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ABSTRACT

Realistic reproductionof historical extremeprecipitationhas been challenging for both reanalysis andglobal climate

model (GCM) simulations. Thiswork assessed the fidelities of the combinedgriddedobservational datasets, reanalysis

datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean–Atmospheric Land

System Model–Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation

over East China. The assessment used 552 stations’ rain gauge data as ground truth and focused on the probability

distribution functionof daily precipitation and spatial structure of extremeprecipitationdays.TheTRMMobservation

displays similar rainfall intensity–frequency distributions as the stations. However, three combined gridded observa-

tional datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation ex-

ceeding 150mmday21, and all underestimate extreme precipitation frequency. The observed spatial distribution of

extremeprecipitation exhibits twomaximumcenters, located over the lower-middle reach ofYangtzeRiver basin and

thedeepSouthChina region, respectively. Combined griddedobservations and JRA-55 capture these two centers, but

ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme

rainfall in the total rainfall amount is generally underestimated by 25%–75% in all CMIP5models. Higher-resolution

models tend to have better performance, and physical parameterizationmay be crucial for simulating correct extreme

precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased

resolution and amore realistic simulation of moisture and heating profiles. This work pinpoints the common biases in

the combined gridded observational datasets and reanalysis datasets and helps to improve models’ simulation of

extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.

1. Introduction

Extreme precipitation can have disastrous effects on

human health, economy, and ecosystems (Meehl et al.

2000; Lesk et al. 2016). EastChina is particularly vulnerable

to extreme precipitation because of its large population

and capital-intensive economy (Easterling et al. 2000;

Zhai et al. 2005; Li and Wang 2017). For example, the

heavy rainfall events in summer 2010 over East China

affected 134 million people and caused losses of $18.0

billion (Murray and Ebi 2012). Many studies have

reported significant increases in both the intensity andCorresponding author: Jing Yang, yangjing@bnu.edu.cn
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frequency of extreme precipitation in China as a result

of global warming (Zhai et al. 2005; Wang and Zhou

2005; Ma et al. 2015). Therefore, there is an urgent need

for accurate forecast and projection of such events.

Global climate models (GCMs) are often used to

predict future changes in extreme precipitation (e.g.,

Toreti et al. 2013; Li et al. 2016), although these models

generally underestimate such events (Dai 2006; Huang

et al. 2013, 2017; Jiang et al. 2015; Ou et al. 2013).

Current projections use relative indices to estimate

extreme precipitation, but they are unable to obtain

the realistic changes in the absolute amounts of heavy

rainfall (e.g., .100mmday21). Achieving realistic sim-

ulations of the absolute amount of extreme precipita-

tion is an important target in the new generation of

GCMs. Increasing the spatial resolution of GCMs has

been reported as one method of improving simulation

of extreme precipitation over land (Gao et al. 2006;

Zhang et al. 2014). For example, Zhang et al. (2014)

showed that models with a higher resolution have

larger amounts of stratus clouds leading to a more re-

alistic ratio of stratiform precipitation. Kimoto et al.

(2005) found that higher-resolution versions of GCMs

can better represent the frequency distribution of dif-

ferent classes of precipitation. However, an increase in

spatial resolution does not always improve the simu-

lated rainfall (e.g., Chan et al. 2013; Wang et al. 2017).

The relationship between the spatial resolution of

models and the quality of simulation of precipitation

remains elusive.

Physical parameterizations, particularly in cumulus

convection schemes (Emori et al. 2005; Huang et al. 2009;

Song et al. 2012), also influence the simulation of rainfall

intensity through modifying the heating rate and mois-

ture profiles. In GCMs, moisture profiles above the bound-

ary layer can be related to precipitation rates through

influencing the transition from shallow to deep con-

vection (Holloway and Neelin 2009; Lin et al. 2013).

Different vertical structures in heating profiles may

correspond to different rates of precipitation in obser-

vation and reanalysis datasets (Hagos et al. 2010; Ling

and Zhang 2013). Modifying the heating profile to dif-

ferent shapes in GCMs can also reproduce different

precipitation features (Murata and Ueno 2005; Cao and

Zhang 2017). The current GCMs have biases in their

heating profiles, which may also be associated with nu-

merical descriptions of the physical processes in cumu-

lus clouds (Tokioka et al. 1988; Stephens and Wilson

1980). The association of the distribution of moisture

and the heating rate with the simulation of rainfall in-

tensity still requires determination.

The occurrence of extreme precipitation may vary

with the subseasonal progression of summer rainfall

in East China from mid-May to mid-August (Tao and

Chen 1987; Ding 1994;Wang et al. 2009; Yang et al. 2014).

Few previous studies of extreme precipitation over East

China have considered this subseasonal effect in dif-

ferent regions (Ding 1994; Li and Wang 2017).

This study aims to address the following questions:

1) How well is extreme precipitation over East China

represented in various observational and reanalysis

datasets, CMIP5 models, and a newly released high-

resolution model including subregional and subseasonal

patterns; 2) how are the fidelity of extreme precipitation

simulations associated with the spatial resolution of the

models/datasets; and 3) how are the extreme precipitation

simulations related to the vertical distribution of mois-

ture and heating rate in the troposphere?

This paper is organized as follows. Section 2 describes

the datasets and methods. Section 3 presents a compre-

hensive comparison of summer extreme precipitation over

east mainland China. Section 4 discusses the plausible re-

lationships between the simulated extreme precipitation

and the summer seasonal mean and subseasonal progres-

sion of rainfall over East Asia and the relationships be-

tween the quality of simulated extreme precipitation and

the models’ horizontal resolution and vertical distribution

of heating rate and moisture in the troposphere. A sum-

mary of the results is given in section 5.

2. Datasets and methods

a. Observation datasets

Two observational datasets of rainfall were used in this

study. Data from 756 rain gauge stations over East China

were provided by the China Meteorological Adminis-

tration (CMA; http://data.cma.cn). The homogeneity and

reliability of this dataset were checked for strict quality

control before its release (Chen and Sun 2017). In pre-

processing, we removed the station if its value during

June–August (JJA) 1998–2005 is allmissing (Liu andRen

2005). To facilitate comparison with the gridded outputs,

the horizontal resolution of this observational dataset was

estimated on 18 3 18 grids based on the roughly uniform

distribution of the 552 stations over East China (Fig. 1).

The observational dataset from the NationalAeronautics

and Space Administration Tropical Rainfall Measuring

Mission (TRMM 3B42) satellite provided records from

April 1997 with a spatial resolution of 0.258 3 0.258
(Huffman et al. 2007), which has been intercalibrated

and bias corrected by GPCC rain gauge data using the

inverse error variance weighting method (Huffman

et al. 2007). Here we employed station observation

datasets as the reference precipitation, because TRMM

data are more reliable for tropical rainfall (Huffman

196 JOURNAL OF CL IMATE VOLUME 32

http://data.cma.cn


et al. 2007) and have been found to overestimate the

convective precipitation over southern China (Deng

et al. 2015).

Three combined gridded observational datasets of rain-

fall were used in this study. CN05.1, with a resolution of

0.258 3 0.258, is based on the interpolation of data from

2400 observational stations in China (Wu and Gao 2013).

The Asian Precipitation–Highly Resolved Observational

Data Integration TowardEvaluation ofWater Resources

(APHRODITE) dataset is based on rain gauge observa-

tion records over Asia with a resolution of 0.58 3 0.58 and
covers the period from 1951 to 2007 (Yatagai et al. 2009).

The Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks–Climate

Data Record (PERSIANN-CDR) dataset was provided

by the National Oceanic and Atmospheric Administra-

tion National Climatic Data Center and the Center for

Hydrometeorology and Remote Sensing at the University

of California, Irvine. This is a retrospective multisatellite

precipitation dataset with a resolution of 0.258 3 0.258 and
covers the period from 1 January 1983 to 31 March 2014

(Ashouri et al. 2015; Miao et al. 2015). The interpolation

method applied in CN05.1 is the ‘‘anomaly approach.’’

The climatology is first interpolated by tinplate smooth-

ing splines and then a gridded daily anomaly derived

from angular distance weighting method is added to

climatology to obtain the final CN05.1 dataset (Wu and

Gao 2013). APHRODITE applied Sheremap interpo-

lated method (Willmott et al. 1985) and the datasets used

in APHRODITE included three databases: 1) Global

Telecommunication System (GTS)-based data (the global

summary of the day), 2) data precompiled by other

projects or organizations, and 3) APHRODITE’s own

collection (Yatagai et al. 2012). PERSIANN-CDR used

stage IV precipitation data, Gridded Satellite infrared

data (GridSat-B1), and GPCP datasets. The PERSIANN

algorithm is applied to the historical archive ofGridSat-B1

infrared window observations from geostationary Earth

orbiting (GEO) satellites, and then used GPCPmonthly

product to remove the biases. Last, adjusted rain-rate

precipitation data are accumulated to the daily scale

to produce the PERSIANN-CDR product (Ashouri

et al. 2015).

b. Reanalysis datasets

Four reanalysis rainfall datasets were also evalu-

ated. The European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim)

dataset (Dee et al. 2011) has a resolution of 0.758 3 0.758.
The Japanese 55-yearReanalysis (JRA-55) dataset from

the Japan Meteorological Agency has a resolution of

1.258 3 1.258 (Kobayashi et al. 2015). The Modern-Era

Retrospective Analysis for Research and Applications

(MERRA) dataset from the National Climate Data

Center, National Oceanic and Atmospheric Adminis-

tration (NOAA) has a horizontal resolution of 0.678
longitude 3 0.58 latitude (Rienecker et al. 2011). The

National Centers for Environmental Prediction Climate

Forecast System Reanalysis (CFSR) dataset was ob-

tained from a coupled atmosphere–ocean–land surface–

sea ice system from 1979 to 2010 at a resolution of 0.58 3
0.58 (Saha et al. 2010).

c. Model outputs

Simulated daily rainfall outputs were retrieved from

CMIP5 historical experiments using 13GCMs (Table 1).

All the analyses in this study were based on the first

ensemble member of each model (r1i1p1) for all histor-

ical experiments.

A newly released high-resolution coupled model out-

put (Table 1) was also evaluated. The Chinese Academy

of Sciences (CAS) Flexible Global Ocean–Atmospheric

Land System Model–Finite-Volume Atmospheric Model

(FAMIL), version 2 (FGOALS-f2), is a coupled global

climate model developed by the State Key Laboratory

of Numerical Modeling for Atmospheric Sciences and

Geophysical Fluid Dynamics, Institute of Atmospheric

Physics, Chinese Academy of Sciences, Beijing, China

(Haarsma et al. 2016). The FGOALS-f2 version used in

FIG. 1. Location of the 552 rain gauge stations over East China

(1058–1408E, 158–558N). The station elevation (m) is denoted by

the color of the dots.
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this study has been applied at the China National Cli-

mate Center for real-time subseasonal to seasonal pre-

diction. The atmospheric component of FGOALS-f2 is

the FAMIL component. Compared with the previous

version of FGOALS-s2 used in CMIP5, the dynamic

core in FGOALS-f2 has changed from spectral on a

longitude–latitude grid to finite volume on a cubed-

sphere grid (Lin and Rood 1996; Lin 2004; Zhou et al.

2015), and the spatial resolution has been increased to

18 3 18 and 0.258 3 0.258. This model was used in theHigh

Resolution Model Intercomparison Project, version 1

(HighResMIP v1.0) for CMIP6 (Haarsma et al. 2016).

Another updated scheme in FGOALS-f2 is a resolving

convective precipitation parameterization (copyright

2017, FAMIL Development Team, 2017SR01701) in

which the convective precipitation and stratiform pre-

cipitation are explicitly calculated instead of conventional

convective parameterization.

d. Methodology

Based on the common available record of the datasets,

we chose the period from 1998 to 2005 for all datasets and

focused on the summer season of JJA. The domain of east

mainland China (1058–1408E, 158–558N) was considered.

Following the definition of different precipitation pat-

terns used by the China Meteorological Administration

and in other studies (e.g., Matsumoto et al. 1999), we

selected 50mmday21 as the threshold for extreme pre-

cipitation. To avoid the effect of resolution on our results,

we interpolated all the datasets onto a 18 3 18 grid in

accordance with the station observation dataset using

the nearest-neighbor interpolation method (Accadia

et al. 2003). All the datasets are daily precipitation.

To describe the distribution of precipitation as a

function of intensity (named as the frequency–intensity

distribution), the frequency of precipitation was plot-

ted against the daily precipitation rate at 1mmday21

intervals, beginning from 0.5mmday21, and the domain

average was calculated (Zhang and Chen 2016). For ex-

ample, the frequency for an intensity of 1mmday21 is the

frequency of precipitation in the range 0.5–1.5mmday21.

Because extreme precipitation rarely occurs over north-

eastern China (e.g., Fig. 3 in Zhao et al. 2013), the do-

main was focused over east mainland China, 358N. The

frequency–intensity distribution, particularly for heavy

rainfall, is a little bit sensitive to the precision of the data,

and therefore we used the same floating type of pre-

cipitation rate to unify the frequency comparison.

To examine the spatial distribution of extreme pre-

cipitation (section 3b), the frequency was taken as the

total days of extreme precipitation during the whole

summer season (JJA). The total amount of extreme

precipitation and the total of all precipitation were cal-

culated, and the contribution of extreme precipitation to

the total was calculated as a percentage. All of these

values were calculated in each grid.

3. Summer extreme precipitation over East China

a. Distribution of precipitation frequency as a
function of intensity

The rainfall frequency–intensity distribution over

East China was compared among different datasets,

with a focus on extreme precipitation. The frequency

of daily precipitation is a function of the intensity of

TABLE 1. Datasets, acronyms, and horizontal resolution of the 13 CMIP5 models and FGOALS-f2 used in this study.

Dataset Institute and country Horizontal resolution

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.81258 3 2.81258
CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 0.758 3 0.758
CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen

deRecherche et FormationAvancée en Calcul Scientifique, France
1.48 3 1.48

FGOALS-g2 LASG, Institute of Atmospheric Physics, CAS and Center for Earth

System Science (CESS), Tsinghua University, China

1.678 3 2.81258

FGOALS-s2 LASG, Institute of Atmospheric Physics, CAS, China 1.678 3 2.81258
GFDL CM3 NOAA Geophysical Fluid Dynamics Laboratory, United States 2.08 3 2.58
HadCM3 Met Office Hadley Centre, United Kingdom 2.468 3 3.758
INM-CM4.0 Institute of Numerical Mathematics, Russia 1.58 3 2.08
IPSL-CM5B-LR L’Institut Pierre-Simon Laplace, France 1.8758 3 3.758
MIROC5 University of Tokyo, National Institute for Environmental Studies

and Japan Agency for Marine-Earth Science and Technology,

Japan

1.48 3 1.48

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M), Germany 1.8758 3 1.8758
MRI-CGCM3 Meteorological Research Institute, Japan 1.1258 3 1.1258
NorESM1-M Norwegian Climate Centre (NorClim), Norway 1.8758 3 2.58
CAS FGOALS-f2 LASG, Institute of Atmospheric Physics, CAS, China 1.08 3 1.08
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precipitation from 0 to 300mmday21, which decreases as

the intensity increases. Different datasets showed differ-

ent frequency–intensity distributions (Fig. 2).

Among ground station datasets (Fig. 2a), the fre-

quency of precipitation between 50 and 100mmday21

ranges from 1021 to 2 3 1022, equivalent to 4–30 times

a year; the frequency of precipitation between 100 and

150mmday21 is between 23 1022 and 1023, equivalent to

nearly 1–5 times a year; and heavy rainfall. 200mmday21

had a frequency of nearly 1023, equivalent to once every

three years. In the TRMM dataset, the frequency of dif-

ferent intensities of rainfall showed a similar distribution

but is generally lower than in the gauge observation. The

frequencies of extreme precipitation are underestimated

by three combined gridded observational rainfall products,

CN05.1, APHRODITE, and PERSIANN-CDR,which did

not capture extreme precipitation . 150mmday21. The

frequency of rainfall events between 50 and 100mmday21

ranges from 1021 to 1022 in CN05.1, almost half the fre-

quency in the gauge observations, and from 1021 to 1023

in the PERSIANN-CDR and APHRODITE datasets,

less than half that of the gauge observations. The fre-

quency of rainfall events between 100 and 150mmday21

ranges from 1022 to 1023 for CN05.1, about 20% of the

frequency in the gauge observations, and is 1023 for the

PERSIANN-CDR and APHRODITE datasets, about

10% of the frequency in the gauge observations.

Four reanalysis datasets (CFSR, MERRA, ERA-

Interim, and JRA-55) showed much lower frequencies

of heavy rainfall events than the gauge observations

(Fig. 2b). In ERA-Interim and CFSR datasets, the

events of about 50mmday21 had a frequency of about

20% (2 3 1022) of that for the gauge observational data-

sets, whereas events of about 100mmday21 had a fre-

quency of about 10% (2 3 1023) of that for the gauge

observational datasets. In MERRA, events of about

50mmday21 had a frequency of about 40% (43 1022)

of that for the gauge observational datasets, whereas

events of about 100mmday21 had a frequency of

about 5% (1023) of that for the gauge observational

FIG. 2. Summer (JJA) rainfall frequency–intensity distribution in the (a) observation, (b) reanalysis, (c) CMIP5, and (d) FGOALS-f2

datasets. The domain is east mainland China (1058–1408E, 158–358N).
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datasets. JRA-55 had a frequency of about 10% (1022) of

that for the gauge observational datasets over 50mmday21

and cannot capture extreme precipitation. 80mmday21.

MERRA, CFSR, and ERA-Interim datasets cannot cap-

ture extreme precipitation . 120mmday21.

Among CMIP5 outputs (Fig. 2c), all 13 models under-

estimated the frequencyof extremeprecipitation compared

with the gauge observational datasets. The multimodel

ensemble (MME) results showed that the frequency of

rainfall . 50mmday21 in the models is much lower than

theobserved frequency,with a frequency from1022 to 1023

for events of 50–100mmday21 (1%–50%of the observed

frequency) and 1023 for events of 100–150mmday21

(6%–60% of the observed frequency). Of the 13 models,

FIG. 3. JJA frequency of extreme precipitation in (a) observation, (b) combined gridded observation datasets, and (c) reanalysis da-

tasets. The red boxes represent the two centers of maximum frequency of extreme precipitation: the LYRB center (26.58–328N, 112.58–
1208E) and the DSC center (218–268N, 116.48–1158E). The numbers at the bottom right denote the domain-averaged frequency over the

LYRB and DSC, respectively.
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5 cannot capture rainfall events . 100mmday21, 9 of

the 13 models cannot capture rainfall. 150mmday21,

and none of the models capture rainfall events .
200mmday21. CMCC-CM showed the best perfor-

mance for extreme precipitation over East China. These

biases are significantly improved in FGOALS-f2 (Fig. 2d).

The frequency–intensity distribution in FGOALS-f2

is similar to that for the gauge observational datasets,

and FGOALS-f2 captured extreme precipitation .
200mmday21.

b. Spatial distribution of extreme precipitation
frequency

The spatial distribution of extreme precipitation over the

whole summer season in east mainland China was exam-

ined. The gauge observational dataset and TRMM show

Units: %

FIG. 5. Percentage of extreme precipitation relative to the total precipitation in the (a) observation, (b) combined gridded observation

datasets, and (c) reanalysis datasets. The red boxes represent the two centers of maximum frequency of extreme precipitation: the LYRB

center (26.58–328N, 112.58–1208E) and the DSC center (218–268N, 116.48–1158E). The numbers at the bottom right denote the domain-

averaged percentage over the LYRB and DSC, respectively.
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two obvious centers of extreme precipitation over the

lower-middle reach of Yangtze River basin (LYRB) and

the deep South China region (DSC; Fig. 3a). Three com-

bined gridded observational rainfall datasets reproduce

these two centers (Fig. 3b), but the frequency of extreme

precipitation over these two core regions is much lower

than in the ground observation dataset. Among three

combined gridded observational datasets, CN05.1 is the

closest to the ground observation, accounting for two-

thirds of the gauge observation of extreme precipitation

over the LYRB and one-third over DSC. By contrast,

APHRODITE accounts for only one-third of the gauge

observations of extreme precipitation over the LYRB

and one-fifth of the events over DSC; the PERSIANN-

CDR dataset accounts for nearly two-fifths of the ob-

served extreme precipitation over both regions.

In the reanalysis datasets (Fig. 3c), only the JRA-55

dataset reproduces the two centers of extreme pre-

cipitation, and the frequency of events over the two

regions is smaller than in the observational datasets,

reaching one-fourth of the gauge observation of ex-

treme precipitation over the LYRB and two-fifths over

DSC. The ERA-Interim dataset only reproduces the

LYRB center of maximum frequency, with half the

frequency of the observational datasets. The two major

regions of extreme precipitation are almost absent in

the MERRA and CFSR products.

Almost all the CMIP5 models are unable to realisti-

cally capture the two centers of extreme precipitation

(Fig. 4), although a few models capture one center of

maximum frequency of extreme precipitation. CMCC-CM,

MRI-CGCM3, andGFDLCM3only reproduce theLYRB

FIG. 7. Days of extreme precipitation over eastern China in the mei-yu season (from early June to mid-July). The red boxes represent

the two centers of maximum frequency of extreme precipitation: the LYRB center (26.58–328N, 112.58–1208E) and the DSC center (218–
268N, 116.48–1158E).
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region, whereasMIROC5 andNorESM1-M only simulate

the DSC center. Almost all the CMIP5 models underes-

timate extreme precipitation over the LYRB and DSC,

except MIROC5 overestimates the DSC center. The spa-

tial distribution of extreme precipitation in FGOALS-f2

(Fig. 4) is not yet consistent with observations. The center

of maximum frequency is located over coastal southeast-

ern China, but the maximum center over the LYRB is

almost absent in the FGOALS-f2 100-km version.

c. Spatial distribution of the percent extreme
precipitation amount

The amount of extreme precipitation as a percentage

of the total rainfall in JJAwas also calculated (Figs. 5, 6 ).

In terms of the two maximum-frequency centers defined

in Figs. 3 and 4, the percentage of extreme precipitation

in gauge and TRMM datasets reach almost 40% of total

amount of precipitation. However, the contribution of

extreme precipitation to the total amount of precipitation

is underestimated in all the other datasets. The percentage

of extreme precipitation is ,15% in three combined

gridded observational rainfall products, except for CN05.1

with 25% of the total over the LYRB. In LYRB regions,

the percentage of extreme precipitation is only 3%–15%

in the reanalysis datasets, ,35% of that in the observa-

tional datasets. InDSC regions, the percentage of extreme

precipitation ranges from 3% to 12% in the reanalysis

datasets, ,30% of that in the observational datasets.

All the CMIP5 models underestimate the contribution

of extreme precipitation to the total amount of rainfall

(Fig. 6), although the simulation of the centers of maxi-

mum rainfall is consistent with the frequency in each

model (Fig. 4). The percentages are,10% in most of the

CMIP5 models. Although MIROC5 overestimates the

FIG. 8. As in Fig. 7, but for the late-summer typhoon season (from mid-July to late August).
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center of extreme precipitation in DSC for frequency of

events (Fig. 4), the amount of extreme precipitation over

DSC is 24%of the total rainfall, only about 60%of that in

the observational datasets. The higher frequency and the

lower percentage of extreme precipitation in MIROC5

should be related with the lower rainfall intensity for each

extreme rainfall event of the simulation (Fig. 2). CMCC-

CM, which has the best performance in the frequency–

intensity distribution (Fig. 2), also reproduces the LYRB

center of maximum percentage of extreme precipitation.

The amount of extremeprecipitation over theLYRB in this

model is 22% of the total amount of rainfall and accounted

for half that in the observational datasets. By contrast, the

percentage of extreme precipitation has been generally

improved in FGOALS-f2, which can reach up to 30%–

35%, close to the observational datasets. However, the

center of maximum rainfall in the FGOALS-f2 dataset is

only seen over coastal southern China and is absent over

the LYRB.

4. Discussion

The causes for differences in the extreme precipi-

tation between different observation datasets (CN05.1,

PERSIANN-CDR, and APHRODITE) may be re-

lated with their different data sources and production

algorithm (Pendergrass and Hartmann 2014; Herold

et al. 2016, 2017). For example, gridded rain gauges

are actually derived from (single point) station ob-

servations, and satellite products over land include

both satellite retrievals and gauge information. Com-

bined gridded observation outputs derive from differ-

ent data sources and algorithms, which is illustrated in

section 2.

Compared with station datasets, the reasons for the

differences in the extreme precipitation between the

reanalysis and models are mostly dependent on models.

We will focus on the following discussion with reference

to the seasonal/subseasonal mean observations, the reso-

lution of the models, and the differences in the simulation

of moisture and heat.

a. Relationship between reanalysis and models’
spatial distribution of extreme precipitation and
their summer subseasonal progressions

Previous studies have shown that the rain belt over

East China shows a significant subseasonal progression

in the boreal summer season (e.g., Tao and Chen 1987;

Ding 1994). It was therefore speculated that whether

the models can represent the two centers of the maxi-

mum extreme precipitation (LYRB and DSC) may

be associated with the subseasonal progression of rain-

fall in the different datasets. The summer season was

therefore divided into two separate periods: the mei-yu

season from early June to mid-July (Fig. 7) and the

typhoon season from mid-July to late August (Fig. 8).

The results show that the datasets that capture the

LYRB center of maximum rainfall are better able

to simulate the rainfall in the mei-yu season, whereas

the datasets that capture the DSC center of maximum

rainfall exhibited more realistic results in the late-

summer typhoon season. For example, CMCC-CM

can simulate extreme precipitation in the mei-yu season

but is unable to capture extreme precipitation in the

summer typhoon season, corresponding to its single

center of extreme precipitation over the LYRB (Fig. 4).

MIROC5 is able to simulate extreme precipitation over

DSC in the summer typhoon season but fails to reproduce

FIG. 9. Distribution of the summer (JJA) rainfall frequency–intensity in the high- and low-

resolution CMIP5 models. The domain is eastern China in the region 1058–1408E, 158–358N.
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the center of maximum rainfall over the LYRB in the

mei-yu season, corresponding to its single center of ex-

treme precipitation over the DSC (Fig. 4). FGOALS-f2

is unable to capture the mei-yu rainfall season over

the LYRB and therefore fails to reproduce the maxi-

mum in extreme precipitation over theLYRB.However,

FGOALS-f2 is able to reproduce extreme precipita-

tion over coastal southern China in the typhoon sea-

son, which may be attributed to the realistic simulation

of tropical cyclones over the western Pacific (Li and

Bao 2018, manuscript submitted to J. Adv. Model.

Earth Syst.).

b. Relationship between models’ representation of
extreme precipitation and their horizontal resolution

Although all the model outputs were regridded to the

same horizontal resolution, their original resolutions

were different. To examine whether the simulation of

extreme precipitation is dependent on the original

spatial horizontal resolution, the CMIP5 models were

FIG. 10. Spatial distribution of the (a) frequency of extreme precipitation and (b) percentage of station observations with extreme pre-

cipitation in the high- and low-resolution CMIP5 models.
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categorized into two types: models with a horizontal

resolution less than 1.58 3 1.58 (CMCC-CM,MRI-CGCM3,

CNRM-CM5, and MIROC5) were defined as high-

resolution models (HRMs), and those with a horizontal

resolutiongreater than28 3 28 (GFDLCM3, IPSL-CM5B-LR,

CanESM2, and HadCM3) were defined as low-resolution

models (LRMs).

In terms of the frequency–intensity distribution, the

HRMsperformbetter than theLRMs (Fig. 9). TheHRMs

do not capture rainfall intensities . 200mmday21,

whereas the LRMs do not capture rainfall intensities .
150mmday21. For the intensities between 50 and

100mmday21, the frequency captured by the HRMs is

nearly 3 3 1022, about 50% of the observed frequency,

whereas that of the LRMs is nearly 63 1023, about 10%

of the observed frequency. Figure 10 shows the spatial

distribution of the results. TheHRMs perform better for

both the percentage and frequency of extreme pre-

cipitation over east mainland China.

c. Relationship between models’ representation of
extreme precipitation and their vertical profiles
of moisture and heating rate

Previous studies have shown that the simulation of con-

vective rainfall is associated with the vertical profiles of the

moisture content of the atmosphere (Holloway and Neelin

FIG. 11. Composite vertical profiles of relative humidity based on precipitation intensity in the (a) CN05.1/ERA-

Interim, (b) FGOALS-f2, (c) NorESM1-M, and (d) MIROC5 models over the DSC center of maximum rainfall

(26.58–328N, 112.58–1208E).
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2009; Kim et al. 2014) and the heating rate (Li et al. 2009;

Ling and Zhang 2013). The association of the vertical

distribution of moisture and heating rate with the sim-

ulation of extreme precipitation was therefore investi-

gated. In the period of JJA in 1998–2005, 736 days

of daily precipitation and daily relative humidity were

composed. The two CMIP5 models with the worst

(NorESM1-M) and best (MIROC5) performance for

extreme precipitation over DSC were selected, and

FGOALS-f2 was also analyzed (Fig. 11). The com-

posite of the CN05.1 precipitation with the ERA-

Interim relative humidity (CN05.1/ERA-Interim) was

taken as the observation. Extreme precipitation, which

is associated with strong, deep convection, only occurs

when a deep layer of the air column is almost saturated

and the lower troposphere above the boundary layer ex-

periences sufficient moistening (Kim et al. 2014). Both

MIROC5 and NorESM1-M showed insufficient mois-

ture in the lower troposphere (between 850 and 600hPa),

but excessivemoisture in the upper troposphere (between

400 and 200hPa). Compared with NorESM1-M, the

MIROC5 output is drier in the upper troposphere and

wetter in the lower troposphere in accordancewith amore

realistic simulation of extreme precipitation. FGOALS-f2

shows a more realistic distribution of moisture than the

other models, with drier upper troposphere and wetter

lower troposphere. Therefore, FGOALS-f2 can capture

more extreme precipitation than the other CMIP5 models.

This comparison indicates that the simulation of extreme

precipitation is closely related to the realistic simulation

of the moisture profile in the troposphere.

Heating in the lower troposphere causes the upward

movement and convergence of water vapor, which is

conducive to the generation and maintenance of deep

convection (Li et al. 2009). The heating profile of JRA-

55 and FGOALS-f2 over DSC were compared (Fig. 12).

The observational profile shows positive vertical heating

throughout the whole troposphere with a single peak at

about 500 hPa (Lin et al. 2004). By contrast, the JRA-55

model shows maximum warming extending through-

out the troposphere from 850 to 300hPa, rather than a

single peak at lower levels. FGOALS-f2 gave a more

realistic performance with a single heating maximum

in the lower troposphere (about 550hPa), indicating

that FGOALS-f2 may better facilitate the generation of

deep convection (Lin et al. 2004; Li et al. 2009; Ling and

Zhang 2013).

5. Conclusions

Realistic reproduction of historical extreme precipita-

tion is a challenging but important issue in both reanalysis

datasets and GCMs, especially over east mainland China.

This study evaluated the current performance of com-

bined gridded observational datasets, reanalysis datasets,

and GCMs (CMIP5 and FGOALS-f2) for extreme pre-

cipitation over east mainland China. Gauge observation

was used as the observational data. Compared with the

observations, all the combined gridded datasets (CN05.1,

APHRODITE, and PERSIANN-CDR), all the reanalysis

datasets (ERA-Interim, JRA-55, MERRA, and CFSR),

and most of the CMIP5 models are unable to capture

extreme precipitation. 150mmday21 based on the anal-

ysis of the intensity–frequency distribution. All the data-

sets underestimate the frequency of heavy rainfall over

east mainland China. The newly released FGOALS-f2

FIG. 12. Vertical profile of heating rate in the JRA-55 and FGOALS-f2 over the DSC center of maximum rainfall

(26.58–328N, 112.58–1208E).
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significantly improves the intensity–frequency distribu-

tion of precipitation, giving similar results to the obser-

vational data, and is able to capture extremeprecipitation.
200mmday21. With respect to the spatial distribution of

rainfall, two centers of maximum extreme precipitation

were identified in the observations over the LYRB and

DSC. The combined gridded observations and the JRA-55

capture these two centers, but the ERA-Interim,MERRA,

and CFSR datasets and almost all the CMIP5 models are

unable to capture the two centers simultaneously. The

ERA-Interim dataset and a few of the CMIP5 models

capture a single center ofmaximumrainfall. Thepercentage

of the total rainfall occurring in extreme precipitation is

generally underestimated by 25%–75% in all the datasets

except for FGOALS-f2 (Table 2).

Two regions of maximum extreme precipitation are

closely related to rainfall in the mei-yu and typhoon

seasons, respectively. Although the simulation of ex-

treme precipitation is largely influenced by the horizon-

tal resolution of the models, physical parameterization

may have a more important role, particularly for heavy

rainfall . 150mmday21. A better performance in

simulating extreme precipitation also depends on the

realistic simulation of the vertical moisture profile and

vertical distribution of the heating rate. FGOALS-f2

shows a better performance for modeling extreme

precipitation because of its higher resolution and more

realistic physics.

This work provides a fundamental evaluation of ex-

treme precipitation in current compiled datasets and

reanalysis datasets over east mainland China and also

provides a reference for the selection of models in future

reliable projections of extreme precipitation over east

mainland China. Although this study indicates ways to

improve models’ performance in representing extreme

rainfall, the factors affecting the simulation of extreme

precipitation still requires further investigation using

numerical modeling experiments.
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