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Abstract The origin of the East Asian summer monsoon (EASM)—the sole monsoon existing in the
subtropics-midlatitude in the northern hemisphere—has long been recognized as an elevated heating and
mechanical forcing of the Tibetan Plateau, and the land-sea zonal heat contrast. However, the relative
contribution of individual processes to the generation of the East Asian summer monsoon and therefore
the underlying basic physics are unexplored. Here we show that the EASM is mainly driven by the
dynamical effect of the Tibetan Plateau, in which forced topographic Rossby waves induce downstream
southerlies, a crucial factor in EASM precipitation. From idealized general circulation model simulations,
the dynamical effect of mountains is revealed to account for ~65% of the total East Asian summer
precipitation, whereas the elevated heating and land-sea heat contrast are only responsible for ~15% each
and the mountain-drag effect accounts for less than 5%.

1. Introduction

The East Asian summer monsoon (EASM) has long been viewed as a response to the elevated heating and
mechanical effects of the Tibetan Plateau, as well as the land-sea zonal heat contrast (Figure 1; Abe et al.,
2003; Chen & Bordoni, 2014; Chiang et al., 2015, 2017; Chou et al., 2001; Kitoh, 2004; Molnar et al., 2010;
Wu et al., 2007). During the northern hemisphere summer, heating over the Tibetan Plateau and
Eurasian continent is known to create a thermal cyclone that forces southerly winds to the east (Chen &
Bordoni, 2014; Wu et al., 2007). This thermodynamic process of inducing southerly winds through a zonal
pressure gradient force between low pressure on land and high pressure over the ocean is generally
explained by the response of the land-sea heat contrast, which is considered the basic mechanism of mon-
soon generation (Figure 2; Halley, 1686; Wu et al., 2012). The elevated heating due to the Tibetan Plateau
contributes to the inward and upward advection of air parcel along the flank of the plateau. The air pumping
over the Tibetan Plateau is known to enhance the large-scale cyclonic circulation around the mountain
(Kitoh, 2004; Liu et al., 2007).

The mechanical effect of the Tibetan Plateau includes a flow uplift, a flow deflection, and a mountain-drag
effect (Figure 1). The upward propagating gravity wave tends to decelerate flow when the wave breaks, and
thus, the mountain gravity wave drag builds a characteristic meridional dipole structure with a cyclonic cir-
culation to the south and an anticyclonic circulation to the north of the mountain (Cohen & Boos, 2017).
Topographic drag is generated by the mountain-induced boundary layer turbulence (Lott & Miller, 1997).
These gravity wave drag and topographic drag effects can be regarded as the mountain-drag effect. The drag
effect plays a minor role in generating or enhancing the EASM (Baldwin & Vecchi, 2016; Cohen & Boos,
2017; Wu et al., 2007), which is confirmed in this study as well. On the other hand, the uplifting effect
involves the generation of flows over the mountain and this leads to the formation of the stationary
Rossby waves due to potential vorticity conservation (Held, 1983; Rodwell & Hoskins, 2001; Seo et al.,
2015). The deflection effect splits the westerly winds impinging on the plateau to both the northern and
southern slopes of the plateau, later to reconverge downstream (Kitoh, 2004; Wu et al., 2007). The cold air
coming from the north and the warm moisture air blowing from the south can intensify air mass confronta-
tion and the quasi-stationary frontal rainband (Seo et al., 2015; Tomita et al., 2011). The uplift and deflection
effects are referred to as the dynamical effect.

In this study, we stress not the above-mentioned thermodynamic and mountain-drag processes but rather
the dynamical effect of the Tibetan Plateau (Cohen & Boos, 2017; Held, 1983), which is related to
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Figure 1. Schematic of various proposed factors for the formation of the East Asian summer monsoon.

topographically forced Rossby waves. The northern hemisphere stationary waves forced by the zonal flow
over huge mountains, such as the Tibetan Plateau and the Rockies, cause an anticyclone over the western
part of the mountain peak, a cyclone to the east, and an anticyclone further to the east. The last two
stationary wave components lie over East Asia, which is similar to the zonal phase of eddies induced by
the Eurasian Continent-Pacific Ocean thermal contrast (Figures 1a and 1le). However, summer amplitudes
of the topographic wave are weaker than those of the winter counterpart because of the reduced strength
of the subtropical jet stream. As a result, limited attention has been given to the pure dynamical impact of
the Tibetan Plateau in explaining the mechanism of EASM generation.

2. Data Sets and Methods

The Global Precipitation Climatology Project (GPCP; Huffman et al., 2001) daily precipitation, the National
Oceanic and Atmospheric Administration Optimum Interpolation sea surface temperature (SST) V2
(Reynolds et al.,, 2002), and the European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim Reanalysis (ERA-Interim; Dee et al., 2011) products are used. The climatological average for all
atmospheric variables is calculated from 1979 to 2015, except for precipitation (1997-2015) and
SST (1982-2015).

The idealized general circulation model (GCM) is based on the Geophysical Fluid Dynamics Laboratory
(GFDL) Atmosphere Model, version 2.1 (AM2.1; Anderson et al., 2004). AM2.1 uses a finite-volume dynami-
cal core (Lin, 2004), spanning 2.5° X 2.0° in the horizontal and 24 vertical levels. The models are run for
12 years, and the last 10 years are considered. All model results are displayed as ensemble averages of five
individual simulations. In simulations (AMIP-type), the zonally uniform climatological SSTs varying with
month are used for the oceanic boundary condition. Over land, the surface energy and water balance are
conserved by the land model version 2 calculation of the surface flux, radiation exchange, and runoff.

We performed the aqua planet experiment as our simplest backbone simulation and assumed an idealized
land and mountain to reflect a simplified version of reality. An idealized square of land is placed at
20-120°E and 15-70°N, where the land surface is flat at sea level and uniformly covered with grass over
ground types of coarse, medium, and fine mix. To examine the effect of the Tibetan Plateau on the EASM,
a Gaussian bell-shaped mountain is placed at 80-100°E and 25-45°N, with a maximum height of 5 km.
For sensitivity tests, the surface albedo was raised to 0.6 at altitudes greater than 2.5 km to remove mountain
elevated heating. The original albedo on the grass with no snow cover is set to be 0.18.
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Figure 2. Climatological characteristics of East Asian summer monsoon (EASM) precipitation and meridional wind.
(a) East Asian precipitation (mm/day) and southerly wind (m/s) at 600-500 hPa averaged from May to July. The

EASM precipitation index is averaged over the blue box [110-140°E, 30-40° N], and the meridional wind index is the
average of the red box [110-140°E, 25-35°N]. (b) The climatologically daily averaged normalized (nondimensional values)
precipitation (blue line), meridional wind (red line), and solar angle (black line) time series. The precipitation or wind is
normalized by using the mean and standard deviation of each variable's annual cycle (365 days).

It is known that the diabatic heating on the Tibetan Plateau is mainly due to sensible and latent heating (Wu
et al., 2007), but the effects of radiative cooling and interactions among them also significantly influence the
atmosphere. Therefore, the effect of elevated heating over the Tibetan Plateau is better reflected in the air
temperature (Figure 3a), since it is a final product of complex thermodynamic processes (in other words,
it does not represent a specific diabatic heating process such as sensible heating; Hu & Boos, 2017). A positive
air temperature anomaly shown in Figure 3a represents elevated heating over the Tibetan Plateau in the
observations. In the idealized land (no mountain) GCM experiment, elevated heating does not occur in
the middle troposphere (Figure 3b); however, elevated heating is simulated in the idealized land and moun-
tain experiment (Figure 3c). To remove elevated heating in the land with mountain experiment, we set the
albedo to 0.6 only at the mountain surface. As a result, the albedo = 0.6 experiment does not simulate the
warm temperature anomaly over the top of the mountain (Figure 3d).

To investigate other mechanical effects of mountains, we toggled on and off the topographic drag and the
gravity wave parameterization schemes (Chao, 2015; Garner, 2005; Olafsson & Bougeault, 1997). In the cal-
culation of the mountain drag effect, realistic high-resolution (1/30°) topography needs to be used. However,
the use of the smooth mountains in this study produces nearly the same results as those from the realistic
topography (not shown) since basically the drag effects are considerably small compared to grid-scale
dynamics (Baldwin & Vecchi, 2016).
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Figure 3. Tibetan heating in observations and idealized model experiments. Vertical and zonal cross section of 30°-40°N
averaged air temperature anomaly (K) during June and July. (a) Air temperature anomalies in observations, and

(b) general circulation model experiment of idealized land, (c) land and mountain, and (d) mountain albedo of 0.6 are
calculated by deviations from the zonal average of the observations.

The experiments are very idealized, with unrealistically rectangular land, homogeneous vegetation cover, a
smooth, bell-shaped mountain, and zonally uniform meridionally varying SSTs. While these experiments
are not as realistic as those of a more complex, realistic GCM, they make it possible to isolate the fundamen-
tal mechanisms controlling the EASM (Chou, 2003; Voigt et al., 2016).

3. Simulation Results

The southerly winds blowing into East Asia act to supply water vapor to the EASM front (Chou et al., 2009;
Figure 2a). The correlation between the meridional wind and precipitation is estimated to be as high as 0.84
from May to July (Figure 2b), indicating their strong physical connection. The summer evolution of the
meridional wind and precipitation is distinct from that of the solar angle (Figure 2b). Here a question arises
as to which of the following factors plays the dominant role in the development of the barotropic monsoo-
nal southerly wind—the elevated heating over the Tibetan Plateau, mechanical (i.e., dynamical and
mountain-drag) effects, or the land-sea heat contrast. To examine the overriding mechanism of the
EASM, we designed a suite of sensitivity tests using an idealized GCM (Figure 4). See section 2 for details
of the model.

The first experiment is the simplistic aqua planet simulation. The result shows a zonally elongated precipita-
tion pattern in the typical tropical convergence zone, but the simulation does not capture the monsoon-like
precipitation (Figure 4a). The second experiment is an idealized land simulation, where significant precipi-
tation forms in the southeastern portion of the land, consistent with observational evidence of the South
Asian monsoon precipitation. However, precipitation does not appear in the EASM domain (Figure 4b).
An idealized land with mountain simulation is the third experiment, which contains the effects of elevated
heating, land-sea heat contrast, dynamical forcing, and mountain drag, all resulting in contributions to the
EASM precipitation (Figure 4c). For the fourth simulation, to eliminate the elevated heat effect over the
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Figure 4. Idealized model experiments for East Asian summer monsoon (EASM) precipitation. The general circulation
model simulations of (a) aqua planet, (b) idealized land, (c) idealized land with mountain, (d) mountain albedo of 0.6,
and (e) pure dynamical mountain. The left panel denotes the model settings, illustrating the land-sea distribution and
mountain characteristics (K), and the middle panel shows corresponding precipitation (mm/day) during June and July.
The PRCP box refers to the domain of observed peak EASM rainfall (same as Figure 2a). (f) The percentage contributions
of dynamical, land-sea thermal difference, mountain heating, and mountain-drag effects on the EASM precipitation.
The error bar shows the spread of the five ensemble member simulations.

mountain, the surface albedo is raised to 0.6 from a normal grass-type albedo of 0.18, set at altitudes greater
than 2.5 km (Boos & Kuang, 2013) (Figure 4d). The surface absorbing the solar radiation emits long-wave
radiation and sensible and latent heat fluxes to the atmosphere, warming the atmosphere. Increasing the
surface albedo leads to reduction or elimination of the elevated heating by decreasing the surface heat
source. This simulation result demonstrates that EASM precipitation occurs regardless of the presence or
absence of elevated heating over the mountain (Figures 3, 4c, and 4d). In the fifth simulation, the
mountain drag effect was removed from the fourth simulation by turning off both the topographic drag
and mountain gravity wave drag parameterization schemes. Consequently, the mountain-forced
dynamical and land-sea zonal heat contrast effects were included in this simulation. It is remarkable to
see that pure dynamical forcing of the mountain is enough to simulate the EASM rainband (Figures 4e
and 4f). Both thermodynamic and mountain-drag forcings have small effects.
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Figure 5. Observations and dynamical model simulations of the Asian summer monsoon. (a) Observations, (b) general circulation model simulation on
idealized land, and (c) result of idealized land and dynamical mountain (excluding elevated heating and drag effects). The horizontal distribution of the eddy
streamfunction (m?/s, black lines) at 600-500 hPa and precipitation (blue shading) are illustrated on the top panel from June to July. The middle and bottom panels
are 30-40°N averaged eddy streamfunction (black line) and topography (red line), respectively.

The elevated heating of the Tibetan Plateau has been considered the dominant source of EASM genera-
tion; however, according to our GCM simulation results, the dynamical effect is the major contributor
of the EASM. Since the third experiment is a total simulation, the quantitative contribution of the land-
sea thermal contrast, elevated heating, dynamical forcing, and mountain-drag effect for the formation
of the EASM precipitation can be evaluated (Figure 4f). Subtracting the aqua planet simulation precipita-
tion from the idealized land experiment yields the proportion of the pure land-sea thermal contrast, which
is estimated to comprise only 17% of the total EASM domain-averaged precipitation. Subtracting the
fourth simulation from the third provides evidence of the mountain heating effect, which accounts for
14%. The mountain-drag effect, which is estimated by subtracting the fifth simulation from the fourth,
explains only 4%. On the other hand, the dynamical impact, which is obtained by subtracting the second
simulation from the fifth experiment, accounts for as much as 65% of the total precipitation. The relative
contributions of each component to the formation of the southerly winds are similar to those for precipi-
tation (not shown).

In the observations, a strong pressure gradient occurs in the EASM region, and the precipitation stretches
northeastward from southeastern China toward Korea and Japan (upper and middle panels of Figure 5a).
Although the land-sea heat difference is thought to generate low and high pressures during summer over
the Eurasian Continent and the Pacific Ocean, respectively (Chen & Bordoni, 2016; Shaw & Voigt, 2015;
Wu et al.,, 2012), our idealized land experiment demonstrates that the zonal heat difference for the flat
surface produces an extremely weak pressure gradient and therefore weak precipitation (Figure 5b).
Quasi-stationary eddies, appearing in the observations and the dynamical forcing result of the mountain
experiment (Figsure 5a and 5c), can be attributed to be orography-forced barotropic Rossby waves (Held,
1983; Rodwell & Hoskins, 2001). Tibetan Plateau heating added to the land-sea heat contrast effect can con-
tribute to the zonal pressure gradient over East Asia, but the EASM southerly winds are mainly driven by the
dynamical response to mountain forcing (Figures 4f and 5c). One may consider the sum of the land-sea zonal
heat contrast on the flat surface (Figure 1a) and elevated surface heating (Figure 1b) as the land-sea contrast
effect, which then explains ~30% of the East Asian precipitation. In contrast, the mechanical effect of moun-
tain accounts for ~70%.
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The spatial bias of the downstream anticyclone over the ocean (Figures 5a and 5c) may come from the
absence of air-sea interactions in our GCM experiments (Matsumura & Horinouchi, 2016; Wang et al.,
2000, 2013; Wang & Zhang, 2002; Zhou et al., 2009). Model results using realistic topography (not shown)
show nearly identical dynamical responses of the Tibetan Plateau to those from the above idealized
GCM experiments.

4. Discussion and Conclusion

From idealized GCM experiments and observations, the dynamical impact of the Tibetan Plateau was deter-
mined to be the predominant mechanism for EASM origin. The zonal pressure gradient formed by topogra-
phically induced Rossby waves and the subsequent moisture transport from the south are the most crucial
process in sustaining the EASM rainband. Moreover, as an implication of this conclusion, this physical
mechanism can be applied to any mountain area, such as the Rockies, Andes, or the Ural Mountains
(Chen et al., 2001; Vera et al., 2006). However, the detailed weather and climate responses are unequal to
those of the EASM due to such characteristics as different land-sea configurations, locations of mountain
peaks, and the properties of the boundary. This study only deals with the origin of the climatological
EASM, but for estimation of predictability, its interannual or interdecadal variation is more relevant, which
will be investigated in the future. Recent work suggests that the seasonal transitions of the EASM are con-
trolled by the meridional position of the midlatitude westerly jet with respect to the location of the
Tibetan Plateau (Chiang et al., 2015, 2017). However, its underlying mechanism is still unclear. For the phy-
sical mechanism that is responsible for the EASM formation, we will present in the future how forced topo-
graphic Rossby wave makes the downstream southerlies and how the amplitude of the downstream
stationary Rossby wave is dependent upon the upstream westerly wind impinging on the Tibetan Plateau.
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