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advance. The NECD at each station can also be predicted 
by using the four predictors that were detected for the two 
indices. The cross-validated temporal correlation skills 
exceed 0.70 at most stations. The physical mechanisms by 
which the autumn Arctic sea ice, snow cover, and tropical-
North Pacific SST anomalies affect winter NECD over the 
NE and Main China are discussed.
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1 Introduction

During the winters of 2007/2008 and 2009/2010, China 
had experienced extremely cold weather (Wen et al. 2009; 
Zhou et al. 2009; Wang and Chen 2010). Cold surges and 
blizzard freezing rain resulted in heavy economic losses. 
In other occasions, however, a cold air outbreak can allevi-
ate hazes in heavily polluted industrial cities. Forecasting 
extremely cold weather is thus of paramount importance 
for China where the world strongest East Asian winter 
monsoon (EAWM) prevails.

Dynamical seasonal prediction of winter mean tempera-
ture remains a great challenge regardless of prominent pro-
gresses that have been made in understanding the interan-
nual variability and prediction of the EAWM (Wang et al. 
2010; Wang and Lu 2016). By analyzing the 22-year multi-
model hindcast datasets from the CliPAS and DEMETER 
projects, Lee et al. (2013) found that dynamical prediction 
of seasonal mean temperature anomaly over the continental 
Asian monsoon region has poor skills.

To further assess the dynamical models’ prediction 
skills over Asia, we have examined a 46-year (1960–2005) 
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anomalies associated with the NECD-NE exhibit a zonally 
symmetric Arctic Oscillation-like pattern, whereas those 
associated with the NECD-MC feature a North–South 
dipolar pattern over Asia. The predictability of the NECD 
originates from SST and snow cover anomalies in the pre-
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have different SST predictors: The NE predictor is in the 
western Eurasian Arctic while the MC predictor is over 
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retrospective forecast results made by five models from the 
ENSEMBLE project (details are introduced in Sect.  2.1). 
We find that the multi-model ensemble (MME) prediction 
has notoriously low skills over China where the domain-
averaged and latitude-weighted temporal correlation skill 
for the 46-year period is only 0.23 (Fig. 1). This confirms 
that China is a region of great challenge for winter temper-
ature prediction. Therefore, it is difficult to use the current 
dynamical models to estimate the potential predictability 
for winter mean temperature.

Apart from the winter mean temperature, prediction of 
extremely cold events has attracted increasing attention. 
Similar to the seasonal mean prediction, dynamical mod-
els also lack skills in prediction of winter extremes. Pep-
ler et al. (2015) have shown that the skill of a multi-model 
ensemble forecast of 10th percentile of daily minimum 
temperature is statistically insignificant over the mid- and 
low- latitude East Asia. Previous studies have suggested a 
high correlation between the seasonal mean temperature 
and the number of extremely cold day (ECD) (Collins et al. 
2000). This relationship was found to be valid in the recent 
effort in prediction of ECD numbers over the temperate 
East Asia (Luo and Wang 2016). Whether this relationship 
can apply to the entire China and to what extent the ECD in 
China are predictable remain unclear.

Based on the EAWM indices that represent the winter 
temperature anomalies over China, some studies have found 
that the winter monsoon could be predicted to some extent 
by using statistical prediction methods (Liu et  al. 2012; 
Sun et al. 2014; Wang and Chen 2014; Yang and Lu 2014). 
Among these studies, the sea surface temperature anoma-
lies over the Pacific region, Arctic sea ice concentration 

anomalies, and snow cover anomalies are found to be use-
ful precursors. However, the predictability of winter tem-
perature and the total number of winter extremely cold days 
(NECD), as well as their potential regional differences over 
China have not been addressed.

To what extent can we predict the winter NECD before 
the beginning of a winter season? In this study, we focus on 
understanding the physical processes that govern the lead-
lag correlation between the precursors and the frequency of 
winter extremely events for seasonal forecast. We will use 
a physics-based empirical model (PEM) approach to esti-
mate the predictability of the NECD because the dynamical 
models have inadequate hindcast skills. The PEM approach 
has been successfully applied to the estimations of sea-
sonal predictability of summer rainfall anomalies over 
India (Wang et al. 2015; Li and Wang 2015) and East Asia 
(Yim et  al. 2014; Xing et  al. 2014, 2017), as well as the 
annual minimum Arctic sea ice extent anomalies (Grun-
seich and Wang 2016). Section  2 describes the datasets 
used and methodology. Section 3 introduces division of the 
sub-regions with homogeneous NECD variability in China. 
Section 4 presents characteristics of NECD-related simul-
taneous winter circulation anomalies. In Sect. 5, we search 
for physically consequential predictors and followed by dis-
cussing the mechanisms by which the selected predictors 
affect NECD in the corresponding regions. Section 6 estab-
lishes the PEMs for the NE and MC to estimate the predict-
ability of NECD for each derived region. The last section 
summarizes major results and discusses related issues.

2  Data and methodology

2.1  Datasets

This study uses daily mean temperature data from 503 
Chinese weather stations that have no missing data during 
winter. The analysis period is 41 winters from 1973/1974 
to 2013/2014 during which snow cover data are available. 
For simplicity, the winter of 1973 refers to the December 
1973 to February 1974. Daily and monthly circulation 
data are from the National Centers for the Atmospheric 
Research (NCEP-NCAR) reanalysis (Kalnay et  al. 1996). 
The SST data gridded at 2°  ×  2° resolution are derived 
from the National Oceanic and Atmospheric Administra-
tion (NOAA) extended reconstructed SST (ERSST version 
3b) (Smith et al. 2008). The weekly snow cover extent data 
are obtained from the Global Snow Laboratory (Rutgers 
University). In addition, monthly mean precipitation data 
are adopted from Global Precipitation Climatology Project 
(GPCP) version 2.2 dataset for the period of 1979–2013 
(Huffman and Bolvin 2013). Since trends caused by exter-
nal forcing or governed by different mechanisms can be 

Fig. 1  Temporal correlation coefficient skill for a 1-month lead pre-
diction of the winter 2 m air temperature obtained from the ENSEM-
BLE multi-model ensemble (MME) hindcast for the of 1960–2005. 
The TCC skill averaged over the entire China is 0.23
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found in both predictors and predictands, for consistency, 
in this study we removed the linear trends from all seasonal 
and monthly mean fields when identifying precursors and 
establishing PEMs.

The hindcasts made by the ENSEMBLES project for the 
period of 1960–2005 (Weisheimer et  al. 2009) were used 
to assess the performance of the dynamical models. This 
data set consists of five state-of-the-art coupled atmosphere 
ocean circulation models, i.e., the Euro-Mediterranean 
Center for Climate Change (CMCC-INGV) in Bologna, 
European Centre for Medium-Range Weather Forecasts 
(ECMWF), the Leibniz Institute of Marine Sciences at 
Kiel University (IFM-GEOMAR), Météo France (MF), 
and UK Met Office (UKMO). The hindcasts were initiated 
form Nov. 1st that yielded an 1-month-lead winter season 
(December to February, or DJF) forecast. The multi-model 
ensemble (MME) prediction was made by simply averaging 
the above five models’ hindcasts.

2.2  Cluster analysis and Rotated EOF analysis

To determine regions with relatively homogeneous varia-
tions, we used a combined k-means cluster analysis (Wilks 
2011) and rotated EOF (REOF) analysis (Richman 1986) 
algorithm. The Euclidean distance used in the k-means 
cluster analysis helps to find an optimal partition of the 
whole data into k clusters. The members within each clus-
ter have similar variations, but the members among differ-
ent clusters have as much different variations as possible. 
For the k-means method, the clustering result is subject 
to the initial grouping, and the final partition can be sen-
sitive to such an initial grouping. Therefore, the algorithm 
is repeated 200 times, each time with different initial cen-
troids, in order to find the most appropriate result that mini-
mizes the sum of the squared distances between the clus-
ter members and their respective cluster centroids (Philipp 
et al. 2007).

“Rotation” transforms the Empirical Orthogonal Func-
tion into a non-orthogonal linear basis, and results in 
“Rotated EOFs” that can be more easily interpreted than 
conventional EOFs (Storch and Zwiers 2001). Based on the 
results of Cluster and REOF analyses, we will be able to 
determine the regional modes and the corresponding indi-
ces that are defined as distinguished predictands.

2.3  Numerical model and experimental design

Numerical experiments are conducted to understand the 
possible physical processes linking the autumn tropical-
North Pacific SST anomaly and the ensuing winter NECD 
in China. The coupled model used is the Nanjing Uni-
versity of Information Science and Technology coupled 
Earth System Model (NUIST-ESM) v1a (Cao et al. 2015). 

This NUIST-ESM consists of an atmospheric component 
using version 5.3 of the European Centre Hamburg Model 
(ECHAM), an oceanic component using version 3.4 of the 
Nucleus for European Modeling of the Ocean (NEMO), 
and a sea ice component using version 4.1 of the Los Ala-
mos sea ice model (CICE). The NUIST-ESM has been used 
to study the dynamical processes that impact the Indian 
summer monsoon rainfall (Li et al. 2016).

Two sets of paired experiments are performed to evalu-
ate the impact of the autumn Pacific SST anomaly on the 
ensuing winter circulation. In the first set of experiments, 
the model SST anomaly field is nudged toward the pre-
scribed SST anomaly associated with the SST precursor. 
The nudging starts from September 1st, and ends on Octo-
ber 31st. The nudged SST anomalies with opposite polari-
ties are used in the second set of experiments. The two sets 
of experiments with SST nudging are denoted as (+) SST 
and (−) SST run, respectively. Each set of experiments con-
sists of 30 ensemble members, and the differences between 
the (+) SST and (−) SST experiments’ ensemble means 
are used to analyze the wintertime circulation anomalies 
induced by the SST precursors.

3  Leading regional modes of NECD in China

The NECD is defined for each station, which is the accu-
mulative number of the ECDs (NECD) during winter. The 
ECD is defined as the lower 10th percentile of the daily 
mean temperature at each station [refer to Luo and Wang 
(2016)].

Predicting climate extremes in a large domain such as 
China involves hundreds of stations (or grids). In the pre-
sent study, we first apply the combined cluster-rotated EOF 
analysis to identify regions in which NECD variations are 
relatively homogeneous, thus a single, area-mean NECD 
can be defined as a predictand for this “regional mode”. 
Mathematically, the complex problem of prediction of 
the NECDs at individual stations (high-dimensional pre-
dictand) is reduced to a simple problem of prediction of 
a few regional indices (low-dimensional predictand) that 
quantify the variabilities of each regional mode. Physi-
cally, this approach will greatly facilitate understanding 
the sources of predictability and detecting large-scale pre-
dictors. Practically, as will be demonstrated in Sect. 6, the 
NECD at each station can be conveniently predicted by 
using only a few large-scale predictors that were identified 
for the regional modes.

Cluster analysis is used to identify sub-regions of the 
relatively homogeneous variations in NECDs. A critical 
question in cluster analysis is how many clusters should be 
chosen. Statistically, one can use the squared distance as a 
criterion. The square distance deceases when the number 
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of cluster increases. Thus, when a marked drop occurs 
between the two adjacent cluster numbers (for instance, n 
and n + 1), one may choose n + 1 as an appropriate cluster 
number. Unfortunately, in our case, no notable drop was 
found from cluster 1 to cluster 10. However, the cluster 
3 and cluster 5 exhibit relatively large drops (figure not 
shown). For this reason, we compared these two choices. 
The geographical maps of sub-region distribution that 
resulted from the 5- and 3- cluster analysis are shown in 
Fig.  2. To find out which classification of the above two 
is more adequate for representing distinguished regional 
modes, we first define the mean NECD averaged over all 
stations (cluster members) in a sub-region (cluster) as a 
regional index, and then make a correlation analysis of the 
regional indices. The results of the 5-cluster analysis show 
that the NECDs in the Central-South China and Northwest 
China, and the NECDs in the North China and Northeast 
China are both significantly correlated with each other 
(Table  1a). In addition, both the NECD in the Central-
South China and North China are highly correlated with 
that in the Northwest China. Obviously, the five regional 
modes are not sufficiently independent predictands. In 
sharp contrast, the regional indices derived from the 3-clus-
ter analysis are more mutually independent (Table 1b). For 
the purpose of forecasting, the division of three sub-regions 
is found to be optimal.

The cluster analysis results are further compared with 
the results of REOF analysis. The first three EOFs are 
retained and subjected to the varimax rotation. As shown 
in Fig. 3, the first two spatial patterns of the REOFs reflect 
the same regional distribution as Main China and Northeast 
China detected by the 3-cluster analysis, confirming the 
robustness of categorization of the NE and MC. However, 
the third REOF shows a large loading over the south and 
southwestern China, which is inconsistent with the domain 
of TP region described by the 3-cluster analysis. Consider-
ing the high topography over the plateau region, as well as 

(a)

(b)

Fig. 2  Distribution of the winter climate zones in China as detected 
by a cluster analysis of the extremely cold days (ECDs) observed over 
503 weather stations. Results are shown for an optimum a five-cluster 
and b three-cluster analysis. Dots represent locations of the stations. 
The black line is the 3000 m height contour, indicating the location 
of the Tibetan Plateau. The symbols NE, N, NW, S, MC and TP rep-
resent the Northeast China, North China, Northwest China, Central-
South China, Main China, and Tibetan Plateau area, respectively

Table 1  The correlation coefficients between any two of the NECD indices within the different cluster groups during 1973–2013

The bold numbers are statistically significant at 99% confidence level. The number in the bracket denotes the index belongs to 5-cluster zones or 
3-cluster zones. (a) Correlations between NECD indices from 5-cluster (b) Correlations between NECD indices from 3-cluster

(a) NECD-TP(5) NECD-NE(5) NECD-S(5) NECD-NW(5) NECD-N(5) NECD-MC(3)

NECD-TP(5) 1 −0.04 0.39 0.09 0.15 0.33
NECD-NE(5) 1 0.32 0.34 0.70 0.38
NECD-S(5) 1 0.64 0.73 0.98
NECD-NW(5) 1 0.57 0.78
NECD-N(5) 1 0.79

(b) NECD-TP(3) NECD-NE(3) NECD-MC(3)

NECD-TP(3) −0.01 0.37
NECD-NE(3) 0.48
NECD-MC(3)
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the difference between REOF and cluster analyses, we only 
focus on the ECDs occur in the NE and MC regions. The 
ECDs in the TP region will be discussed separately else-
where. In this study, the predictands are defined as area-
averaged NECD for the NE and MC regions (Indices), i.e., 
NCED-NE and NCED-MC, respectively.

Figure  4 shows the time series of the non-detrended 
NECD-NE and NECD-MC. Over the past 41 years, 
the linear trend of the NECD-NE is −0.91  day per dec-
ade, and this trend is significant at the 89% confidence 
level (p = 0.89). Similarly, the NECD-MC has a trend of 
−0.93 day per decade for (p = 0.87). Although the signifi-
cance level is lower than 90%, there is a moderate trend in 
both the NECD-MC and NECD-NE. Both indices display a 
multi-decadal variation with a low-NECD (or warm winter) 

period from 1986 to 2006 and followed by a rebound since 
the early 2000s, corresponding to the decadal variations 
of the EAWM (Wang and Chen 2013). The indices for the 
two climate zones display similar spectral peaks at 3 and 
2.5 years, respectively, which are marginally significant at 
the 95% confidence level. The two detrended NECD-NE 
and NECD-MC indices will be our target predictands.

4  Characteristic circulation anomalies associated 
with the NECD in NE and main China

It is a natural starting point to find out what the major 
anomalous circulation systems are when more ECDs occur 
in the NE and MC regions. Figure 5a shows that more fre-
quent occurrence of ECD in the NE China region implies 
a continental scale cold winter covering the high-latitude 
(western and central Siberia) and the far East Asia (Fig. 5a). 
For the MC region, more ECD are associated with a large 
scale of coldness over the mid-latitude and subtropical Asia 
except the TP (Fig. 5d). Due to the specific latitudinal loca-
tion of the NE China, the circulation anomalies in winter 
with more ECDs are closely associated with the so-called 
“northern mode” of a cold East Asian winter monsoon 
(Wang et  al. 2010; Luo and Zhang 2015), meanwhile for 
the MC, the higher NECD-MC related circulation anoma-
lies are more closely associated with the EAWM “southern 
mode”.

Generally, the winter circulation anomalies associated 
with higher NECD-NE are characterized by (a) a north-
westward shift of the Mongolian-Siberian High and an 
enhanced Aleutian Low at sea level pressure field (SLP) 
(Fig. 5b); (b) an enhancement and the southwestward dis-
placement of the mid-tropospheric East Asian trough that 
normally extends from Okhotsk Sea to Yangtze River 
delta and an enhancement of the Ural Mountain ridge on 
the 500  hPa level (Fig.  5c). The circulation anomalies of 
an increased NECD-NE resemble a negative phase of the 
Arctic Oscillation (AO). In fact, the correlation coefficient 
between AO index (Thompson and Wallace 1998) and the 
NECD-NE is −0.62, significant at the 99% confidence 
level.

In contrast, the circulation anomalies associated with a 
high NCED-MC is characterized by a meridional dipole 
pattern over the Eurasian continent. The negative SLP 
anomalies over South Asia and Indian Ocean and positive 
SLP anomalies over the central Eurasian continent form a 
“North-high and South-low” pattern which facilitates the 
cold air intrusion into the South China (Fig.  5e). On the 
500 hPa level, the dipole anomalies also feature high anom-
alies over Ural regions and zonally elongated low anoma-
lies over the subtropical regions (Fig.  5f). Different from 
the circulation anomalies associated with the NECD-NE, 

(a)

(b)

(c)

Fig. 3  Spatial patterns of the first three modes of the NECD over 503 
Chinese weather stations derived by REOF analysis
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anomalous cooling can be found over the tropical Pacific 
associated with more NECD-MC (Fig. 5a, d).

5  Sources of the predictability for the number 
of extremely cold days in China

For the PEM prediction, it is essential to understand the 
sources of predictability, i.e., the physical processes and 
mechanisms linking the predictors and predictand (Wang 
et al. 2015). In this section, we first describe how we find 
the predictors and followed by a discussion of their physi-
cal linkage to the predictands.

5.1  Different predictors for the northeast and Main 
China regions

Rather than fishing statistical predictors in a variety of 
oceanic and atmospheric fields, we examine only SST and 
snow cover anomalies since these variables represent lower 

boundary forcing conditions(Wang et al. 2015). In addition, 
we focus on only two types of precursors, i.e., the persistent 
signals in autumn represented by the seasonal or bimonthly 
means and tendency signal across autumn from September 
to November (November minus September). To determine 
the most meaningful predictors for each NECD regional 
mode, we used lead correlation coefficient (LCC) maps 
of the persistent and tendency fields of the SST and snow 
cover extensions with reference to the winter NECD indi-
ces. Particular attention is paid to the identification of the 
large-scale coherent LCC regions where the correlations 
are largely significant at the 95% confidence level.

5.1.1  SST predictors

We found that the NECD-NE and NECD-MC have dif-
ferent SST predictors. For the NECD-NE, the most sig-
nificant precursory SST signal is the September–October 
(SO) mean SST anomalies in the western Eurasian Arc-
tic Ocean (75°N–85°N, 30°E–90°E), i.e., north of the 

(a)

(b)

Fig. 4  Time series of the a NECD-NE and b NECD-MC indices and 
their corresponding power spectra. The black lines in the left panels 
represent their decadal components obtained by applying a 10-year 

low-pass filter on the time series. The red lines in the right panels 
indicate “red noise” spectra and the blue dashed lines indicate the 
90% confidence bounds
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Barents and Kara sea regions, named as ARCT-NE for 
short (Fig. 6a; Table 2). This Arctic precursor is further 
confirmed by LCC map associated with the sea ice con-
centration, as significant reduced sea ice anomalies can be 
found over the same Arctic region (Fig. 6b). In contrast to 
the NE, the most significant precursory SST signal for the 
NECD-MC is the SO mean SST anomalies in the tropical 
and North Pacific (10°S–50°N, 150°E–130°W), named as 
TNPSST-MC (Fig. 6c; Table 2).

Following the method used by Lee et  al. (2013), 
the SST predictor values are calculated based on the 
weighted averaged SST anomalies over all statistically 
significant grid points [coefficient coefficients reaching 
over (below) 0.3(−0.3) in our cases] within the selected 
predictor domain. The grid-point weights are provided by 
the correlation coefficients on LCC map. For instance, the 
Arctic SST predictor is calculated based on the weighted 
average of SO SST anomalies within the outlined box in 
Fig. 6a. ARCT-NE is then defined as the weighted aver-
age of SO SST anomaly divided by its standard deviation. 
The definition of TNPSST-MC is the same as ARCT-NE 

except using the weighted SST within the outlined box in 
Fig. 6c.

5.1.2  Snow cover predictors

We also found that both the winter NECD at the NE 
and MC are strongly foreshadowed by Eurasian snow 
cover anomalies in the preceding October. However, the 
domains of significant correlations have important dif-
ferences (Fig. 6d, e). For the NECD-NE the snow cover 
precursory region is region A + B + C (40°N–65°N, 
40°E–140°E) whereas for the NECD-MC the precur-
sory region only covers region A + C (Fig.  6d, e). Sim-
ilar to the SST predictors, the snow cover predictor for 
the NECD-NE (NECD-MC) is defined as weighted 
snow cover extension anomalies within the outlined 
regions A + B + C (A + C) in Fig.  6d, e. The two identi-
fied snow cover predictors are named as SNOW-NE and 
SNOW-MC for short (Table  2). The winter NECDs are 
most significantly correlated with snow cover extension 
anomalies in October comparing with those in September 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5  Winter circulation anomalies associated with the NECD over 
the NE (left panels) and MC (right panels). Shown are the concurrent 
correlation maps between the NECD indices and the corresponding 

a, d 2 m air temperature (T2m) over land and SST over oceans, b, e 
SLP, and c, f 500 hPa geopotential height (H500). Shadings indicate 
the regions with correlations significant at the 95% confidence level



 X. Luo, B. Wang 

1 3

and November, possibly because of the large variability 
of snow cover extent in this area in October (figure not 
shown), and this conclusion is consistent with Jhun and 
Lee (2004).

In summary, we have identified two precursors (i.e., 
ARCT-NE and SNOW-NE) for NECD-NE, and two precur-
sors (i.e., SNOW-MC and TNPSST-MC) for NECD-MC, 
respectively. The mutual correlation coefficients between 

(a) (b)

(c)

(d) (e)
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the two predictors for the NECD-NE are statistically insig-
nificant (Table  3a). The two predictors TNPSST-MC and 
SNOW-MC are well correlated to the NECD-MC with cor-
relation coefficients at 0.62 and 0.65, respectively.

5.2  Discussion of physical linkages 
between the predictors and NECDs

5.2.1  Autumn Eurasian snow cover and winter NECD 
in northeast and main China

Previous studies have shown the snow cover anomalies 
over Eurasia could influence winter circulation (Watanabe 
and Nitta 1998; Jhun and Lee 2004; Cohen and Fletcher 
2007), but the key regions for precursory snow cover 
anomalies were not clearly identified. We have identified 
three sub-regions in Eurasia where snow cover anomalies 
in October are found to relate to the variation of the NECD-
NE and NECD-MC, namely, snow cover region A, B, and 
C (Fig.  6d, e). The difference between SNOW-NE and 
SNOW-MC lies in the region B (Fig. 6d, e). Therefore, we 
further examine the potentially different influences of the 
snow cover over three sub-regions, A, B, and C (Fig. 6d) on 
winter circulations by computing partial regression coeffi-
cients. The partial regression coefficients are derived from 
multiple linear regression analysis with regard to the snow 
cover over regions A, B, C.

Figure 7a shows that an excessive snow cover in region 
A is related to the high anomaly over Ural mountain and 
enhanced Aleutian Low during winter. Similarly, an 
increased snow cover in C is related to the anomalous Ural 
High and the East Asian Trough (Fig. 7c). Meanwhile, the 
Mongolian-Siberian High at SLP intensifies and the ECDs 
increase in both the NE and MC regions (Fig. 7a, c). Thus, 
the snow cover extent in region A and C are selected as 
common precursors for both NECD-NE and NECD-MC.

Figure 7b shows that an increased snow cover extent in 
region B leads to a very different 500 hPa height anomalies 
during the winter, which is zonal symmetric and manifests 

anomalous polar high and the mid-high latitude low (a neg-
ative phase of AO). In fact, the October snow cover in B 
is most closely related with the winter AO with a correla-
tion coefficient reaching −0.64. The negative AO phase and 
the northwestward shift of Aleutian Low lead the cold air 
into the high latitude area of Eurasian continent (Fig. 7b). 
Meanwhile, other studies also suggest that the October Eur-
asian snow cover extent modulates the January AO through 
a dynamical process that includes anomalous vertical prop-
agation of Rossby wave activity (Gong et al. 2003; Cohen 
and Fletcher 2007; Cohen et al. 2012). Therefore, the snow 
cover extent in B is selected as a predictor for the NECD-
NE prediction instead of for the NECD-MC.

5.2.2  Autumn tropical‑North Pacific SST anomalies 
and NECD in main China

Apart from snow cover predictor, the NECD-MC is largely 
signified by the preceding autumn tropical-North Pacific 
SST precursor (Fig. 6c). With a set of paired coupled model 
experiments [(+) SST minus (−) SST], in which the anom-
alous SST field illustrated in Fig. 8a are nudged in Septem-
ber and October, we show, in Fig. 8b, the wintertime circu-
lation anomalies associated with the tropical-North Pacific 
SST precursor. The autumn cooling phase TNPSST-MC 
precursor (Fig.  8a) signifies the Central Pacific La Niña 
(CP La Niña) in the ensuing winter (Fig. 8b). Correspond-
ingly, a pair of cyclonic anomaly is clearly seen over the 
subtropical western Pacific and northern Indian Ocean, 
exerting northeasterlies over the southeastern and southern 
Asia, hence results in a cold winter and increased ECDs 
over the southern part of main China. It is also notable that 
there is an anomalous high over mid-high latitude region of 
the central Eurasian continent, and the northeasterlies on its 
southern flank can reinforce the cold air advection to north-
west China that favors more ECDs there.

5.2.3  Autumn Arctic SST anomalies and NECD 
in northeast China

The mechanism of how autumn Arctic SST may influence 
the winter temperature over temperate East Asia (TEA) 
has been discussed by Luo and Wang (2016). Due to the 
large ocean heat capacity, the Eurasian Arctic warming in 
September and October can persist into the ensuing win-
ter (Fig.  9a). The Arctic warming in winter induces high 
anomaly over the Ural Mountain and deepens the East 
Asian trough in the mid-troposphere, thus strengthening 
the Mongolia-Siberian High in the surface (Fig.  9a, b), 
favoring the cold air outbreak intrusion into primarily the 
northeast China. The numerical experiment made by Kug 
et  al. (2015) has shown that the Eurasian Arctic warming 
in winter may induce an anticyclonic anomaly extending 

Fig. 6  Fall precursory anomalies associated with the winter NECD 
over MC and NE. a Correlation maps of NECD-NE and SO (Septem-
ber–October) mean SST over ocean and T2m over land, b same as a, 
but for SO mean sea ice concentration. c Correlation maps between 
NECD-MC and SO mean SST. d Correlation maps of Snow cover 
extension in October over land and the NECD-NE, e same as d, but 
for the NECD-MC. Black dots represent the regions with correlation 
significant at the 95% confidence level. The boxes in a and b outline 
the regions where ARCT-NE are defined (Table  2). The rectangu‑
lar box in c outline the region where the TNPSST-MC predictor is 
defined (Table 2). The three rectangular boxes marked as A, B, C in 
d and e outline the three corresponding key regions discussed in the 
text, and region A + B + C in d and region A + C in e denote regions 
where the SNOW-NE and SNOW-MC predictors defined, respec-
tively (Table 2)

◂
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from the polar region to the Ural Mountain. Consequently, 
Rossby wave energy propagation induces downstream low 
pressure anomalies that deepen and westward shift the East 
Asian trough at 500 hPa, and this favors cold air intrusion 
into the lower latitude (Fig. 9a, b), which leads to extreme 
cold condition over the northern Asia including the North-
east China.

The linkage between the autumn Arctic sea ice con-
centration and the winter mean temperature was noticed 
by a number of previous studies (Wu et  al. 1999; Inoue 
et al. 2012; Chen et al. 2014a, b). Wu et al. (1999) argue 
that heavy sea ice in the Kara Sea and the Barents Sea can 
excite the 500 hPa EU teleconnection pattern thus modulat-
ing the EAWM. Inoue et  al. (2012) proposed that sea ice 
concentration in Barents Sea can affect the atmospheric 
baroclinicity, thus changes the frequency of the eastward 
propagating cyclonic systems, leading to a SLP anomaly 
over the Siberian coast and affecting the EAWM.

6  A Physical‑empirical model for the prediction 
of NECDs in China

In this section, we use multi-regression to establish PEM 
for the simulation and the prediction of NECD and for the 
estimation of the associated predictability. The predictors 
used are the same as discussed in the previous section.

The simulation equations derived from the period of 
1973–2013 are

Since all predictands and predictors are normalized, the 
magnitude of the coefficients associated with each predic-
tor indicate relative contributions of the corresponding pre-
dictor to the predicted NECD. As for the NE region, the 
snow cover extension anomaly plays a considerable larger 
role in predicting the NECD-NE. For the MC region, the 
snow cover anomaly and the Pacific SST anomaly have 
comparable contribution.

To evaluate the prediction skill, a 41-year cross-vali-
dated retrospective forecast is performed. The prediction 
models were derived by using a suite of training 38-year 
data (leaving 3 years data out around each target prediction 
year), and then apply the derived model to forecast the mid-
dle year of the three withheld years. The cross-validated 
correlation skills for the entire period (41 years) are 0.78 
for the NECD-NE (Fig. 10a) and 0.73 for the NECD-MC 
(Fig. 10b).

In addition to the temporal correlation coefficient 
(TCC), we calculate Mean Square Skill Score (MSSS) 
(Murphy 1988): MSSS = 1  −  MSE/MSEc, where 
MSE =

1

n

∑n

i=1
(fi − xi)

2 is the mean square error (MSE) of 
the forecasts by the PEM, and MSEc =

1

n

∑n

i=1
(xi − x)

2 is 
the MSE of the climatological forecast. The x and f denote 
time series of observations and forecasts, respectively. 
Positive (negative) skill indicates that the model’s forecast 
is better (worse) than the climatological “forecast”. The 
MSSS skills for seasonal forecast of the NECD-NE and 
NECD-MC reach 0.59 and 0.54, indicating the predictions 
based on the PEMs have much higher skills than the clima-
tological forecasts (MSSS skill is zero).

The NECD forecast can be further made for each station. 
Two methods can be used for this downscaling prediction. In 
the first method, we use two forecasted indices, the NECD-
NE and NECD-MC, to predict the NECD at each station. The 
forecast TCC skills over most stations are generally over 0.6, 
except for the northwest China (Fig.  11a). The MSSS skill 
reaches 0.4 in the middle and northeast China, but is lower 
for the northwest China (Fig. 11b). In the second method, we 

NECD-NE = 3.67 × SNOW-NE + 2.16 × ARCT-NE,

NECD-MC = 2.08 × SNOW-MC + 2.37 × TNPSST-MC

Table 2  Definition of each 
predictor for the leading 
regional NECD mode

Mode Predictor name Meaning Definition regions

NECD-NE SNOW-NE Oct. Snow cover anomalies Snow cover (40°N–65°N, 40°E–140°E)
ARCT-NE SO Arctic SST anomalies SST (75°N–85°N, 30°E–90°E)

NECD-MC SNOW-MC Oct. Snow cover anomalies Snow cover (40°N–65°N, 
115°E–140°E) and (40°N–65°N, 
40°E–75°E)

TNPSST-MC SO tropical-North Pacific 
SST anomalies

SST (10°S–50°N, 150°E–130°W)

Table 3  The correlation coefficients between predictand, (a) NECD-
NE, (b) NECD-MC, and the corresponding two predictors as well as 
between the two predictors during 1973–2013

The bold numbers denote statistically significant at the  99% confi-
dence level

(a) SNOW-NE ARCT-NE

NECD-NE 0.70 0.49
SNOW-NE 0.14
ARCT-NE

(b) SNOW-MC TNPSST-MC

NECD-MC 0.62 0.65
SNOW-MC 0.41
TNPSST-MC
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use the four predictors (Table 2) directly to derive prediction 
equations for each station. The forecast TCC (MSSS) skill 
are higher than those in the first method, reaching around 0.7 
(0.5), respectively for stations over the NE and Main China.

The above PEM prediction provides an estimate of the 
practical predictability. The TCC skills of 0.78 for the NECD-
NE and 0.73 for NECD-MC suggest about 60% (55%) of the 
total variance of the NECD in NE (MC) may be potentially 
predictable and the frequency of the extremely cold events 
during winter in the large domain of China is to a large extent 
predictable before the season begins.

7  Concluding remarks

7.1  Conclusions

We have shown that the five ENSEMBLE models’ Multi-
model ensemble prediction only yields a moderate, 

averaged temporal correlation coefficient skill of 0.23 over 
China during 1960–2005 (Fig.  1). For this reason, in the 
present study we used Physics-based empirical models 
(PEMs) to explore the sources and limits of the seasonal 
predictability and prediction method for the total number of 
winter extremely cold days (NECD).

To simplify the prediction problem and better detect the 
sources of predictability, we used a combined cluster and 
Rotated EOF analysis approach (Figs.  2, 3) to categorize 
503 Chinese station’s NECD into three quasi-homogeneous 
sub-regions, i.e., Northeast China (NE), Main China (MC), 
and Tibetan Plateau. Two regional mean NECD indices 
are defined for the NE and MC regions as our target pre-
dictands, the NECD-NE and NECD-MC, for the 41-year 
period from 1973 to 2013 (Fig. 4).

Both the NECD-NE and NECD-MC reflect Eura-
sian continental-scale surface air temperature anomalies 
(Fig.  5a), which correspond, respectively, to the North-
ern and Southern mode of East Asian winter monsoon 

(a) (b) (c)

Fig. 7  The DJF anomaly fields associated with the October snow 
cover extension anomaly over the key region A, B and C, respec-
tively. a Partial regressed T2m (shaded; °C), SLP (contours; hPa) 
(upper panel) and 500 hPa height anomalies (lower panel) with refer-
ence to the snow cover over the key region A. b, c The same as in a 
except for the snow cover over the key region B, and C, respectively. 

In the upper panels, the contour interval is 0.5 hPa; positive (nega-
tive) contours are solid (dashed); the zero contour is not shown. The 
dots denote regions where T2m and H500 anomalies are statistically 
significant at 95% confidence level. The blue boxes in a–c outline the 
regions of the snow cover A, B, and C, respectively
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identified by Wang et  al. (2010). When the NE has more 
ECDs, the winter circulation anomalies are characterized 
by an Arctic High and a zonal symmetric low pressure that 
are closely related to a negative phase of AO. On the other 
hand, for an extremely cold winter in the MC, the SLP 
anomalies feature a “Northern High and Southern Low” 
pattern over Eurasia (Fig. 5e). The common characteristics 
are the anomalous high over Ural Mountain and deepened 
EA Trough, but the corresponding anomaly locations are 
different.

The predictability of the NECD-NE and NECD-MC 
originates from the lower boundary forcing, i.e., SST and 
snow cover anomalies, in the previous autumn (Fig.  12). 
However, they have different SST and snow cover predic-
tors. The October snow cover anomaly over Eurasian con-
tinent is the predictor for the NECD-MC, while that over 
the Mongolian and Siberian region (region B on Fig.  6c) 
is the precursor for the NECD-NE. The NECD-NE has 
an autumn SST predictor in the western Eurasian Arctic 
Ocean, which can persist into winter and induce pressure 
anomalies over the Ural mountain and downstream East 
Asia (Fig.  9). On the other hand, The NECD-MC has an 
autumn SST predictor in the tropical and North Pacific, 

which presages the development of the winter equatorial 
central Pacific SST anomalies that further impact winter 
circulations over Eurasia. Numerical experiments indicate 
that the northwestern Pacific anomalous cyclone and mid-
high latitude Eurasia anomalous anticyclone are the key 
systems that bridge the precursor and more NECDs over 
the Main China through facilitating cold air advection into 
the northwest and central-southern China (Fig. 8).

(a)

(b)

Fig. 8  Model simulated DJF anomaly fields associated with the pre-
dictor TNPSST-MC. a The TNPSST-MC related nudged SST field 
in September and October for (+) SST experiment (shaded; °C). b 
Differences in the ensemble mean DJF surface temperature (shaded; 
°C), surface wind (vectors; m s−1) and SLP anomalies (contours; hPa) 
between (+) SST experiment and (−) SST experiment. The contour 
interval is 0.5 hPa; positive (negative) contours are solid (dashed) and 
zero contour is omitted. Dots in b indicate region with of SST anoma-
lies significant at 99% confidence level. Vectors in b are shown only 
when values for zonal or meridional wind anomalies are significant at 
90% confidence level

(a)

(b)

Fig. 9  Winter circulation anomalies associated with the autumn 
ARCT-NE predictor. a The regressed winter SLP (contours; hPa) and 
T2m (shaded; °C) anomalies with reference to autumn ARCT-NE 
predictor. The contour interval is 0.5 hPa and positive (negative) con-
tours are solid (dashed) lines. The zero contour is not shown. b Same 
as a, but for the 500 hPa height anomalies (shaded; gpm). Dots in a 
and b indicate regressed anomalies of T2m and 500 hPa geopotential 
height significant at 95% confidence level, respectively



Predictability and prediction of the total number of winter extremely cold days over China  

1 3

(a) (b)

Fig. 10  Hindcast skills of the physical-empirical model (PEM) pre-
dictions. a The time series of observed NECD-NE (black line) and 
the predicted NECD-NE (blue line) with cross-validation method 
obtained by taking 3-year out at each prediction year. The prediction 

is made at the end of October (1-month lead prediction). b Same as a, 
but for the NECD-MC. The cross-validated prediction TCC (MSSS) 
skills for the NECD-NE and NECD-MC are 0.78 (0.59) and 0.73 
(0.54), respectively

(a) (b)

(c) (d)

Fig. 11  Forecast skills for the winter NECD over China during 
1973–2013 measured by the correlation coefficient (a, b) and MSSS 
(c, d). a Map of correlation coefficients between the observed and 
predicted winter ECDs at each station derived from the prediction 
equations based on multiple regression using the PEMs-predicted 

NECD-NE and NECD-MC indices. b Same as a, but the predicted 
NECD at each station is derived from prediction equations based on 
multiple regression using the four predictors in Table 2. c Same as a, 
except for MSSS. d Same as b, except for MSSS
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The PEMs’ hindcast results suggest that about 60% 
(55%) of the total variance of winter NECD over North-
east China (Main China) may be predictable  1  month in 
advance (Fig.  10). The four predictors that are identified 
for the NE and MC regional indices can be used to make 
downscale predictions for each station. The cross-validated 
temporal correlation skills reach 0.70 and MSSS of 0.5 at 
most stations within the Main and NE China (Fig. 11).

7.2  Discussion

Use of cluster analysis to identify the regions of coherent 
variations of climate anomalies is shown to facilitate under-
standing the sources of climate predictability, identifying 
large scale predictors, and downscaling prediction of local 
anomalies.

The reason we used detrended data is that some predic-
tors have significant trends, especially the Eurasian Arctic 
Ocean SST. Because these large trends are largely related 
to external forcing such as anthropogenic warming, for the 
purpose of prediction of the interannual and decadal vari-
ation, we removed the trends from these predictors. To be 
consistent, in the present study we also removed the linear 
trends from the predictands, although these trends are not 
significant at the 90% confidence level.

To apply the PEM to real prediction, we first calculate 
the four detrended and normalized autumn predictors for 
the NCED in the target winter using the method described 
in Sect. 5.1, and then put them in the established prediction 
equations of PEM to get the predicted detrended NECD. 
The second step is to calculate the trend component of the 
target winter NCED based on the linear trend of NECD 
prior to the target winter. Finally, the sum of the detrended 

NECD from PEM prediction and the trend component of 
NCED is the predicted NECD for the target year.

It is of interest to notice the differences in NECDs 
between the NE region in the present study and the tem-
perate East Asia (TEA) region studied by Luo and Wang 
(2016). Geographically, the NE region is embedded within 
the TEA region (30°–50°N, 110°–140°E), but the TEA cov-
ers a much larger domain, including Korea, western Japan, 
the marginal seas of the western North Pacific (WNP), and 
part of Main China region. As a result, the physical predic-
tors signifying NECD at the TEA region also differ from 
those in the NE region. For instance, the developing El 
Niño/La Niña is a predictor for the TEA because it includes 
a region of WNP, but it is not a predictor for the NE region. 
On the other hand, because the NE is located in the north-
west part of the TEA, the Asian snow cover becomes an 
important predictor.

One may wonder whether the winter mean tempera-
ture is more predictable than the total number of winter 
extremely cold days, the NECD. We found that the winter 
mean temperature and NECD are highly correlated with 
correlation coefficients of −0.88 and −0.85 for the NE and 
Main China, respectively. This confirms the results of Luo 
and Wang (2016). They have also demonstrated that in the 
core region of EAWM, (a) the NECD and winter mean 
temperature have the same sources of predictability, and 
(b) predictions of the winter mean temperature and NECD 
using the same predictors yield comparable skills. Thus, 
the physical basis for the prediction of NECD is essentially 
the same as that for the prediction of the seasonal mean 
temperature.

The cross-validated retrospective forecasts suggest the 
NE region, even though located at higher latitude, has 

Fig. 12  Locations of the Northeast China (NE) and Main China 
(MC) and their associated NECD predictability source regions. Red 
and blue dots in China regime denote the stations in the NE and MC, 
respectively. Red rectangular boxes outline precursors for the NECD 
over NE and are marked as SSTA(SO) over Arctic Ocean and SNA-

NE over Eurasian continent. Blue rectangular boxes outline precur-
sors for the NECD over MC and are denoted as SSTA(SO) over the 
tropical-North Pacific Ocean and SNA-MC over the Eurasian conti-
nent
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higher predictability in terms of NECD than the Main 
China region. This is consistent with the ENSEMBLE 
dynamical models’ result, which suggests that some 
robust factors are in action. This is probably because the 
frequency of the extremely cold events in the Northeast 
China are more tightly linked to negative phase of win-
tertime AO, for which the western Eurasian Arctic warm-
ing and enhanced snow cover over Mongolia and western 
Siberia in autumn are more robust precursors.

The high NECD-MC is found to be related to the pre-
ceding cooling phase of horseshore like SST anomaly 
pattern in the tropical and North Pacific, which signifies 
a winter central Pacific cooling. Even though the mecha-
nism associated with the northwestern Pacific anoma-
lous cyclone has been fairly well understood (Wang et al. 
2000), the physical linkage between the winter anoma-
lous anticyclone over Eurasian and the tropical and North 
Pacific SST anomalies in the preceding fall remains 
elusive.

Although the snow cover anomalies in the region A 
(C) in Fig.  6d, e include some different significant grid 
points, we find that the variations of areal averaged snow 
cover extension anomalies in the region A(C) are con-
sistent, with a correlation coefficient of 0.97 (0.98). The 
snow cover anomaly in region B (i.e., Mongolian and 
southern Siberian region: 40°N–65°N, 75°E–110°E) in 
October is found to be uniquely related to winter AO. 
This specific location of snow cover anomaly differs from 
the previous results that focused on a vast region over the 
Eurasian continent (Watanabe and Nitta 1998; Cohen and 
Fletcher 2007). This discrepancy suggests that the sea-
sonal predictability of the AO is worthy of further inves-
tigation. Further analysis shows the correlation between 
the snow cover anomaly in region A and NECD over 
China has dropped significantly since 1980s. This unsta-
ble relationship indicates that the snow cover A could 
be left out for the NECD forecast practice in the recent 
decades.

The spatial patterns of forecast skill show lower pre-
dictability of the NECD over the northwest China. This 
could be due to the fewer stations over the northwest 
China comparing with densely populated stations over 
other parts of Main China, which could result in a biased 
weighting of the NECD-MC index toward the central and 
southern China.
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