trough, which can favor the TCG in the southeast WNP by 201 

weakening vertical wind shear (Wu et al. 2015; Wang and Wu 2016, 2018b).  202 

 203 

3.2 The northeast WNP 204 

The favorable large-scale circulation patterns for TCG in the northeast WNP 205 

receive relatively less attention due to its weak impacts on Asian countries (Fig.1). 206 

Generally, active TCG in the northeast WNP are associated with anomalous ascending 207 

motion and cyclonic circulation, which are well-known to be favorable to TCG (Figs. 208 

4a-b, Gray 1968). Actually, the anomalous cyclonic circulation is coupled to the 209 

underlying SST anomalies (Fig. 4a). On the one hand, the anomalous southwesterly to 210 

the south and southeast of cyclonic circulation superposed on the mean easterly trade 211 

wind, decreases total wind speed, suppresses sea surface evaporation and entrainment, 212 

and thus warms the SST in a southwest-northeast tilted band from tropical eastern WNP 213 

to the subtropical eastern Pacific. On the other hand, the anomalous southwesterly 214 

transport wet and warm air to the northeast of the anomalous cyclonic circulation. Both 215 

the SST warming and wet advection increase convective instability and serve to 216 

enhance the convection to the southeast of anomalous cyclonic circulation. The 217 

increased convective heating can then generate ascending Rossby waves, which in turn 218 

reinforces the anomalous cyclonic circulation (Wang et al. 2000, 2003, 2013; Xiang et 219 
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al. 2013). Meanwhile, the SST cooling induced negative convective heating over the 220 

equatorial eastern Pacific can stimulate an anomalous low-level anti-cyclone as Rossby 221 

wave response to its west. The southwesterly to the west flank of anomalous anti-222 

cyclone can enhance the atmosphere-ocean feedback and then enhance the anomalous 223 

cyclonic circulation over the northeast WNP (Wang et al. 2000). Note that the Pacific 224 

SST distribution favoring TCG in the northeast WNP resembles that of PMM (Chiang 225 

and Vimont 2004), suggesting its impact on WNP TC activity comes mainly from the 226 

northeast WNP (Zhang et al. 2016a). 227 

 228 

3.3 The southwest WNP 229 

 TCs formed in the southwest WNP exert great impacts on the Philippines and 230 

South Asia (Fig.1, Zhang et al. 2009). However, the favorable large-scale circulation 231 

patterns for TCG in this region are still unclear. Here enhanced TCG in the southwest 232 

WNP is associated with an anomalous cyclonic anomaly with convergence, which is 233 

located to the south of an anti-cyclonic circulation anomaly and connected to a strong 234 

cyclonic anomaly to its east (Fig. 5a). The corresponding 200 hPa winds show evident 235 

divergence (Fig. 5b). Moreover, the enhanced convective heating over the equatorial 236 

eastern Pacific can also contribute the cyclonic shear vorticity over the southwest WNP 237 

by generating anomalous equatorial westerlies (Figs. 5a). It should be noted that only 238 

the anomalous SST warming over the equatorial central-eastern Pacific can be treated 239 

as a forcing, while the SST underlying the two aforementioned anti-cyclonic 240 

circulations may just a result of atmospheric forcing (Figs. 5a-b,Wang et al. 2005). The 241 

different origin of the anomalous circulations indicates the possible importance of 242 

including the atmospheric forcing as predictors, which is usually missed in previous 243 
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studies (Zhan et al. 2013; Zhang et al. 2018). 244 

 245 

3.4 The South China Sea 246 

 Although most TCs formed in the South China Sea (SCS) usually make landfall 247 

in South Asia, its variability sources are still unclear due to its weak relation to the local 248 

large-scale conditions (Wang et al. 2007a). Previous studies did not find significant 249 

correlation with the local thermodynamic conditions such as mid-level humidity and 250 

SST due to their sufficient climatological value in boreal summer; on the other hand, 251 

dynamic factors such as vorticity, large-scale vertical motion and vertical wind shear 252 

are found to play important roles in TCG in the SCS (Wang et al. 2007a). Here we 253 

found that these dynamic large-scale conditions are tightly linked to the variation in the 254 

upper-level South Asia high (SAH) (Fig. 6). In particular,  a weak South Asia high is 255 

usually related to the suppressed vertical motion in Yangtze River valley, but enhanced 256 

convection in the SCS (Fig. 6a, Wu et al. 2007; Xuan et al. 2011; Wang et al. 2012; 257 

Yan et al. 2015) and thus favor the SCS TCG. Moreover, the anomalous upper-level 258 

westerly, which serves to weaken the climatological easterly wind shear, creates a 259 

favorable environment for TCG as well (Fig. 6a). At the lower troposphere, a cyclonic 260 

circulation is found to be concurrent with the enhanced TCG in the SCS (Fig. 6b).  261 

However, there is no significant local SST signal for TCG in the SCS (Fig. 6c), which 262 

is consistent with Wang et al. (2007a).  263 

 264 

4. Physical predictors for individual sub-regions 265 

 The concurrent large-scale conditions with the active TCG can help us to find 266 

out the physically meaningful predictors for TCG in individual sub-regions. The 267 
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precursor (prior to July) which can contribute to those concurrent large-scale conditions 268 

are considered as potential predictors. Following this, the final predictors are identified 269 

by stepwise regression for TCG frequency in each of sub-region, some predictors are 270 

excluded due to their dependencies on the identified predictors (see section 2 for detail). 271 

 272 

4.1 The northwest and southeast WNP 273 

For TCG frequency in the northwest WNP, two SST predictors are identified. 274 

The first one is a persistent predictor, NW-I, which features prominent La Nina-like 275 

SST cooling over the equatorial central Pacific during May-June in the active phase of 276 

TCG over the northwest WNP (Fig. 7a). Due to the phase locking feature of ENSO, the 277 

SST cooling can maintain to ensuing July-September. One may note that there is 278 

prominent SST warming in off-equatorial North Pacific as well, but it gradually 279 

dissipates during the La Nina development (Fig. 2a and Fig. 8a). The SST-cooling 280 

related decreasing Pacific zonal pressure gradient and the suppressed (enhanced) 281 

convection in the equatorial central-eastern Pacific (marine continent) serve to enhance 282 

the equatorial easterly and western North Pacific subtropical high (Fig. 8b, Wang et al. 283 

2013; Xiang et al. 2013). The subtropical high ridge extends to the Philippines, 284 

generating cyclonic shear vorticity to its western flank (Fig. 8b). The cyclonic vorticity 285 

can increase the boundary layer Ekman convergence and then enhance the background 286 

vertical motion (Fig. 8c), favoring TCG in the northwest WNP (Wang and Chan 2002). 287 

The second predictor, NW-II, is an SST tendency predictor from September-October to 288 

May-June (Fig. 7b).  Generally, there is a prominent SST cooling tendency over the 289 

north Indian ocean during the active period of TCG in the northwest WNP (Fig. 7b). 290 

The cooling tendency can persist to the following July-September and foreshadow an 291 
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enhanced Walker circulation and subtropical high via wind–evaporation–SST feedback 292 

(Figs. 8d-f). In a similar way, the anomalous subtropical high can enhance the TCG in 293 

the northwest WNP by generating cyclonic shear vorticity.  294 

Two ENSO-related SST predictors are identified for the TCG frequency in the 295 

southeast WNP (Fig. 9). The first is a persistent predictor, SE-I, which shows prominent 296 

SST warming over the equatorial central Pacific during May-June in the active period 297 

of TCG in the southeast WNP. The anomalous SST warming can sustain to the 298 

following July-September due to the phase-locking characteristic of El Niño (Fig. 10a). 299 

The El Niño-related enhanced (suppressed) convection in the equatorial central-eastern 300 

Pacific (marine continent) shifts monsoon trough eastward, favoring the TCG in 301 

southeast WNP by increasing the background vertical motion and cyclonic vorticity 302 

(Fig. 10b, Wang and Chan 2002), In addition, at the upper-level, the tropical upper 303 

troposphere trough migrates to the east, weakening the westerly shear and therefore 304 

enhancing the TCG in the southeast WNP (Wu et al. 2015; Wang and Wu 2016, 2018b). 305 

The second predictor is the SST tendency from September-October to May-June over 306 

the equatorial central-Pacific (SE-II, Fig. 9b).  The SST tendency can represent the 307 

direction of subsequent evolution of ENSO signal and thus indicate strength of El Niño 308 

and the migrations in large-scale circulations in ensuing July-September (Figs. 10d-f), 309 

which can greatly modify  the TCG over the southwest WNP (Lander 1994; Chia and 310 

Ropelewski 2002; Wang and Chan 2002; Wang and Wu 2016, 2018b).  311 

 312 

4.2 The northeast WNP 313 

Two predictors are identified for the TCG frequency in the northwest WNP. The 314 

first one is a persistent predictor, NE-I, which shows an SST dipole pattern with cooling 315 
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in the equatorial eastern Pacific and warming in subtropical North Pacific during the 316 

active phase of TCG in the northeast WNP (Fig. 11a). Such a dipole pattern resembles 317 

that of PMM, which can maintain to following months through air-sea interaction and 318 

sustain an anomalous cyclonic circulation over the northeast WNP (Figs. 12a-c, Chiang 319 

and Vimont 2004). On the one hand, the enhanced atmospheric heating in the 320 

subtropical North Pacific can stimulate an anomalous cyclonic circulation to its west 321 

and north as a Rossby wave response. On the other hand, the surface westerly and 322 

southwesterly anomalies to the eastern flank of the anomalous cyclonic circulation can 323 

reinforce the underlying SST warming by reducing total wind speed and sea surface 324 

evaporation and entrainment cooling (Wang et al. 2000; Chiang and Vimont 2004; 325 

Wang et al. 2013; Xiang et al. 2013). Meanwhile, the SST cooling induced negative 326 

convective heating over the equatorial eastern Pacific can stimulate an anomalous low-327 

level anticyclone as a Rossby wave response to its west. The southwesterly to the west 328 

flank of anomalous anti-cyclone can further enhance the atmosphere-ocean feedback 329 

and then reinforce the anomalous cyclonic circulation over the northeast WNP (Wang 330 

et al. 2000; Chiang and Vimont 2004). The anomalous circulation can further regulate 331 

the TC formation in the northeast WNP by modifying the ambient low-level vorticity 332 

and vertical wind shear (Zhang et al. 2016a). The second predictor, NE-II, is the 2m air 333 

temperature tendency from September-October to May-June over the northwest Indian 334 

ocean (Fig. 11b). The cooling tendency hints an SST cooling in the ensuring July-335 

September over the north Indian ocean (Fig. S1b). The SST cooling can further 336 

stimulate a cold Kelvin wave propagating eastward to the WNP, decreasing the surface 337 

pressure and leading to anomalous cyclonic circulation in the northeast WNP (Xie et al. 338 

2009; Zhan et al. 2011b; Wang et al. 2013; Xie et al. 2016; Wang et al. 2017). The 339 

opposite is true for an SST warming tendency over the northwest Indian ocean. 340 
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Therefore, a cooling (warming) tendency foreshadows an anomalous cyclonic (anti-341 

cyclonic) circulation over the northeast WNP (Figs. 12d-f), which serves to enhance 342 

(suppress) TCG in the northeast WNP. 343 

 344 

4.3 The southwest WNP  345 

 For the southwest WNP, two predictors are identified to predict the TCG 346 

frequency in this region (Fig. 13). The first one is the SLP tendency signal from 347 

November-December to May-June, SW-I, which is characterized by positive anomalies 348 

over the WNP in active years of TCG in the southwest WNP (Fig. 13a). The SLP 349 

tendency signal hints high pressures and anti-cyclonic circulations in the north WNP 350 

and north Australia in the ensuring July-September (Fig. 14a). The SLP tendency 351 

related circulation pattern in July-September is similar to that shown in Figure 5a, 352 

suggesting the possible utility of the SLP predictor in predicting TCG in the southwest 353 

WNP. The prominent easterly to the south flank of anti-cyclonic circulation can 354 

increase the cyclonic shear vorticity to its south (i.e., southwest WNP), which tends to 355 

favor TC development. Moreover, the two high-pressure zones to the north and south 356 

sides of the southwest WNP eventually constructed a relatively low-pressure zone over 357 

the southwest WNP, which can strengthen the low-level convergence and thus favor 358 

the TCG in this region (Figs. 14b-c). The second predictor is an SST persistent predictor, 359 

SW-II, which shows a warming over the equatorial eastern Pacific during May-June in 360 

the active phase of TCG in the southwest WNP (Fig. 13b). The SST warming can 361 

sustain to the ensuring July-September because of the phase-locking feature of ENSO. 362 

The SST warming induced atmospheric heating can emanate a cyclonic circulation pair 363 

symmetric about the equator as a Rossby wave response. The northern part of the 364 
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cyclonic pair extends to the southwest WNP and increases cyclonic vorticity in the 365 

southwest WNP (Figs. 14e-f). Meanwhile, meridional winds to the west edge of 366 

cyclonic circulation pair converge in the southwest WNP, which tends to enhance TCG 367 

in the southwest WNP as well.   368 

 369 

4.4 The South China Sea 370 

 Two predictors are identified for the TCG frequency over the South China Sea 371 

(Fig. 15). The first one is the June 850 hPa zonal wind over the tropical WNP, which 372 

features anomalous easterlies over Indonesia islands during active years of TCG in the 373 

South China Sea (Fig. 15a). In fact, the anomalous easterly suggests an inactive 374 

monsoon circulation in the South China Sea, which is usually corresponding to a weak 375 

South Asia High at the upper level (Liu and Zhu 2016). The persistent anomalous 376 

easterly in the ensuring July-September is consistent with the weakening of the South 377 

Asia High, which can favor TCG in the South China Sea by modifying vertical motion, 378 

the mid-level humidity and the low-level vorticity (Figs. 16b-c, Wu et al. 2007; Wang 379 

et al. 2007a, 2012; Yan et al. 2015). The second predictor is SST tendency from March-380 

April to May-June over the eastern WNP (Fig. 15b). The warming tendency indicates 381 

an SST warming in the ensuing July-September. Such an SST warming is concurrent 382 

with an anomalous anti-cyclonic circulation extending from the eastern WNP to east 383 

Asia. The cyclonic shear vorticity to the south flank of the anomalous anti-cyclonic 384 

circulation creates a favorable environment for TCG in the SCS. Additionally, the 385 

cyclonic vorticity induced boundary layer Ekman convergence may enhance the 386 

ascending motion over the South China Sea as well (Figs. 16d-f).  387 

Table 1 lists definitions of identified predictors for individual sub-regions. The 388 
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different predictors for individual sub-regions reflect the diverse predictability sources 389 

of TCG in individual sub-regions and further indicates the possible rationality of the 390 

region-dependent forecasting strategy. 391 

 392 

5. Predictability and prediction skill for TC genesis in individual sub-regions  393 

5.1 Prediction  394 

 The empirical models derived using the identified predictors listed in Table 1 395 

can reasonably reproduce the inter-annual variability of TCG frequency in individual 396 

sub-regions. Particularly, the prediction (simulation) for TCG frequency in the 397 

northwest WNP, southeast WNP, northeast WNP, southwest WNP and South China 398 

Sea can achieve significant TCC skills of 0.65, 0.76, 0.62, 0.61 and 0.6, respectively, 399 

over the 52-year period of 1965-2016, suggesting about 40%-60% of the total variance 400 

of TCG frequency can be potentially predicted by using large-scale environmental 401 

parameters.  402 

In order to examine the prediction skills of prediction models, a leave-three-out 403 

cross-validated reforecast is performed by taking 3 years out around the predicted year 404 

for 1965-2000, and independent forecasts are then made for the rest 16-year during 405 

2001–2016. It is found that both of the cross-validated reforecast and independent 406 

forecast for TCG frequency are significantly correlated with observation in each of sub-407 

regions (Fig. 17). For the northwest WNP, The TCC (MSSS) skill of cross-validated 408 

reforecast during 1965-2000 is 0.62 (0.22), and the independent forecast has significant 409 

TCC skill of 0.55 for the recent 16 years (2001–2016) (Fig. 17a). The prediction for the 410 

TCG frequency in southeast WNP exhibits the highest skill among the five sub-regions, 411 

whose TCC (MSSS) skills are 0.76 (0.36) for 1965-2000 reforecast and 0.68 (0.19) for 412 
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2001-2016 independent forecast (Fig. 17b). For the northeast WNP, TCC (MSSS) skill 413 

of the cross-validated reforecast during 1965-2000 is 0.58 (0.14), and independent 414 

forecast for 2001-2016 achieves a TCC (MSSS) skill of 0.55 (0.03).  The TCC (MSSS) 415 

skills for the southwest WNP are 0.51 (0.14) for the cross-validated reforecast during 416 

1965-2000 and 0.61(0.2) for the independent forecast in 2001-2016. The predicted TCG 417 

frequency in the South China Sea also shows valuable skill with TCC (MSSS) skills of 418 

0.62 (0.22) for 1965-2000 reforecast and 0.61 (0.21) for 2001-2016 independent 419 

forecast (Fig. 17e).   420 

The valuable skills in the predicted TCG frequency in individual sub-regions 421 

lend us confidence to further explore the predictability of basin-wide TCG frequency 422 

over the whole WNP. The predicted TCG frequency over the WNP is simply obtained 423 

by adding the predicted TC genesis frequency in all of five sub-regions (Fig. 17f). 424 

Actually, the predicted basin-wide TCG frequency also shows significant skills (Fig.  425 

17f). For instance, TCC skill of the independent forecast for 2001-2016 achieves 0.76, 426 

which shows superior skill to that of traditional statistical approaches (Zhang et al. 427 

2018). The superior prediction skills of the region-dependent strategy both in the basin-428 

wide and regional scales, in fact, indicate its higher utility than the traditional predicting 429 

approaches, which can only provide us information about basin-wide TC activities.   430 

 431 

5.2 Seasonal dependence of the prediction skill 432 

 One may curious that how long the prediction skills can last. Here we found that 433 

the favorable large-scale circulation pattern for TCG in each sub-region in July-434 

September differs from that in the late season. Such differences are most evident in the 435 

SCS and the southwest WNP due to the salient changes in the seasonal/sub-seasonal 436 
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mean large-scale circulation pattern in these two sub-regions. For example, the SAH, 437 

which plays an important role in the SCS TCG in July-September, shifts southward to 438 

the Pacific Ocean in the late season and thus exerts relatively weak impact on the SCS 439 

TCG. Moreover, some SST predictors are highly coupled with atmosphere through 440 

wind-evaporation-SST (WES) feedback (Xie and Phlander 1994; Wang et al. 2000; 441 

Chiang and Vimont 2004; Wang et al. 2005), which is sensitive to mean circulation 442 

pattern. Accordingly, the WES feedback cannot work and maintain the anomalous 443 

circulation when seasonal mean circulation changed (Xie et al. 2016). In other words, 444 

the predicting skill highly depends on the seasonal mean large-scale circulation pattern. 445 

Figure 18 further shows the seasonal evolution of predicting skills in five sub-regions. 446 

For the SCS, meaningful skill can last to August-October. However, meaningful skill 447 

disappears in September-November due to the southward migration in the SAH. 448 

Meanwhile, the prediction skill for the southwest WNP experiences an abrupt 449 

breakdown in August-October, which attributes to the salient change in the favorable 450 

circulation pattern in October (Figure not shown). In contrast, the persistence of 451 

predicting skills in the northwest, southeast and northeast WNP are relatively longer.  452 

The longer-persistence in the northwest and southeast WNP can be attributed to the 453 

phase-locking feature of ENSO, which plays a vital role in the TCG frequency in the 454 

two sub-regions (Figs. 2-3). For the northeast WNP, two predictors are highly coupled 455 

with atmosphere thorough wind-evaporation feedback (Xie and Phlander 1994; Wang 456 

et al. 2000; Chiang and Vimont 2004). Therefore, the predicting skill gradually 457 

decreases as the retreat of summer monsoon. On the basin-wide scale, the prediction 458 

models can obtain a meaningful skill for July-October (Fig. 18). Table 2 shows the 459 

predicting results with target season of July-October. It can be seen that the results are 460 

generally similar to those in July-September except for the southwest WNP due to its 461 
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salient change in the favorable large-scale pattern in October. It means that the 462 

determinate factors for TCG in the southwest WNP are highly season-dependent, 463 

making it is difficult to predict the TCG in the southwest WNP for a long season. 464 

 465 

6. Summary  466 

6.1 Conclusion 467 

 Traditional statistical seasonal forecasting approaches for TC activity over the 468 

WNP take TCG frequency over the whole WNP as the targeted predictands.  However, 469 

TCG over the WNP displays distinct regional features, and the basin-wide TC metrics 470 

usually act as a poor indicator to those in WNP sub-regions. The utility of the forecast 471 

products would, therefore, be enhanced if seasonal TC activity on scales finer than 472 

basin-wide could be skillfully predicted (Vecchi et al. 2014). This motivates us to 473 

establish a regional-dependent seasonal forecasting framework for TCG frequency over 474 

the WNP.  475 

 We have identified the large-scale circulation patterns and underlying boundary 476 

conditions cooccurring with active TCG in individual sub-regions. Besides the well-477 

known ENSO-related seesaw relationship between the TCG frequency over the 478 

southeast and northwest WNP, we find that the enhanced TCG in the northeast WNP is 479 

associated with a pronounced cyclonic circulation anomaly, which is maintained 480 

through interaction between the cyclonic circulation and the underlying tri-pole SST 481 

anomalies in the northern Indo-Pacific. The anomalous cyclonic circulation can favor 482 

the TCG by modifying ambient low-level vorticity and vertical wind shear. For the 483 

southwest WNP, the favorable circulations and boundary conditions for TCG are the 484 

two high pressures to the two sides of the southwest WNP and the SST warming over 485 
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the equatorial central-eastern Pacific. The high-pressure associated circulations and the 486 

SST warming-related anomalous equatorial westerly can generate cyclonic vorticity 487 

and enhance the convergence in the southwest WNP, and thus favor the TCG. For the 488 

South China Sea, we found that a weak South Asia High can contribute to the active 489 

TCG by enhancing the vertical motion and weakening the climatological easterly wind 490 

shear in the northern South China Sea.  491 

Based on the simultaneous large-scale circulation and boundary conditions, the 492 

precursors that can contribute to those concurrent large-scale conditions are considered 493 

as potential predictors. Several physically meaning predictors are identified for each 494 

sub-region. We found that ENSO precursors to predict TCG frequency over the 495 

northwest and southeast WNP, while the May-June mean dipole SST pattern which 496 

resembles PMM and 2-m temperature tendency over the west Indian ocean are found 497 

to be useful to predict TCG frequency in the northeast WNP. Seasonal prediction for 498 

TCG frequency in the southwest WNP and the South China Sea usually shows limited 499 

skills. Here we found the SLP tendency over the northern WNP and SST over the 500 

equatorial central-eastern Pacific can provide predictive information for TCG in the 501 

southwest WNP. For TCG in the South China Sea, the June 850 hPa wind over the 502 

Indonesia and SST tendency over the eastern WNP can provide useful precursors. The 503 

possible causative linkages between identified predictors and predictands are also 504 

discussed. 505 

To investigate the predictability of TCG frequency in individual sub-regions, a 506 

set of empirical prediction models are established using the aforementioned predictors. 507 

It is found that the physical-empirical models can reasonably reproduce the inter-annual 508 

variability of TCG frequency in each of five sub-regions. Particularly, the prediction 509 

(simulation) for TCG frequency in the northwest WNP, southeast WNP, northeast WNP, 510 
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southwest WNP and South China Sea can achieve significant TCC skills of 0.65, 0.76, 511 

0.62, 0.61 and 0.6, respectively, over the 52-year period of 1965-2016. Moreover, we 512 

used data from 1965-2000 as a training period to build prediction equation and 513 

performed a 16-year independent prediction. The independent reforecast for TCG 514 

frequency during 2001-2016 over the northwest WNP, southeast WNP, northeast WNP, 515 

southwest WNP and the South China Sea achieves significant TCC skill of 0.55, 0.68, 516 

0.55, 0.61, 0.61, respectively. Surprisingly, their sum (i.e. the predicted TCG frequency 517 

for the whole WNP) also demonstrates superior predicting skill with a TCC skill of 0.76 518 

for the independent forecast period of 2001-2016. The superior skills both in the basin-519 

wide and regional scales of the region-dependent strategy indicate its higher utility 520 

comparing to the traditional statistical prediction approach, which only provides us with 521 

TC information for the whole basin. 522 

 523 

6.2 Discussion  524 

TCG in the vast WNP experiences distinct regional features (Wang and Chan 525 

2002; Kim et al. 2010), and it does not experience unified variations even in response 526 

to the same large-scale forcing. The distinct regional characteristic in TCG over the 527 

WNP should be considered when establishing prediction models. The proposed region-528 

dependent forecasting tragedy can be an effective pathway to yield higher skill and 529 

utility than the traditional statistical prediction approaches. 530 

Although valuable prediction skills in the basin-wide and regional TCG 531 

frequency are found in the region-dependent forecasting strategy, some limitations exist 532 

in this approach. The first is the possible nonstationary relationship between the 533 

predictor and predictand, which is a common limitation for empirical prediction method. 534 
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For instance, the relation between the PMM and TCG frequency in the northeast WNP 535 

weakens in the recent two decades, making the prediction skill comparatively low in 536 

the independent forecast during 2000-2016 (Figure is not shown). Moreover, The TCC 537 

skill for the TCG in the WNP during 1965-2000 relatively weaker than each sub-region, 538 

but it shows better skill than those in sub-regions for 2001-2016. It means the predicting 539 

errors in each subregion may be accumulated during 1965-2000 but offset each other 540 

during 2001-2016. This result indicates an unstable relationship of predicting errors in 541 

individual may play a role in predicting skills. Second, the proposed physical linkages 542 

between the predictors and predictands are largely based on physical reasoning. While 543 

the involved physical processes how the selected predictors affect TCG in the southeast 544 

and northwest WNP have been well-established by previous studies, how the selected 545 

predictors influence TCG in northeast and southwest WNP and the South China Sea 546 

still requires more work to examine the detailed physical processes. Numerical models 547 

provide us with a promising pathway to resolve these issues. Additionally, definitions 548 

of sub-regions are originally designed to understand the ENSO impacts on TCG  over 549 

the WNP (Wang and Chan 2002), which may not be best suitable for representing the 550 

regional features of TCG on the inter-annual time scale. The predictable mode analysis 551 

may be a more viable strategy to portraying this regional features as used in Wang et al. 552 

(2015a), and we intend to explore this issue in a future study.   553 
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Table 1 Definitions of predictors for TCG in individual sub-regions 830 

Table 2 Correlation ecoefficiency between the observed TC genesis frequency and 831 

cross-validated reforecast (1965-1999) and prediction (2000-2016) during July-832 

October in individual subregions and the WNP. The significant correlations are bold. 833 
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Table 1 Definitions of predictors for TCG in individual sub-regions 835 

 836 

 837 

 838 

Table 2 Correlation ecoefficiency between the observed TC genesis frequency and 839 

cross-validated reforecast (1965-1999) and prediction (2000-2016) during July-840 

October in individual subregions and the WNP. The significant correlations are bold. 841 

 SCS SW NW SE NE WNP 

1965-1999 0.51 0.1 0.61 0.77 0.58 0.47 

2000-2016  0.59 0.38 0.52 0.69 0.49 0.68 

 842 

 843 

Name Definition Meaning 

NW-I 
May-June mean SST over (5°S–

10°N, 180°–130°W) 

Central Pacific SST 

predictor 

NW-II 

May-June minus October-

November SST tendency over 

(5°S–20°N, 50°E–100°E) 

Indian Ocean SST 

predictor 

SE-I 
May-June mean SST over (10°S–

10°N, 180°–130°W) 

Central Pacific SST 

predictor 

SE-II 

May-June minus October-

November SST tendency over 

(10°S–10°N, 180°–220°E) 

Central Pacific SST 

tendency predictor 

NE-I 

May-June mean SST (10°S–10°N, 

130°W–80°W) minus SST 

(10°N–25°N, 160°E–160°W) 

Pacific dipole SST 

predictor 

NE-II 

May-June minus September-

October 2m air temperature 

tendency over (0–30°N, 40°E–

70°E) 

West Indian Ocean 

T2m tendency predictor 

SW-I 

May-June minus November-

December SLP tendency over 

(10°N–20°N, 140°E–180°) 

WNP SLP tendency 

predictor 

SW-II 
May-June mean SST over (5°S–

5°N, 170°W–100°W) 

Central Pacific SST 

predictor 

SCS-I 

June 850 hPa zonal wind over 

(0°–10°N, 110°E–125°E) and 

(2.5°S–7.5°N, 125°E–140°E) 

Indonesia zonal wind 

predictor 

SCS-II 

May-June minus March-April 

SST tendency over (5°N–20°N, 

150°E–180°) 

Eastern WNP SST 

tendency predictor 
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Figure captions: 844 

Figure 1 Climatological TC geneses and tracks over the WNP. TC genesis locations 845 

(green dots) and tracks (light blue lines) during July-September over 1965-2016. The 846 

grey dash lines indicate the boundaries of five sub-regions (i.e. South China Sea (SCS), 847 

southwest WNP (SW), northwest WNP (NW), southeast WNP(SE) and northeast 848 

WNP(NE)). Numbers represent the annual mean TC genesis frequency in individual 849 

sub-regions. 850 

Figure 2 Large-scale circulation pattern and boundary condition anomalies favoring 851 

TCG in the northwest WNP. Simultaneous correlation map between TCG frequency in 852 

the northwest WNP and (a) SST (over ocean) and T2m (over land) (shadings) and 850 853 

hPa wind (vectors) and (b) 500 hPa omega (shadings) and 200 hPa wind (vectors) in 854 

July-September during 1965–2000. The green vectors and dotted areas denote regions 855 

with correlation coefficients significant at 95% confidence level. The green boxes 856 

indicate boundaries of the northwest WNP. 857 

Figure 3 The same as Figure 2 but for southeast WNP. 858 

Figure 4 The same as Figure 2 but for northeast WNP. 859 

Figure 5 Large-scale circulation pattern and boundary condition anomalies favoring 860 

TCG in the southwest WNP. Simultaneous correlation map between TCG frequency in 861 

the southwest WNP and (a) SST (over ocean) and T2m (over land) (shadings), SLP 862 

(contours) and 850 hPa wind (vectors) and (b) 500 hPa omega (shadings) and 200 hPa 863 

wind (vectors) in July-September during 1965–2000. The green vectors and dotted 864 

areas denote regions with correlation coefficients significant at 95% confidence level. 865 

The green boxes indicate boundaries of the southwest WNP. 866 

Figure 6 Large-scale circulation patterns and boundary conditions anomalies favoring 867 
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TCG in the South China Sea. Simultaneous correlation map between TCG frequency 868 

in the South China Sea and (a) 200 hPa zonal wind (black contours) and 500 hPa 869 

omega(shadings), (b) 850 hPa winds (vectors) and vorticity (shadings) and (c) SST in 870 

July-September during 1965–2000. The green vectors in (b) and dotted areas denote 871 

regions with correlation coefficients significant at 95% confidence level. The vectors 872 

in (a) display the climatological 200 hPa wind, indicating the mean circulation 873 

associated with the South Asian high. The grey line in (a) shows the zero contour of 874 

climatological 200 hPa zonal wind, which denotes the ridge of the South Asian high. 875 

The green boxes indicate the boundaries of the South China Sea. 876 

Figure 7 Predictors for TCG frequency in the northwest WNP. Correlation map between 877 

TCG frequency in the northwest WNP and (a) May-June mean SST and (b) SST 878 

tendency from September-October to May-June during 1965-2000. Dotted areas denote 879 

regions with correlation coefficients significant at 95% confidence level. The black 880 

boxes represent the locations of predictors and green boxes indicate boundaries of the 881 

northwest WNP. 882 

Figure 8 The lead-lag correlation between predictors for TCG in the northwest WNP 883 

and July-September mean large-scale conditions.  Correlation maps between NW-I and 884 

July–September mean (a) SST (b) SLP (shadings) and 850 hPa wind (vectors) and (c) 885 

500 hPa omega during 1979–2000. (d)-(f) are the same as (a)-(c), but for predictor NW-886 

II. The green vectors and dotted areas denote regions with correlation coefficients 887 

significant at 95% confidence level. The green boxes indicate boundaries of the 888 

northwest WNP. 889 

Figure 9 Predictor for TCG frequency in the southeast WNP. Correlation map between 890 

TCG frequency over the southeast WNP and (a) May-June mean SST (b) SST tendency 891 
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from September-October to May-June during 1965-2000. Dotted areas denote regions 892 

with correlation coefficients significant at 95% confidence level. The black boxes 893 

represent the location of predictors and green boxes indicate boundaries of the southeast 894 

WNP. 895 

Figure 10 The lead-lag correlation between predictors for TCG in the southeast WNP 896 

and July-September mean large-scale conditions. The correlation maps between 897 

predictor SE-I and July–September mean (a) SLP (shadings) and 850 hPa wind 898 

(vectors), (b) SST and (c) 500 hPa omega during 1965–2000. (d)-(f) are the same as 899 

(a)-(c), but for predictor SE-II. 900 

Figure 11 Predictors for TCG frequency in the northeast WNP. Correlation map 901 

between TCG frequency over the northwest WNP and (a) May-June mean SST (b) 2m 902 

air temperature tendency from September-October to May-June during 1965-2000. 903 

Dotted areas denote regions with correlation coefficients significant at 95% confidence 904 

level. The black boxes represent the location of predictors and red boxes indicate 905 

boundaries of the northeast WNP. 906 

Figure 12 The lead-lag correlation between predictors for TCG in the northeast WNP 907 

and July-September mean large-scale conditions. The correlation maps between 908 

predictor NE-I and July–September mean (a) SST (b) SLP (shadings) and 850 hPa wind 909 

(vectors), and (c) 500 hPa omega during 1965–2000. (d)-(f) are the same as (a)-(c), but 910 

for predictor NE-II. The green vectors and dotted areas denote regions with correlation 911 

coefficients significant at 95% confidence level. The green boxes indicate boundaries 912 

of the northeast WNP. 913 

Figure 13 Predictors for TCG frequency in the southwest WNP. Correlation map 914 

between TC genesis frequency in the southwest WNP and (a) SLP tendency from 915 
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November-December to May-June (shading), and (b) May-June mean SST during 916 

1965-2000. Dotted areas denote regions with correlation coefficients significant at 95% 917 

confidence level. The black boxes represent the location of predictors and green boxes 918 

indicate boundaries of the southwest WNP. 919 

Figure 14 The lead-lag correlation between predictors for TCG in the southwest WNP 920 

and July-September mean large-scale conditions. The correlation maps between 921 

predictor SW-I and July–September mean (a) SLP (shadings), (b) SST (shadings) and 922 

850 hPa wind (vectors), and (c) 500 hPa omega during 1965–2000. The correlation 923 

maps between predictor SW-II and July–September mean (a) SST (shadings), (b) SLP 924 

(shadings) and 850 hPa wind (vectors), and (c) 500 hPa omega during 1965–2000. 925 

Figure 15 Predictors for TCG frequency in the South China Sea. Correlation map 926 

between TC genesis frequency in the South China Sea and (a) SLP tendency from 927 

November-December to May-June (shading), and (b) SST tendency from September-928 

October to May-June during 1965-2000. Dotted areas denote regions with correlation 929 

coefficients significant at 95% confidence level. The black boxes represent the location 930 

of predictors and green boxes indicate boundaries of the South China Sea. 931 

Figure 16 The lead-lag correlation between predictors for TCG in the South China Sea 932 

and July-September mean large-scale conditions. The correlation maps between 933 

predictor SCS-I and July–September mean (a) 850 hPa zonal wind (shadings), (b) 200 934 

hPa zonal wind (shadings) and 200 hPa wind (vectors), and (c) 500 hPa omega during 935 

1965–2000. The correlation maps between predictor SCS-II and July–September mean 936 

(d) SST (shadings), (e) SLP (shading) and 850 hPa (vectors), and (f) 500 hPa omega 937 

during 1965–2000. The grey line (b) shows the zero contour of climatological 200hPa 938 

zonal wind, which denotes the ridge of the South Asian high. 939 
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Figure 17 Predictability and prediction skill for the TCG frequency in individual sub-940 

regions and the whole WNP. Time series of TC counts over the (a) northwest WNP (b) 941 

southeast WNP, (c) northeast WNP, (d) southwest WNP, (e) South China Sea and (f) 942 

WNP obtained from the JTWC best track (black line), cross-validated reforecast (blue 943 

line) and prediction (green line) from 1965-2016. The grey dash lines sperate the 944 

training and prediction period. The corresponding TCC is shown in each panel. 945 

Figure 18 Correlation coefficient of predicted and observed seasonal TC genesis 946 

frequency in the SCS (blue squares), (b) southwest WNP (red squares), (c) northwest 947 

WNP (black squares), (d) southeast WNP (green squares), (e) northeast WNP (brown 948 

squares),  and  (f) WNP (purple squares) during 1965-2016. The black line denotes the 949 

95% significant level. 950 

 951 

 952 

 953 
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Figures:  954 

 955 

Figure 1 Climatological TC geneses and tracks over the WNP. TC genesis locations 956 

(green dots) and tracks (light blue lines) during July-September over 1965-2016. The 957 

grey dash lines indicate the boundaries of five sub-regions (i.e. South China Sea (SCS), 958 

southwest WNP (SW), northwest WNP (NW), southeast WNP(SE) and northeast 959 

WNP(NE)). Numbers represent the annual mean TC genesis frequency in individual 960 

sub-regions. 961 

 962 
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 963 

Figure 2 Large-scale circulation pattern and boundary condition anomalies favoring 964 

TCG in the northwest WNP. Simultaneous correlation map between TCG frequency in 965 

the northwest WNP and (a) SST (over ocean) and T2m (over land) (shadings) and 850 966 

hPa wind (vectors) and (b) 500 hPa omega (shadings) and 200 hPa wind (vectors) in 967 

July-September during 1965–2000. The green vectors and dotted areas denote regions 968 

with correlation coefficients significant at 95% confidence level. The green boxes 969 

indicate boundaries of the northwest WNP. 970 
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 971 

Figure 3 The same as Figure 2 but for southeast WNP. 972 

 973 
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 974 

Figure 4 The same as Figure 2 but for northeast WNP. 975 

 976 

 977 
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 978 

Figure 5 Large-scale circulation pattern and boundary condition anomalies favoring 979 

TCG in the southwest WNP. Simultaneous correlation map between TCG frequency in 980 

the southwest WNP and (a) SST (over ocean) and T2m (over land) (shadings), SLP 981 

(contours) and 850 hPa wind (vectors) and (b) 500 hPa omega (shadings) and 200 hPa 982 

wind (vectors) in July-September during 1965–2000. The green vectors and dotted 983 

areas denote regions with correlation coefficients significant at 95% confidence level. 984 

The green boxes indicate boundaries of the southwest WNP. 985 
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 986 

Figure 6 Large-scale circulation patterns and boundary conditions anomalies favoring 987 

TCG in the South China Sea. Simultaneous correlation map between TCG frequency 988 

in the South China Sea and (a) 200 hPa zonal wind (black contours) and 500 hPa 989 

omega(shadings), (b) 850 hPa winds (vectors) and vorticity (shadings) and (c) SST in 990 

July-September during 1965–2000. The green vectors in (b) and dotted areas denote 991 

regions with correlation coefficients significant at 95% confidence level. The vectors 992 

in (a) display the climatological 200 hPa wind, indicating the mean circulation 993 

associated with the South Asian high. The grey line in (a) shows the zero contour of 994 

climatological 200 hPa zonal wind, which denotes the ridge of the South Asian high. 995 

The green boxes indicate the boundaries of the South China Sea.  996 

 997 
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 998 

Figure 7 Predictors for TCG frequency in the northwest WNP. Correlation map between 999 

TCG frequency in the northwest WNP and (a) May-June mean SST and (b) SST 1000 

tendency from September-October to May-June during 1965-2000. Dotted areas denote 1001 

regions with correlation coefficients significant at 95% confidence level. The black 1002 

boxes represent the locations of predictors and green boxes indicate boundaries of the 1003 

northwest WNP. 1004 

 1005 
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 1006 

Figure 8 The lead-lag correlation between predictors for TCG in the northwest WNP 1007 

and July-September mean large-scale conditions.  Correlation maps between NW-I and 1008 

July–September mean (a) SST (b) SLP (shadings) and 850 hPa wind (vectors) and (c) 1009 

500 hPa omega during 1979–2000. (d)-(f) are the same as (a)-(c), but for predictor NW-1010 

II. The green vectors and dotted areas denote regions with correlation coefficients 1011 

significant at 95% confidence level. The green boxes indicate boundaries of the 1012 

northwest WNP. 1013 

 1014 
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 1015 

Figure 9 Predictor for TCG frequency in the southeast WNP. Correlation map between 1016 

TCG frequency over the southeast WNP and (a) May-June mean SST (b) SST tendency 1017 

from September-October to May-June during 1965-2000. Dotted areas denote regions 1018 

with correlation coefficients significant at 95% confidence level. The black boxes 1019 

represent the location of predictors and green boxes indicate boundaries of the southeast 1020 

WNP. 1021 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0006.1.



 51 

 1022 

 1023 

Figure 10 The lead-lag correlation between predictors for TCG in the southeast WNP 1024 

and July-September mean large-scale conditions. The correlation maps between 1025 

predictor SE-I and July–September mean (a) SLP (shadings) and 850 hPa wind 1026 

(vectors), (b) SST and (c) 500 hPa omega during 1965–2000. (d)-(f) are the same as 1027 

(a)-(c), but for predictor SE-II. The green vectors and dotted areas denote regions with 1028 

correlation coefficients significant at 95% confidence level. The green boxes indicate 1029 

boundaries of the southeast WNP. 1030 

 1031 
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 1032 

Figure 11 Predictors for TCG frequency in the northeast WNP. Correlation map 1033 

between TCG frequency over the northwest WNP and (a) May-June mean SST (b) 2m 1034 

air temperature tendency from September-October to May-June during 1965-2000. 1035 

Dotted areas denote regions with correlation coefficients significant at 95% confidence 1036 

level. The black boxes represent the location of predictors and red boxes indicate 1037 

boundaries of the northeast WNP. 1038 

 1039 
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 1040 

Figure 12 The lead-lag correlation between predictors for TCG in the northeast WNP 1041 

and July-September mean large-scale conditions. The correlation maps between 1042 

predictor NE-I and July–September mean (a) SST (b) SLP (shadings) and 850 hPa wind 1043 

(vectors), and (c) 500 hPa omega during 1965–2000. (d)-(f) are the same as (a)-(c), but 1044 

for predictor NE-II. The green vectors and dotted areas denote regions with correlation 1045 

coefficients significant at 95% confidence level. The green boxes indicate boundaries 1046 

of the northeast WNP. 1047 
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 1049 

Figure 13 Predictors for TCG frequency in the southwest WNP. Correlation map 1050 

between TC genesis frequency in the southwest WNP and (a) SLP tendency from 1051 

November-December to May-June (shading), and (b) May-June mean SST during 1052 

1965-2000. Dotted areas denote regions with correlation coefficients significant at 95% 1053 

confidence level. The black boxes represent the location of predictors and green boxes 1054 

indicate boundaries of the southwest WNP. 1055 
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 1057 

Figure 14 The lead-lag correlation between predictors for TCG in the southwest WNP 1058 

and July-September mean large-scale conditions. The correlation maps between 1059 

predictor SW-I and July–September mean (a) SLP (shadings), (b) SST (shadings) and 1060 

850 hPa wind (vectors), and (c) 500 hPa omega during 1965–2000. The correlation 1061 

maps between predictor SW-II and July–September mean (a) SST (shadings), (b) SLP 1062 

(shadings) and 850 hPa wind (vectors), and (c) 500 hPa omega during 1965–2000. The 1063 

green vectors and dotted areas denote regions with correlation coefficients significant 1064 

at 95% confidence level. The green boxes indicate boundaries of the southwest WNP. 1065 

 1066 
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 1068 

Figure 15 Predictors for TCG frequency in the South China Sea. Correlation map 1069 

between TC genesis frequency in the South China Sea and (a) SLP tendency from 1070 

November-December to May-June (shading), and (b) SST tendency from September-1071 

October to May-June during 1965-2000. Dotted areas denote regions with correlation 1072 

coefficients significant at 95% confidence level. The black boxes represent the location 1073 

of predictors and green boxes indicate boundaries of the South China Sea. 1074 
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 1075 

Figure 16 The lead-lag correlation between predictors for TCG in the South China Sea 1076 

and July-September mean large-scale conditions. The correlation maps between 1077 

predictor SCS-I and July–September mean (a) 850 hPa zonal wind (shadings), (b) 200 1078 

hPa zonal wind (shadings) and 200 hPa wind (vectors), and (c) 500 hPa omega during 1079 

1965–2000. The correlation maps between predictor SCS-II and July–September mean 1080 

(d) SST (shadings), (e) SLP (shading) and 850 hPa (vectors), and (f) 500 hPa omega 1081 

during 1965–2000. The grey line (b) shows the zero contour of climatological 200hPa 1082 

zonal wind, which denotes the ridge of the South Asian high. The green vectors and 1083 

dotted areas denote regions with correlation coefficients significant at 95% confidence 1084 

level. The green boxes indicate boundaries of the South China Sea. 1085 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0006.1.



 58 

 1086 

Figure 17 Predictability and prediction skill for the TCG frequency in individual sub-1087 

regions and the whole WNP. Time series of TC counts over the (a) northwest WNP (b) 1088 

southeast WNP, (c) northeast WNP, (d) southwest WNP, (e) South China Sea and (f) 1089 

WNP obtained from the JTWC best track (black line), cross-validated reforecast (blue 1090 

line) and prediction (green line) from 1965-2016. The grey dash lines sperate the 1091 

training and prediction period. The corresponding TCC is shown in each panel. 1092 
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 1095 

Figure 18 Correlation coefficient of predicted and observed seasonal TC genesis 1096 

frequency in the SCS (blue squares), (b) southwest WNP (red squares), (c) northwest 1097 

WNP (black squares), (d) southeast WNP (green squares), (e) northeast WNP (brown 1098 

squares),  and  (f) WNP (purple squares) during 1965-2016. The black line denotes the 1099 

95% significant level. 1100 
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