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Abstract Changes in land cover and dust emission may significantly influence the Northern Hemisphere
land monsoon precipitation (NHLMP), but observations are too short to fully evaluate their impacts. The
“Green Sahara” during the mid-Holocene (6,000 years BP) provides an opportunity to unravel these
mechanisms. Here we show that during the mid-Holocene, most of the NHLMP changes revealed by proxy
data are reproduced by the Earth System model results when the Saharan vegetation cover and dust reduction
are taken into consideration. The simulated NHLMP significantly increases by 33.10% under the effect

of the Green Sahara. The North African monsoon precipitation increases most significantly. Additionally, the
Saharan vegetation (dust reduction under vegetated Sahara) alone remotely intensifies the Asian (North
American) monsoon precipitation through large-scale atmospheric circulation changes. These findings imply
that future variations in land cover and dust emissions may appreciably influence the NHLMP.

Plain Language Summary Northern Hemisphere land monsoon precipitation (NHLMP)
provides water resources for about two thirds of the world's population, which is vital for infrastructure
planning, disaster mitigation, food security, and economic development. Changes in land cover and dust
emissions may significantly influence the NHLMP, but observations are too short to understand the
mechanisms. The Sahara Desert was once covered by vegetation and dust emission was substantially
reduced during the mid-Holocene (6,000 years BP), which provides an opportunity to test the models’
capability and unravel these mechanisms. Here we use an Earth System model and find that when the
Saharan vegetation and dust reduction are taken into consideration, the simulated annual mean
precipitation over most of the NHLM regions shows a closer agreement with proxy records. The sensitivity
experiments show that the North African monsoon precipitation increases most significantly under the
regional effects of “Green Sahara.” The Saharan vegetation (dust reduction under vegetated Sahara) alone
also remotely increases the Asian (North American) monsoon precipitation through large-scale atmospheric
circulation changes. The knowledge gained from this study is critical for improved understanding of the
potential impacts of the land cover and dust changes on the projected future monsoon change.

1. Introduction

Understanding the dynamics of Northern Hemisphere land monsoon (NHLM) and reliably projecting its
future changes are vitally important for infrastructure planning, disaster mitigation, food security, and water
resource management (Wang et al., 2014; Wang et al., 2018). The changes in NHLM precipitation (NHLMP,
defined in section 2.3) are driven by natural (Liu et al., 2013; Stevenson et al., 2017; Sun et al., 2017; Sun et al.,
2019) and anthropogenic forcings (Devaraju et al., 2015; Dong et al., 2019; Giannini & Kaplan, 2018; Lau
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et al., 2008; Vecchi et al., 2006) through the global sea surface temperature (SST) changes (Giannini et al.,
2003) and are also affected by the low-frequency internal modes within the earth's climate system (Wang
et al., 2013; Wang et al., 2017). Observations show that NHLMP intensified over the past three decades
(Wang et al., 2012) due to both internal variability and the effects of climate change. Current climate models
project an increasing trend in NHLMP over the 21st century (Lee & Wang, 2014). The increased Sahelian
precipitation in the coming decades (Biasutti, 2013; Monerie et al., 2016) probably leads to an extension
of Sahelian vegetation (i.e., grassland, shrubland, and wetlands) and reduced natural dust emission.
However, human-induced overgrazing, deforestation and mismanagement of cropland can induce desertifi-
cation, which might slow down the greening of Sahel (Engelstaedter et al., 2006; Evan et al., 2016). The vege-
tation and dust feedbacks are important not only for past and present monsoons but also for future monsoon
changes (Wang et al., 2017). However, the impact of vegetation and dust on global climate has not drawn
enough attention, and the processes by which these feedbacks change the climate have yet to be elucidated.

During the early to middle Holocene (11,000 to 5,000 years BP), increased summer insolation strengthened
the African monsoon system. The Sahara Desert became once covered to a great extent by a mixture of shrub-
land, grassland, variable trees, and wetlands (Hély et al., 2014; Holmes, 2008), and the dust emissions were
much lower than today (deMenocal et al., 2000; McGee et al., 2013), which led to the so-called “Green
Sahara (GS)” or African Humid Period. Proxy data show that precipitation had increased substantially over
the Saharan region during the mid-Holocene (MH, 6,000 years BP; Shanahan et al., 2015; Bartlein et al.,
2011). Nevertheless, the simulations of the mid-Holocene performed in the Paleoclimate Modeling
Intercomparison Project (PMIP), in which the land cover and dust concentrations are similar to that in the
preindustrial period, fail to reproduce both the magnitude and the northward expansion of precipitation in
North African (NAF) monsoon (Harrison et al., 2014). This is likely due to the fact that these models did
not include the important feedbacks associated with changes in vegetation cover and dust concentrations
(Pausata et al., 2016; Tierney et al., 2017). Moreover, in the context of the NHLM regions, the PMIP simula-
tions not only underestimate the strength and extent of the NAF (i.e., Braconnot et al., 2012; Pausata et al.,
2016) but also the Indian summer monsoon, East Asian monsoon, and North American monsoon (NAM;
Braconnot et al., 2012; Zhao & Harrison, 2012; Bird et al., 2014). Some recent studies have indicated that
the Green Sahara and dust reduction (GSRD) can have remote influences on the Arctic climate (Davies
etal., 2015; Muschitiello et al., 2015), the El Nifio-Southern Oscillation (Pausata, Zhang, et al., 2017) and tro-
pical cyclones (Pausata, Emanuel, et al., 2017). In the present work, we use a series of sensitivity experiments
with a fully coupled ocean-atmosphere model in which Saharan vegetation, dust concentration, and orbital
forcing (ORB) are changed in turn in order to further investigate the role of vegetation and dust on NHLMP.

2. Data and Methods

2.1. Model Description and Experimental Design

The model used in this study is the version 3.1 of the climate model EC-Earth (Hazeleger et al., 2010). The
atmospheric model is based on the Integrated Forecast System (cycle 36r4), including the H-TESSEL land
model. The oceanic model is version 2 of the Nucleus for European Modeling of the Ocean (Madec, 2008),
with a horizontal resolution of ~1° and 46 vertical levels. The model is also coupled with the Louvain-la-
Neuve Sea Ice Model version 3 (Vancoppenolle et al., 2008). The coupling component is performed by the
OASIS 3 coupler (Valcke, 2006). The preindustrial (PI) experiment is performed at T159 horizontal spectral
resolution (1.125° x 1.125°, approximately 125 km) with 62 vertical levels, which is higher than the resolu-
tion in other PMIP models (Table S1 in the supporting information). The historical CMIP5 run from 1979 to
2008 based on EC-Earth (Present) is also conducted to represent the present-day climatology.

Based on the preindustrial condition, the first idealized sensitivity experiment (Green Sahara during prein-
dustrial, PIgg) is carried out (Table 1), which imposes the prescribed shrub vegetation type over the Saharan
domain (11-33°N, 15°W-35°E). In our model, the surface albedo is decreased from 0.3 (for desert) to 0.15
(for evergreen shrub), and the leaf area index is increased from 0.2 (for desert) to 2.6 (for evergreen shrub).
Pausata et al. (2016) tested the impact of replacing the evergreen shrub with grassland (albedo = 0.25) over
eastern North Africa, showing no large impact on the strength of the western African monsoon. The test of
NAF precipitation to these values in this study is also conducted in the supporting information (Figure S3),
and the results are similar with Bonfils et al. (2001). The standard MH orbital forcing simulation (MHogg) is
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Table 1

Description of the Model Experiments and Net Effect of Each Forcing

Simulation Orbital forcing GHGs Saharan vegetation Dust concentration
PI 1,850 AD 1,850 AD Desert PI

Plgs 1,850 AD 1,850 AD Shrub PI

MHors 6,000 year BP 6,000 year BP Desert PI

MHgs 6,000 year BP 6,000 year BP Shrub PI

MHgsrp 6,000 year BP 6,000 year BP Shrub Reduced
Abbreviation Net effect of each forcing Equation

ORB Effect of orbital/ GHGs forcing during the mid-Holocene MHgrg-PI

GS Net effect of vegetation change during the mid-Holocene MHgs-MHgpgrp
GSpr Net effect of vegetation change during the preindustrial PIgs—PI

GSRD Combined effect of vegetation change and dust reduction MHgsrp-MHogrg

during the mid-Holocene

performed following the PMIP3 protocol (Braconnot et al., 2011), where the orbital value is set at 6,000 years
BP. For the greenhouse gases (GHGs), methane is set at 760 ppb in PI and 650 ppb in MHgg, and there is no
change in CO, and other greenhouse gases. The third experiment (MHgg) imposes the prescribed shrub
vegetation type over the Saharan domain, which is similar to the PIgg experiment but under the MH
orbital condition. We also perform the MH vegetated Sahara and reduced dust (MHgsrp) experiment,
where the Sahara land cover is also set to shrub but the dust concentrations are reduced by almost 80% in
the troposphere over a broad area around the Sahara desert (Figure S1 in Pausata et al., 2016), according
to the 60%-80% dust flux reduction from the proxy evidence (deMenocal et al., 2000; McGee et al., 2013).
This imposed dust reduction results in a decrease in the local dust aerosol optical depth of approximately
60% and a decrease in the global total aerosol optical depth of 0.02. The initial conditions for each
experiment are taken from a 700-year PI spin-up run, and the simulations are then run for 300-400 years.
The quasiequilibrium is reached after 100-200 years, depending on the experiment. This research focuses
on the last 100 years of each experiment.

For simplicity, we use ORB and GS to represent the net effect of orbital/GHGs forcing (MHorp-PI) and
vegetation change (MHgs—MHogrg) during the MH, respectively (Table 1). The effect named GSp; denotes
the net effect of vegetation change under the PI condition (PIgs—PI). GSRD is used to represent the combined
effect of the vegetation change and dust reduction (MHgsgrp—~MHogrg) under the MH condition.

2.2. Observation and Proxy Data

The data set of the Global Precipitation Climatology Project version 2.3 (Adler et al., 2003), which provides
global (land and ocean) coverage for the period of 1979-2017, was used to verify the model performance of
the climatological pattern. The results of EC-Earth 3.1 are consistent with the observations in terms of land
monsoon precipitation climatology compared to all of the PMIP3 models (Figure S1).

We also collected the precipitation proxy data to validate the simulated precipitation changes during the MH
(about 6 ka BP; Table S2). The choice of proxy data needs to meet several criteria and these data are compiled
from the published literature. First, the proxy data must reflect the precipitation or moisture conditions
(precipitation minus evaporation). The records only reflecting temperature are not included. Second, the
temporal resolution of proxies must be sufficient to reflect century-to-millennial scale climate changes.
The MH proxy data are compared to the present day (0 ka BP).

2.3. Definitions of NHLM Area and Precipitation

Following the definition of global monsoon used by Wang and Ding (2008) and Liu et al. (2009), the NHLM
area is defined by the land regions where the local summer mean minus winter mean precipitation exceeds
2 mm/day and the local summer precipitation exceeds 55% of the annual precipitation. Here summer is
May- September, and winter is November-March. The NHLMP change is measured by the sum of summer
precipitation anomalies in the NHLM area computed by each experiment (Hsu et al., 2012), which can better
distinguish each forcing's effect on summer monsoon precipitation.
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Figure 1. Annual mean precipitation change during the mid-Holocene. (a) Difference of the land precipitation between
the mid-Holocene and present-day derived from the paleoclimate archives listed in Table S2. (b) Box-and-whisker plot
of annual mean precipitation anomaly over NHLM regions from the pollen reconstructions (black), EC-Earth MHpRrp
experiment (blue) and MHgsgrp experiment (red), relative to the present-day. The box whisker plots show the 10th,
25th, 50th, 75th, and 90th intervals, and the crosses denote the weighted regional mean precipitation change. (c and d)
Annual mean precipitation anomalies (mm/day) in the MHporg and MHgsrp experiments, respectively, relative to the
present-day. Black lines in a, and blue lines in ¢ and d represent the land monsoon regions defined by the MHgsrp
experiment. The dots denote areas in which the changes are significant at the 95% confidence level using a two-tailed
Student's ¢ test.

Due to the lack of proxy records that cover the entire monsoon domain (Figure 1), we use the weighted-area
average annual mean precipitation over the same NHLM area to compare the proxy data and model results
in Figure 1b. The NHLM area in Figure 1 is derived from the MHggrp experiment because it can better cap-
ture the expansion of NAF revealed by proxies during the MH (Pausata et al., 2016).

3. Results
3.1. Changes in the NHLMP

During the MH, most of the PMIP models simulate enhanced (reduced) Northern (Southern) Hemisphere
monsoon precipitation due to the increased (decreased) summer insolation over the Northern (Southern)
Hemisphere (Jiang et al., 2015; Zhao & Harrison, 2012). The MHogg experiment shows the very similar
NHLM area and precipitation changes compared with the multimodel ensemble mean results in the
PMIP3 (Figure S2).

The model results from the MHorpg and MHgsrp experiments are first compared with proxy data (Table S2)
to check whether the simulated annual mean precipitation over the NHLM is improved under the imposed
Saharan vegetation and dust reduction during the MH (Figure 1). When only the orbital/ GHGs forcing
(MHogrg-Present) is considered during the MH, the NHLM annual mean precipitation change relative to
the present-day is considerably underestimated (Figure 1b), which is similar to the ensemble mean results
in PMIP3 (Braconnot et al., 2012).

When the Saharan vegetation and dust reduction (MHggrp—Present) are also considered, the annual mean
precipitation change over most of the NHLM regions shows a closer agreement with proxy records
(Figure 1b). The model overestimates the changes in NAF annual mean precipitation, compared to the proxy
data. However, the simulated precipitation change shows a good agreement with proxy data between 15 and
30°N over the NAF, compared with that in the MHogrg experiment (Figure S3a). Precipitation is mainly over-
estimated (3 mm/day) between 10 and 15°N, but recent proxy data suggest this increase could be plausible
(Hély et al., 2014). The Asian monsoon (ASIA) precipitation is also enhanced, yielding a better agreement
with the reconstructions (Figure 1b). Most of the proxy data indicate wetter conditions over the North
American monsoon (NAM) for the Green Sahara period relative to current conditions (Figure la and
Table S2), but the increased amplitude is smaller than that in the NAF and ASIA (Figure 1b). This increased
annual mean precipitation over the NAM revealed by proxy data is still not reproduced under MHgsrp—
Present. In the areas outside the NHLM domain, the MHgsrp experiment shows the increased precipitation
over Europe and central Australia and the decreased precipitation over the central-eastern North America
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Figure 2. Land monsoon precipitation changes. (a-c) Local summer precipitation anomalies (mm/day) under ORB,
GS, and GSRD, respectively. Local summer represents May to September in NH and November to March in SH. Blue
lines in a-c highlight the land monsoon areas in the MHorg, MHgs, and MHgsrp experiments, respectively. The dots
denote areas in which the changes are significant at the 95% confidence level via a two-tailed Student's ¢ test. (d and e)
Change rates (%) in land monsoon area and precipitation, respectively. Monsoon regions include NHLM, North African
(NAF), Asian (ASIA), and North American (NAM) monsoon. “No NAF” denotes the area that does not include the
North African monsoon. Green bars represent the results in ORB, red bars represent the results in GS, and yellow bars
denote the results in GSRD. The black vertical lines over the bars show the range of one standard deviation.

and South America (Figure 1d), which is more consistent with the proxy data than that in the
MHgg experiment.

To further quantify the NHLM changes, the NHLM area and NHLMP are analyzed. In GSRD, the NHLM
area and precipitation are enhanced by 28.0% and 33.1%, respectively (Figures 2d and 2e), while under
ORB, they are only enhanced by 15.5% and 19.4%, respectively; the increases are more than 1.7 times as large
as that caused by the orbital/GHGs forcing. This is in better agreement with the proxy data (Braconnot et al.,
2012; Figure 1b). Among the monsoon subregions, the northward expanded and enhanced North African
monsoon contributes most to the NHLM area and precipitation changes under GSRD (Figures 2c-2e).
Interestingly, in addition to its impact on local precipitation, GSRD also significantly enhances the precipi-
tation over the NHLM (no NAF) by 7.5% (Figure 2e), especially for the Asian monsoon precipitation (8.0%);
the increase in precipitation is significant and almost equal to that under ORB. Additionally, the North
American monsoon precipitation is increased by 5.2% under GSRD, but this change is not significant due
to large uncertainties (Figure 2e).

GS alone increases the NHLM area and precipitation by 19.9% and 26.9%, respectively, which means that the
Saharan vegetation plays a greater role in strengthening the NHLM, compared with the dust reduction. The
North African monsoon precipitation contributes most to the NHLM precipitation, followed by the signifi-
cantly enhanced Asian monsoon precipitation (8.3%; Figure 2e). Suppressed precipitation is found over
North America, but its amplitude is weak. We also use the GSp; (Table 1) to isolate the individual effect of
Saharan vegetation. The result shows that the NHLM area and precipitation are enhanced by 20.4% and
29.2%, respectively, which is almost equal to the effect of vegetated Saharan in the MH (Figures S4c and
S4d). The distribution of precipitation anomalies over the monsoon subregions under GSp; is also very simi-
lar to that under GS (Figures S4a and S4b). This means that the Saharan vegetation control the precipitation
difference between MHgg and MHogg, instead of the insolation or the nonlinear changes between vegeta-
tion and insolation. We also check the net effect of dust reduction under vegetated Sahara (GSRD-GS).
The results show that it can further substantially enhance the North African monsoon precipitation by
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Figure 3. Northern Hemisphere atmospheric circulation changes during MJJAS. (a and b) Vertical velocity anomalies
at 500 hPa (red shadings indicate descending motion while blue shadings denote ascending motion). (c and d)
Geopotential height (shadings, 102 m?/ 52) and wind anomalies (vectors, m/s) at 200 hPa. (e and f) Precipitation (shadings,
mm/day), sea surface temperature (shadings, °C), and 850 hPa wind anomalies (vectors, m/s). Left panels represent

the results in ORB, and the right panels denote the results in GS. Only the significant anomalies with confidence level
exceeding the 95% (via a two-tailed Student's ¢ test) are displayed.

19.9% and significantly increase the North American monsoon precipitation by 9.1% (larger than one
standard deviation).

Therefore, the Saharan vegetation and dust reduction not only strengthen the North African monsoon dur-
ing the MH but also remotely enhance the NHLM (no NAF), and the influence of the vegetated Sahara plays
a stronger role here, compared with the dust reduction.

3.2. Mechanism of the Green Sahara's Influence on NHLMP

Some previous studies consider that NHLMP changes are caused by the orbital-induced large-scale meridio-
nal temperature gradient and the land-ocean thermal contrast during the MH (Jiang et al., 2015; Zhao &
Harrison, 2012). In this study, the summer anomalous zonal mean meridional temperature gradient,
land-sea thermal contrast, and land-sea level pressure gradient are weaker over the NH (no NAF) under
GSRD, compared with that under ORB (Figure S5). However, a significant increase in the NHLM (no
NAF) precipitation is found under GSRD (Figure 2d). Thus, it can be inferred that the vegetated Sahara
and dust reduction affect the NHLM (no NAF) mainly through other mechanisms.

The surface albedo is reduced over the vegetated Sahara, leading to a warming in the months preceding the
monsoon and favoring a strong convection after that (Pausata et al., 2016). A significant tropical North
Atlantic SST warming enhances the north-south thermal gradients (Figure 3f), strengthening the southwes-
terly anomalies, further enhancing the Sahelian precipitation (i.e., Kamae et al., 2017; Monerie et al., 2019).
The surface cooling occurs between 10 and 23°N (Figure S6), which is caused by the latent heat release and
the increased cloud cover reflecting solar radiation (Pausata et al., 2016; Ramanathan et al., 1989). An
albedo-induced warming over the northern Sahara develops throughout the summer, enhancing the north-
ward expansion of the North African monsoon (Figure 3f). The substantial increased monsoon precipitation
leads to a release of latent heat, warming the middle and upper troposphere (Figure S6). This increases the
atmospheric thickness and the upper-level geopotential height, inducing an anomalous anticyclone in the
upper troposphere (Figure 3d). Then a noticeable baroclinic structure is exhibited in the entrance of the wes-
terly jet (Figure S7). However, ORB causes the weaker middle and upper troposphere warming over the
North African region (Figure S6), which induces a much weaker anomalous anticyclone in the upper tropo-
sphere (Figure 3c), compared with that under GS.
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GS also induces an intensification and westward extension of the Walker Circulation over the Pacific Ocean
(Figure S8) through changes in equatorial Atlantic SSTs, which is explained by Pausata, Zhang, et al., 2017
The changes in the Walker Circulation enhance the low-level southeasterly anomalies over the northern
Indo-Pacific Ocean (Figure 3f), which enhances the South Asian monsoon (i.e., Ning et al., 2017; Wang et al.,
2015). This intensified Indian summer monsoon can excite the anomalous upper-level west-central Asian
high (Ding & Wang, 2005). Subsequently, two baroclinic structures (with the stronger one in North Africa
and the weaker one in west-central Asia) are formed (Figure S7), generating a Rossby wave train. This wave
energy propagates downstream to regions along the waveguide, which induces the barotropic structure over
the regions of East Asia, the North Pacific and North America, which resembles the circumglobal telecon-
nection (CGT) pattern (Ding & Wang, 2005). Nevertheless, in the case of ORB, these two baroclinic struc-
tures are much weaker in North Africa and west central Asia (Figure S7).

Under GS, a barotropic structure located over Japan induces an anomalous low-level divergence center
(Figures 3d, 3f, and S9). Anomalous southerlies over the west of this divergence center enhance the north-
ward transport of water vapor to northern China, causing the increased precipitation (Figure S9b).
Anomalous easterlies over the North Pacific carry more moisture into Southern Asia, increasing precipita-
tion there. This intensifies the Asian monsoon precipitation. Additionally, GS induces the anomalous sur-
face warming over the west-central Asia and Northwest Pacific (Figure S6b). This is because the wave-
induced anticyclonic anomalies suppress the cloud cover and increase the incoming solar radiation. These
two warming centers are conducive to enhance the northward moisture transport to the South and East
Asia. However, the suppressed precipitation is found along the East Asian subtropical front due to the local
descending motion. Thus, the Saharan vegetation indirectly enhanced the Asian summer monsoon through
the upper-level Rossby wave train and a westward extension of the Walker Circulation.

In North America, an anomalous upper-level anticyclone covers most of the midlatitude region and induces
the low-level divergent winds under GS (Figures 3d and 3f). Moreover, the strong heating over North Africa
excites the Gill-type Rossby wave pattern (Gill, 1980), which induces the descending motion over the equa-
torial Atlantic Ocean and tropical South America, suppressing precipitation there. It also causes the des-
cending motion over central-east North America (Figure 3b), which is located to the west of the North
African heat source. These two descending motions may contribute to the decreased precipitation over
the Western Hemisphere, which is observed in the proxy data (Figure 1a) and causes the easterly anomalies
over the eastern equatorial Pacific (Figure 3f), slightly weakening the North American monsoon.

To validate that this mechanism is caused only by the effect of Saharan vegetation and is not a direct
response to insolation or a combined effect of vegetation change and orbital forcing, we verify the results
under GSpr. The result shows that GSp; also induces the upper-level wave train (Figure S10). A barotropic
structure located near Japan causes a very similar atmospheric circulation pattern over the Asian monsoon
region, compared with the results under GS. Descending motions also occur over tropical South America
and central-east North America, suppressing North American monsoon precipitation. This additional
experiment highlights the important role of the Saharan vegetation in changing the NHLMP.

Previous studies have shown that the dust reduction strengthens the vegetation feedback on radiative for-
cing, which enhances the North African monsoon (Gaetani et al., 2017; Pausata et al., 2016), but the
mechanism of its impact on the North American land monsoon is unclear. The reduced dust concentration
happens over the area of roughly 100°W-60°E, 10°S-40°N (Figure S1 in Pausata et al., 2016), which
increases the downward solar radiation and warms the tropical North Atlantic SST (Figure S11). This causes
the east-west temperature gradient from the eastern tropical Pacific to the western Atlantic Ocean, inducing
the anomalous westerlies over the northeastern tropical Pacific, enhancing the North American monsoon
precipitation. At the same time, there is also a dust reduction of about 40%-50% over the North American
region (Pausata et al., 2016), which strengthens the local moist convection.

4. Discussion and Conclusions

Previous model studies showed an obviously underestimated NHLMP changes compared with the recon-
structions in the MH (Braconnot et al., 2012; Jiang et al., 2015; Zhao & Harrison, 2012). They focused on
the insolation changes and ignored Saharan vegetation and dust concentrations. Here we show that the
vegetated Sahara and dust reduction can modulate the atmospheric circulation and affect the NHLMP. It
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should be noted that only the direct effect of dust reduction is considered in this model version, while the
indirect aerosol effect (nucleation that results in the formation of more rain droplets) is not included. This
may affect the results shown in this study as suggested by a recent study focusing on the indirect effect on
the West African monsoon (Thompson et al., 2019).

In summary, our results show that the simulated annual mean precipitation change is significantly
improved over most of the NHLM regions during the MH compared with the reconstructions when the vege-
tated Sahara and dust reduction are also taken into consideration. These forcings increase the NHLMP by
33.1%, which is more than 1.7 times the impact of the orbital/ GHGs forcing. Among the monsoon subre-
gions, the strengthened North African monsoon precipitation contributes most significantly, which is
mainly caused by the increased moisture convergence under the effects of vegetation and dust reduction.
The Saharan vegetation alone also leads to the increased Asian monsoon precipitation by 8.0% through
the upper-level wave train and a westward extension of the Walker Circulation, while dust reduction under
vegetated Sahara enhances the North American monsoon by 9.1% through the anomalous westerlies
induced by the tropical North Atlantic warming. These results indicate the strong impact of the Green
Sahara on the NHLMP during the MH. They also suggest this factor may have a significant influence on
the NHLMP in the future, which is critical for the demands of infrastructure planning, disaster mitigation,
agriculture, and water resource management.
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