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Pacific subtropical high and East Asian low in July–August. 
Tracking back the origins of these boundary anomalies, one 
or two physically meaningful predictors are detected for each 
regional EPDs index. The causative relationships between 
the predictors and the corresponding EPDs over each region 
are discussed using lead-lag correlation analyses. Using 
these selected predictors, a set of Physics-based Empirical 
models is derived. The 13-year (2001–2013) independent 
forecast shows significant temporal correlation skills of 0.60 
and 0.74 for the EPDs index of SC and NC, respectively, 
providing an estimation of the predictability for summer 
EPDs over eastern China.

Keywords  Extreme precipitation · Eastern China · 
Physics-based empirical model · Seasonal predictability · 
Seasonal prediction · East Asian summer monsoon

1  Introduction

Extreme precipitation events have severe impacts on society, 
economy and environment (Easterling et al. 2000; Meehl 
et al. 2000; Lesk et al. 2016), while climate change has the 
potential to increase the frequency and intensity of extreme 
precipitation (Meehl et al. 2007; Donat et al. 2016). As one 
of the most populous countries in the world, China is vul-
nerable to natural catastrophes such as flood triggered by 
extreme precipitation. In the twentieth century, 18 of the 
world’s 100 most expensive natural disasters occurred in 
China, and 12 of them were due to extreme flood (http://
www.disastercenter.com/disaster/TOP100C.html). Influ-
enced by the Asian monsoon system, eastern China has large 
precipitation variability, leading to higher frequency of flood 
or drought. During 21–22 July of 2012, Beijing experienced 
severe extreme rainfall, which influenced 1.9 million people 
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and caused more than $1.6 billion economic loss (Zhou et al. 
2013). Skillful prediction of extreme precipitation events 
would be immensely beneficial to disaster mitigation and 
adaptation planning. Thus, accurate prediction of extreme 
precipitation over eastern China has become an increasing 
societal and scientific demand nationwide.

Previous studies have discussed the changes in extreme 
precipitation events over China in the recent decade (Zhang 
et al. 2008; Choi et al. 2009; Tu et al. 2010; You et al. 2010; 
Li et al. 2012, 2017a; Wang and Yang 2017). It was found 
that the extreme precipitation exhibited a significant increas-
ing trend over the Yangtze River, southwest and south China 
during 1951–2000 (Zhai et al. 2005). Significant increases in 
heavy precipitation were found at both rural and urban sta-
tions in eastern China during 1955–2011 (Liu et al. 2015). 
The physical causes linked to extreme precipitation over 
China were also explored. Weng et al. (2004) showed that 
the western Pacific subtropical high and the mid-latitude 
wave systems had great effects on the summer extreme wet 
events over China. Orsolini et al. (2015) revealed that the 
Silk-Road and polar wave trains played a key role in modu-
lating extreme precipitation over north and northeast China. 
Simulations from a regional climate model indicated that 
the increasing number of heavy rain days over some parts 
of China was attributable to greenhouse effect (Gao et al. 
2002). Global warming rather than aerosol effects was sug-
gested as a cause of the changes in heavy rainfall in eastern 
China (Liu et al. 2015).

Although physical causes of extreme precipitation have 
been explored, its prediction is rarely documented. While 
prediction of seasonal mean rainfall in dynamical models 
has little skill over subtropical land (Wang et al. 2009a), it 
is perhaps more difficult to forecast the extreme precipita-
tion due to its infrequent and irregular occurrence. There-
fore, prediction of extreme precipitation over eastern China 
remains a big challenge. To what extent are the summer 
extreme precipitation days (EPDs) over eastern China pre-
dictable? To answer this question, understanding the origins 
of the predictability of summer EPDs is the first step. Tak-
ing physical mechanisms into account, the physics-based 
empirical (P–E) model can be built to estimate the predict-
ability. The P–E model approach might be effective since 
it has been successfully applied to seasonal predictability 
studies of a variety of meteorological phenomena (Yim et al. 
2014; Wang et al. 2015a, b; Grunseich and Wang 2016; Li 
and Wang 2016; Xing et al. 2016; Li et al. 2017b; Zhu and 
Li 2017).

Aiming to explore the predictability of EPDs over east-
ern China, this paper is organized as follows. Section 2 
introduces data and methodology. In Sect. 3, definition of 
EPDs and regional EPDs indices are presented. Simultane-
ous lower boundary anomalies associated with the regional 
EPDs indices over eastern China are explored in Sect. 4. 

Section 5 investigates the lead-lag relationship between 
physical predictors and predictands. Predictability of sum-
mer EPDs over eastern China is assessed in Sect. 6. Major 
findings are summarized in Sect. 7.

2 � Data and methods

2.1 � Data

Daily precipitation records of 746 stations over China for 
the period of 1979–2013 were utilized. This dataset was 
obtained from the National Meteorological Information 
Center of China Meteorological Administration. A homog-
enized daily mean temperature dataset (Li et  al. 2016) 
derived from 753 stations in China during 1979–2013 was 
also employed. Stations with more than 10% records missing 
in any given year were excluded.

Monthly mean sea surface temperature (SST) data were 
derived from an arithmetic mean of two datasets: the Had-
ley Centre Sea Ice and Sea Surface Temperature (Had-
ISST) (Rayner et al. 2003) and the National Oceanic and 
Atmospheric Administration Extended Reconstructed SST 
(ERSST) version 4 (Huang et al. 2015). The monthly sea 
level pressure (SLP), 2-meter temperature, 200 hPa geo-
potential height and 850 hPa winds were obtained from 
the ERA-Interim Reanalysis (Dee et al. 2011). The global 
monthly mean precipitation data from Global Precipitation 
Climatology Project (GPCP, v2.3) datasets (Adler et al. 
2003) were employed to analyze the global precipitation. 
All the datasets cover the period of 1979–2013.

2.2 � Methodology for physics‑based empirical model 
and validation

Different from traditional statistical models, only physi-
cally meaningful predictors are selected, which is the pri-
mary principle of establishing P–E model (Wang et  al. 
2015b). Emphasis is placed on the physical interpretation 
of selected predictors. Statistically, the first step is to use 
lead-lag correlation maps between the predictand and only 
lower boundary anomalies (such as SST, 2-m temperature 
and SLP) before the target month to detect only two types of 
predictive signals: (a) the persistent signals that often signify 
the slow variation of the lower boundary anomalies which 
will “persist” into the next season, and (b) the tendency sig-
nals that reflect the direction of subsequent evolution. Here, 
the persistent signals are derived from two months mean 
before the target season, such as March–April mean when 
forecast season is May–June. Tendency signals are obtained 
from winter (Dec.–Jan.) to the two months before target sea-
son, such as Dec.–Jan. to May–June when forecast season 
is July–August.
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Because we focus on large-scale signals, in the second 
step, the predictors are defined in a large area but the lead-
lag correlation is taken into account only over those grid 
points where the correlation coefficient is significant at 
the 0.95 confidence level (Lee et al. 2013). Thus, here the 
predictors are defined by:

where TF denotes the value of a predictor (SST, 2-m tem-
perature or SLP) at lead time t and at each grid, TCC is 
the temporal correlation coefficient between the predictand 
and TF values at each gird during 1979–2000, and square 
brackets denote the areal mean over the selected regions. For 
instance, the March–April mean SLP with absolute value 
of TCC larger than 0.42 (95% confidence level), weighted 
by TCC and averaged over the selected region (the box in 
Fig. 7a), is defined as predictor SC-a.

After above-mentioned two steps, several physical 
meaningful predictors are considered as candidates. Then, 
stepwise regression is used to build the P–E model. The 
fundamental rule of the stepwise regression procedure is 
to select most significant variables and remove the one sig-
nificant related to the most significant variables. In other 
words, if two selected variables are highly correlated with 
each other, the procedure will remove the less significant 
one. Therefore, stepwise regression can identify important 
predictors and ascertain the mutual independency of pre-
dictors. A 99% confidence level for Fisher’s F test is used 
as the criterion to select predictors.

To verify the prediction skill, two validation methods 
(Wang et al. 2015b; Li and Wang 2016) are applied. (1) 
Leave-three-out cross-validated reforecast (Geisser 1975; 
Blockeel and Struyf 2003). To alleviate the over-fitting 
problem, 3 years centered on a target year are withheld 
from the training sample, and the regression model is built 
to forecast the target year. Then, the process is repeated 
for all the other years to get the cross-validated refore-
cast for 1979–2000. (2) Independent forecast. The step-
wise regression model is built with the training data for 
1979–2000, and independent forecast is then made for the 
rest 13-year during 2001–2013. All predictors are selected 
from the period of 1979–2000 to avoid the artificial bias 
caused by the period overlapping in predictor selection 
and verification.

In addition to TCC, the Mean Square Skill Score 
(MSSS) is used to measure the deterministic seasonal fore-
cast skill (Murphy 1988; WMO 2002). The MSSS indi-
cates the percentage reduction in mean square error of the 
model forecast compared to the climatology “forecast”. 
Positive (negative) skill means that the model forecast is 
better (worse) than the climatology “forecast”.

Pred(t) = [TF(t, lat, lon) × TCC(lat, lon)], if |TCC(lat, lon)|

> 0.42 (95% confidence level),

3 � Definition of EPDs and regional EPDs indices

Considering regional differences, percentile-based extreme 
precipitation index is defined, which is similar to previous 
studies (Alexander et al. 2006; Moberg et al. 2006). For a 
given station, an extreme precipitation event is defined if the 
daily precipitation is beyond the 90th percentile threshold of 
all rainy records (daily rainfall >0.1 mm) for the whole 35 
years (1979–2013). Each station defines its own threshold 
in the same manner.

Figure  1a displays the 90th percentile threshold of 
daily precipitation across China. The thresholds gradually 
increase from northwest to southeast of China, ranging 
from 4 to 40 mm. It is similar to the spatial distribution of 
May–August (MJJA) mean precipitation (figure not shown) 
since the 90th percentile threshold of daily precipitation is 
mainly determined by summer precipitation. The number of 
days when the daily precipitation exceeds the corresponding 
threshold is regarded as EPDs. Note that the variability of 
EPDs defined here is robust and not sensitive to the chosen 
thresholds.

How much is the difference between the mean value and 
the 90th percentile of daily precipitation? The annual mean 
precipitation shows a larger amount in southern China and 
gradually decreases toward northern China (Fig. 1b). The 
ratio of 90th percentile threshold to annual mean precipita-
tion is presented in Fig. 1c. The ratio is higher in northern 
China, especially in northwestern China, while the ratio is 
lower in southern China. This is due to the fact that in dry 
regions, the variability of daily precipitation is much larger 
than that in wet regions. Note that, over the lower reaches 
of Yellow River, the annual mean precipitation has little dif-
ference between the east and west, but the threshold value 
is higher in the east than in the west, indicating that the 
variability of daily precipitation is stronger in the east than 
in the west.

Since the occurrence of strong precipitation events is 
mainly confined to eastern China, the present study only 
focuses on the EPDs over eastern China. May through 
August is the primary rainy season over East Asia (Wang 
and LinHo 2002; Wang et al. 2009b). What is the extreme 
rainfall season over eastern China? Figure 2a shows the sea-
sonal march of climatological monthly mean EPDs from 
April to September. Evidently, large values of climatological 
EPDs mainly appear from May to August, and from south 
to north progressively. Similar northward progression can 
be found in the seasonal evolution of heavy rainfall (daily 
rainfall >50 mm) days, but the heavy rainfall is mainly seen 
in the south of Yellow River (Fig. 2b). Thus, the months 
of MJJA can be considered as the extreme rainfall season 
over eastern China. Note that the maximum center of EPDs 
mainly occurs in South China (SC, south of 30°N) during 
May–June (MJ), while large value of EPDs concentrates in 
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northern China (NC, north of 30°N) during July–August 
(JA). Based on this feature of the seasonal march of EPDs, 
all stations over eastern China are divided into two domains: 
SC and NC.

Figure 3 shows the climatological annual cycle of EPDs 
(red bar) averaged over SC and NC. The EPDs averaged over 

SC have a peak in MJ, while EPDs over NC have a peak 
in JA. The corresponding annual variations of the monthly 
mean precipitation (blue bar in Fig. 3) show the same fea-
ture. Therefore, MJ and JA could be considered as the local 
summer rainfall season for SC and NC, respectively. Then 
two areal-mean EPDs indices, namely EPDs-SC and EPDs-
NC, are defined at each domain during their local summer 
rainfall season, so as to facilitate the understanding and pre-
diction of the variability of EPDs over eastern China.

The time series of EPDs-SC and EPDs-NC are displayed 
in Fig. 4. It is noted that the EPDs-SC (EPDs-NC) and the 
corresponding seasonal mean precipitation averaged over 
SC (NC) exhibit extremely coherent year-to-year varia-
tion. Their TCC for SC (NC) is 0.98 (0.96), indicating that 
the seasonal EPDs and seasonal mean rainfall over eastern 
China may share very similar sources of predictability. 
Interestingly, corresponding to a weak upward trend (0.02 
days/year) of the EPDs-SC during 1979–2013, the seasonal 
mean temperature averaged over SC also shows a significant 
upward linear trend of 0.031 °C/year at the 99% confidence 
level. In contrast, during the same period, the EPDs-NC has 
almost no trend (0.004 days/year) despite the significant (at 
99% confidence level) upward trend of 0.032 °C/year in sea-
sonal mean temperature averaged over NC. This may suggest 
a region-independent extreme precipitation changes in the 
context of global warming.

4 � Physical interpretation of regional EPDs indices

What physical processes govern the variability of EPDs over 
SC and NC? To address this question, we first examine the 
large-scale lower boundary anomalies concurring with the 
EPDs-SC and EPDs-NC.

Associated with increased EPDs-SC is the enhanced MJ 
rainfall anomaly over South China (Fig. 5a). To its south is 
a vast zone of suppressed rainfall band stretching from the 
western to eastern North Pacific (Fig. 5a). A pronounced 
anticyclone anomaly appears over the Philippine Sea 
(Fig. 5b), resulting in enhanced moist southwesterlies along 
the northwest flank of the anticyclone and increased EPDs 
over South China. Note that the anomalous anticyclone 
around the Philippine Sea coexists with warmer (colder) 
SST to the west (east) of its center (Fig. 5c). Besides, it is 
seen that strong positive SST anomalies over the eastern 
equatorial Pacific and tropical Indian Ocean are associated 
with increased EPDs-SC (Fig. 5c).

The evolution of the equatorial Indo-Pacific SST anoma-
lies that associated with the EPDs-SC (Fig. 6a) suggests 
that EPDs-SC is increased during the rapid decaying phase 
of central-eastern Pacific El Nino. The way whereby El 
Nino has prolonged influence on Asian summer monsoon 

(a)

(b)

(c)

Fig. 1   a Threshold values (mm/day) defined for extreme precipita-
tion over China. At each station, the 90th percentile of daily precipita-
tion within all rainy days during 1979–2013 is defined as the thresh-
old. b The climatological annual mean precipitation (mm/day) during 
1979–2013. c The ratio of threshold to climatological annual mean 
precipitation
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Fig. 2   The climatological 
monthly mean a EPDs in April, 
May, June, July, August, and 
September over eastern China. 
b The same as a except for 
heavy rainfall (daily rain-
fall >50 mm) days

(a)

(b)
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is through a persistent western North Pacific (WNP) anticy-
clonic anomaly (Wang et al. 2000, 2003). The anticyclone 
around WNP attains the maximum intensity after El Nino 

matures, and persists to the subsequent summer through a 
positive air–sea feedback between the WNP anticyclone 
and the SST dipole with cold water to the east and warm 
water to the west of the anticyclone center (Wang et al. 
2000, 2003). An alternative explanation is that the Indian 
Ocean warming may induce a Kelvin wave easterly that 
generates anticyclonic vorticity over the Philippine Sea 
(Xie et al. 2009; Wu et al. 2010). However, Fig. 5b shows 
that the Indian Ocean warming does not generate signifi-
cant Kelvin wave easterly anomaly because the warming 
does not cause sufficiently strong precipitation anomaly. 
It is the precipitation anomaly that can excite atmospheric 
Kelvin waves, not the warm SST itself.

During JA, associated with the increased EPDs-NC is 
the enhanced precipitation centered on northern China 
(Fig. 5d). An anticyclonic anomaly is found to the south of 
Japan (Fig. 5e) where the climatological ridge of the western 
North Pacific subtropical high (WNPSH) locates, implying 
that an enhanced WNPSH is linked to the increased EPDs 
over northern China. The associated strong southwesterly 
anomalies along the west flank of the anticyclonic anomaly 
(Fig. 5e) transport moisture farther to the north, favoring the 
convergence over northern China. Meanwhile, an anomalous 
cyclonic circulation over northern China (Fig. 5e) can also 
strengthen the local convergence, leading to an increase of 
EPDs over northern China. Thus, the enhanced zonal SLP 
contrast between the WNPSH and East Asian continent 
low plays a prominent role in affecting EPDs over northern 
China. Moreover, weak SST cooling can be seen in the east-
ern equatorial Pacific (Fig. 5f). To scrutinize the equatorial 
SST variation associated with EPDs-NC, we may examine 
Fig. 6b. The results in Fig. 6b indicate that EPDs-NC tend 
to increase when the eastern Pacific changes from a moder-
ate warming in the previous winter to a weak cooling in the 
concurrent summer. Because of the weak cooling, change 
in the Pacific Walker cell is not evident (Fig. 5e). Although 
the cooling is weak, it still suppresses precipitation along 
the intertropical convergence zone and the monsoon trough 
in the southeast of the Philippines (Fig. 5d). The latter 
can directly strengthen the WNPSH through excitation of 
descending Rossby waves.

Note that the seasonal evolution of the WNPSH is the 
main factor modulating EPDs over eastern China. From 
MJ to JA, rainfall belt propagates northward from south-
ern to northern China, which corresponds to the seasonal 
march of low level (850 hPa) anomalous WNP anticyclone 
from the Philippine Sea to the south of Japan. ENSO in 
the preceding winter and the local air–sea interaction 
over Indo-Pacific warm pool play key roles in affecting 
the EPDs over eastern China via modifying the location 
and strength of the WNPSH.

(a)

(b)

Fig. 3   Climatological annual cycle of monthly mean precipitation 
(blue bar, left axis) and monthly EPDs (red bar, right axis) averaged 
over a South China and b northern China

(a)

(b)

Fig. 4   Time series of EPDs, mean precipitation (MP) and mean tem-
perature (MT) averaged over a SC in May–June. b The same as a 
except for NC in July–August. All time series are normalized by their 
own standard deviations. Black (red) dashed lines indicate the linear 
trend of EPDs (MT)
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5 � Physical predictors for each regional EPDs 
index

The simultaneous large-scale anomalies associated with 
each regional EPDs index provide dynamical insights 
for selecting physically meaningful predictors. For each 

EPDs index, one or two predictors (black box in Fig. 7) 
are selected for construction of P-E prediction model. 
These predictors are highly correlated (99% confidence 
level) with predictand and independent with each other 
(Table 1). Other physical predictors are excluded because 
of their dependencies on the selected predictors.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5   Simultaneous correlation fields between EPDs-SC and a pre-
cipitation (shading), b SLP (shading), 850 hPa wind (vectors), c SST 
(shading) in May–June (MJ) during 1979–2000. d–f The same as 

a–c, respectively, but for EPDs-NC in July–August (JA). Dotted areas 
denote regions with correlation coefficients significant at 95% confi-
dence level
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For EPDs-SC, one predictor SC-a is selected, which fea-
tures high SLP anomalies over the WNP during March–April 
(Fig. 7a). The high SLP anomalies maintain and enhance 
the WNPSH in the ensuing MJ (Fig. 8a) through the local 
air–sea interaction between the WNPSH and the cold (warm) 
SST to its east (west) (Fig. 8b). The associated southwester-
lies along the northwest flank of the WNPSH transport warm 
moisture into South China, leading to intensified precipita-
tion over SC (Fig. 8a, c).

Two tendency predictors are selected for EPDs-NC. The 
first predictor, NC-a, is a long-term dipole SST tendency 
with cooling in the tropical central-eastern Pacific and 
warming in the tropical western Pacific from Dec.–Jan. to 
May–June (Fig. 7b), which is corresponding to the develop-
ing phase of La Nina (Fig. 6b). This east–west dipole SST 
tendency can strengthen the equatorial easterlies through 
zonal thermal gradients, thus leading to a central-eastern 
Pacific cooling in the following JA (Fig. 9a). The central-
eastern Pacific cooling generates westward propagating 
descending Rossby waves through suppressed convection 
over WNP. The Rossby wave response enhances the WNPSH 
and thus transports moisture farther to the north, increasing 
EPDs-NC (Fig. 9b-c). The second predictor NC-b denotes a 
2-m warming tendency over central Eurasia from Dec.–Jan. 
to May–June (Fig. 7c). This warming tendency persists to 
the following JA and foreshadows a high anomaly in situ 
at 200 hPa (Fig. 10a), which leads to a downstream low 
SLP anomaly disturbance centered over central China in JA 
(Fig. 10b). This low SLP anomaly favors local convergence 
and moisture transporting, thus increasing precipitation over 
NC (Fig. 10b, c).

6 � Predictability of EPDs over Eastern China

Based on the abovementioned physical predictors, a suite 
of stepwise regression prediction equations is established 
for each EPDs index. As shown in Fig. 11, the cross-val-
idated reforecast and independent forecast EPDs indices 
made by the P–E models are capable of capturing the 
interannual variation of observed EPDs indices, suggest-
ing that the P–E models have a good capacity to predict the 
EPDs over eastern China. For EPDs-SC, the TCC (MSSS) 
skill of cross-validated reforecast during 1979–2000 is 
0.62 (0.37). When the P–E model is built using 1979–2000 
data, the independent forecast has significant TCC skill 
(95% confidence level) of 0.60 for the recent 13 years 
(2001–2013). The forecast skills for EPDs-NC are higher. 
TCC skills from both cross-validated reforecast (0.83) and 
independent forecast (0.74) are significant at 99% confi-
dence level. Note that the two predictors for EPDs-NC 
are independent (Table 1), therefore, they are highly com-
plementary, which raises the hindcast skill (Wang et al. 
2015b). The superior skills contributed by P–E models 
provide a benchmark for the lower bound of predictability 
of EPDs over eastern China for current forecast year.

7 � Summary and discussion

The present study investigates the predictability sources and 
assesses the predictability of summer EPDs over eastern 
China. The major conclusions are summarized as follow:

(a) (b)

Fig. 6   The lead–lag correlation coefficients between equatorial Indo-Pacific (40°E–80°W) SST anomalies averaged between 5°S and 5°N and a 
EPDs-SC, b EPDs-NC during 1979–2000. The dots represent the correlation coefficient significant at the 95% confidence level
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1.	 The EPDs over SC have peaks in MJ, while EPDs over 
NC have peaks in JA. Two summer regional EPDs indi-
ces (EPDs-SC, EPDs-NC) can therefore be defined by 
areal-mean EPDs in their own EPDs peak seasons, thus 

facilitating the study of the large-scale hydrological haz-
ards.

2.	 During MJ, the EPDs-SC is increased in the rapid decay-
ing phase of El Nino. Associated with the increased 
EPDs-SC is a pronounced anticyclone anomaly around 
the Philippine Sea, which is maintained through inter-
action between the WNP anomalous high and underly-
ing dipolar SST anomalies in the northern Indo-Pacific 
warm pool. The enhanced Philippine Sea anticyclone 
leads to enhance northward moisture transportation to 
SC.

3.	 During JA, associated with the increased EPDs-NC 
is a zonal SLP dipole with WNP anomalous high and 
East Asian continent low. This situation occurs during 
a transition from a moderate warming in the preced-
ing winter to a weak cooling in the eastern Pacific. The 
WNP anomalous high is partially enhanced by the east-
ern Pacific cooling-induced suppressed convection in 

(a)

(b)

(c)

Fig. 7   The correlation maps between a EPDs-SC and March–April 
mean SLP, b EPDs-NC and May–June minus Dec.–Jan. SST, and c 
EPDs-NC and May–June minus Dec.–Jan. 2mT during 1979–2000. 
The box regions show the locations of predictor SC-a (40°S–20°N, 
100°E–160°W), NC-a (10°S–10°N, 120°E–80°W), and NC-b 
(35°N–60°N, 35°E–90°E) in a–c, respectively. Dotted areas denote 
regions with correlation coefficients significant at 95% confi-
dence level

Table 1   The correlation 
coefficients between EPDs-SC/
EPDs-NC and corresponding 
predictors (SC-x/NC-x) and 
among each other (1979–2000)

The bold numbers denote statis-
tically significant at 99% confi-
dence level

EPDs-SC

SC-a 0.71

EPDs-NC NC-a

NC-a 0.56
NC-b 0.78 0.27

(a)

(b)

(c)

Fig. 8   The lead-lag correlation maps between predictor SC-a and 
May–June mean a SLP (shading), 850  hPa wind (vector), b SST 
(shading) and c precipitation (shading) during 1979–2000
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the western Pacific monsoon trough via emanation of 
descending Rossby waves. The strengthened southerly 
anomalies between the anomalous WNPSH and East 
Asian low transport moisture to northern China and 
enhance precipitation over NC.

4.	 The increased EPDs-SC is preceded by a high SLP 
anomaly over the western Pacific, which signifies 
atmosphere–ocean interaction between the high and 
dipolar SST anomalies. We also found two precursors 
for EPDs-NC: a zonal dipole SST tendency over the 
equatorial Pacific and a 2-m temperature tendency over 
central Eurasia. The possible causative linkages between 
these predictors and corresponding predictands were 
discussed.

5.	 To access the predictability of EPDs-SC and EPDs-NC, 
a set of P-E prediction models was built using above-
mentioned physical predictors. The cross-validated 
reforecast (independent forecast) of EPDs for 1979–
2000 (2001–2013) achieves significant TCC skill of 
0.62, 0.83 (0.60, 0.74) for SC and NC, respectively. 
These superior skills derived from P–E models offer an 

estimation of the lower bound of predictability for sum-
mer EPDs over eastern China for current forecast year. 
Compared to the potential predictability of extreme pre-
cipitation in China estimated by statistical method (Wei 
et al. 2017), the present study provides higher predict-
ability with clearer physical meaning.

We found that the summer EPDs are highly correlated 
with the summer mean rainfall. Thus, variations of the sea-
sonal mean rainfall and EPDs share similar origins and pre-
dictability sources. In other words, the prediction skill for 
summer EPDs largely arises from the prediction skill of the 
summer mean rainfall.

Since the mean states in MJ and JA are quite different 
(Wang et al. 2009b), prediction using separate bi-monthly 

(a)

(b)

(c)

Fig. 9   The lead-lag correlation maps between predictor NC-a and 
July–August mean a SST (shading), b SLP (shading), 850 hPa wind 
(vector) and c precipitation (shading) during 1979–2000

(a)

(b)

(c)

Fig. 10   The lead-lag correlation maps between predictor NC-b and 
July–August mean a 2-m temperature (shading), 200 hPa geopoten-
tial height (contour), b SLP (shading), 850 hPa wind (vector) and c 
precipitation (shading) during 1979–2000
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(MJ and JA) anomalies rather than common JJA anomalies 
can considerably improve the prediction skills.

Although prediction skills of EPDs derived from P–E 
models are superior, there are caveats and limitations. 
First, the predictand-predictors relationship derived from 
the current 22 years (1979–2000) may experience secular 
changes or abrupt changes, which may cause low forecast 
skills. The prediction models presented in this study may 
not fully applicable for other periods. Because East Asian 
summer monsoon underwent a substantial decadal change 
in the late 1970s (Hu 1997; Ding et al. 2008; Zhou et al. 
2009), the corresponding causative physical mechanism 
could be different before and after the late 1970s (Wu and 
Wang 2002; Ding et al. 2009). Thus, the physical predic-
tors selected during period of 1979–2000 are not signifi-
cantly correlated with predictands before 1979: the correla-
tion coefficient is 0.27 between EPDs-SC and SC-a, 0.29 
between EPDs-NC and NC-a, 0.20 between EPDs-NC and 
NC-b for 1960–1978, resulting in lower forecast skill when 
prediction models are built using data of 1960–2000. The 
nonstationarity of the predictor–predictand relationships has 
been a common major challenge and limitation for empirical 
prediction methods. Prediction of pre-1979 extreme events 
really requires a separate set of prediction equation. It calls 
for future study concerning why the relationships have been 
changed and how to anticipate another future change of the 
relationships. Second, since all the data from the period 
of 1979–2000 is used to select the predictors, the 22-year 

(1979–2000) cross-validated reforecast skills are likely to be 
inflated (DelSole and Shukla 2009). Third, the causative pro-
cesses linking the predictors and predictands proposed in the 
present study are considered as a speculation, further valida-
tions via well-designed numerical experiments are needed.
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