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ABSTRACT

The boreal summer intraseasonal oscillation (BSISO) is one of the most prominent modes in the tropical

climate system. For better subseasonal prediction of extreme precipitation the relationship between BSISO

activity and extreme precipitation events (days with daily precipitation exceeding the local 90th percentile) over

Asia is investigated, especially the dependence of extreme precipitation occurrence on BSISO precipitation

anomaly pattern (phase) and intensity (amplitude) in eachmonth.At a given area andmonth, the probability of

extreme precipitation changes from less than 10% to over 40%–50%according toBSISOphases, and it tends to

be high when BSISO amplitude is large. The extreme precipitation probability estimated by BSISO activity is

generally higher over ocean than over land. Over some land regions, however, occurrence of extreme pre-

cipitation is notably modulated by BSISO activity. In May, the extreme precipitation probability over south-

easternChina can reach about 30%–40%when BSISOprecipitation anomaly arrives over the region. Similarly,

in September the extreme precipitation probability over western China can reach 40%–50% when BSISO

precipitation anomaly arrives there. TheBSISOactivity provides useful information in narrowing down the area

and timing of high probability of extreme precipitation occurrence. Using real-time BSISO monitoring and

forecast data provided by the Asia–Pacific Economic Cooperation (APEC) Climate Center, it is shown that

1) the best model (ECMWF) can predict the leading BSISO modes about 20 days ahead with bivariate corre-

lation skills higher than 0.5 except inMay, and 2) the empirical probability distributions of extreme precipitation

that are based on BSISO activity can be captured by the BSISO forecasts for lead times longer than 2 weeks.

1. Introduction

Prediction of extreme weather events such as heavy

precipitation, drought, heat waves, and tropical cyclones

is an important subject since extreme events can cause

severe property damage and loss of human life (e.g.,

Vitart et al. 2012). In particular, occurrences of extreme

precipitation on subseasonal time scale have enormous

impacts on our communities. For the period 1998–2008,

around 247 000 people worldwide were killed due to

flood events (Adhikari et al. 2010). Asia is one of the

most vulnerable regions to flood. The economic loss

caused by floods in Bangladesh in a normal year is about

$175 million (Jonkman 2005; Mirza 2011). In addition,

positive trends in frequency and intensity of extreme

precipitation events have been found in many parts of

Asia (e.g., Sen Roy and Balling 2004; Zhai et al. 2005;

Goswami et al. 2006; Wang et al. 2006; Endo et al. 2009;

Krishnamurthy et al. 2009; Yao et al. 2010; Mirza 2011).
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Sen Roy and Balling (2004) analyzed daily precipitation

records throughout India over the period 1910–2000 and

showed increase in extreme precipitation events, in-

cluding total precipitation, the largest 1-, 5-, and 30-day

totals, and the number of daily events above the 90th,

95th, and 97.5th percentiles of all precipitation. In-

creases in intensity and frequency of extreme rainfall

events result in considerable social and economic dam-

ages (e.g., Kundzewicz et al. 2014; Dewan 2015).

Therefore, societal and economic demands for under-

standing, monitoring, and predicting extreme weather

events have been increasing rapidly.

Since extreme precipitation events occur on multi-

ple spatial and temporal scales, it is difficult to predict

their occurrences. During boreal winter, the Madden–

Julian oscillation (MJO) is the prominent mode of

tropical intraseasonal variability (e.g., Waliser 2006;

Goswami 2011). Therefore, MJO activity has been

considered a major source of predictability for ex-

treme weather events. Many previous studies show

that the MJO modulates extreme weather events such

as extreme rainfall, snowfall, cold surges, and tropical

storms on global and regional scales (e.g., Jones et al.

2004; Jones and Carvalho 2012; Moon et al. 2012; Zhou

et al. 2012; Zhang 2013; Xavier et al. 2014; Wang and

Moon 2017).

In addition to the MJO, the boreal summer intra-

seasonal oscillation (BSISO) is one of the dominant

factors modulating occurrences of extreme events over

the Asian-Pacific monsoon region. The BSISO is

closely related to various spatiotemporal drivers of

weather variability including tropical cyclones, mon-

soon active–break cycles, and extratropical circula-

tion anomalies in the Northern Hemisphere (e.g.,

Liebmann et al. 1994; Wang and Xu 1997; Wu and

Wang 2000; Maloney and Hartmann 2001; Goswami

et al. 2003; Goswami 2011; Moon et al. 2013). Zhu et al.

(2003) showed that a series of severe floods in eastern

China in 1998 was related to the activity of the 30–

60-day BSISO over the western North Pacific (WNP).

It is noted that the collective influences of a northward

propagation of the 30–60-day BSISO from the equa-

torial Indian Ocean and a westward propagation of the

10–20-day disturbance from the South China Sea are

among the prominent atmospheric processes to lead

extreme active and break rainfall phases in northern

India (Ding and Wang 2009).

To better monitor and predict BSISO activity over

the Asian summer monsoon region, Lee et al. (2013)

proposed two BSISO indices based on multivariate

empirical orthogonal function (MV-EOF) analysis

(Wang 1992) using daily anomalies of OLR and

850-hPa zonal wind over the Asian monsoon sector

(108S–408N, 408–1608E). BSISO1 (EOF1 and EOF2

modes) represents the canonical northward propa-

gating BSISO during the entire warm season (from

May to October) with quasi-oscillating periods of 30–

60 days. BSISO2 (EOF3 and EOF4 modes) mainly

captures the northward or northwestward propagation

component with a 10–30-day spectral peak, and shows

maximum variance from late May to early July. Re-

cently, Hsu et al. (2016) examined the influences of

BSISO modes on the spatial distributions of extreme

rainfall in southeastern China. The probability of ex-

treme rainfall events exceeding the 75th and 90th

percentile increases mostly over the Yangtze River

valley during phases 2–4 of BSISO1.

Given the increasing demands and importance of

forecasting extreme precipitation events, our study

aims to establish the relationship between BSISO ac-

tivity and extreme precipitation events over Asia in

order to detect and predict extreme precipitation oc-

currence using BSISO information in subseasonal time

scale. From a prediction perspective, it would be useful

to provide the probability of extreme precipitation

events as a function of BSISO activity. In the present

study, we estimate the probabilities of extreme pre-

cipitation events using observed and predicted BSISO

modes, respectively. Using real-time BSISO forecast

data provided by the Asia–Pacific Economic Co-

operation (APEC) Climate Center (APCC), we assess

prediction skill of leading BSISO modes and the ca-

pability of BSISO forecasts for capturing empirical

relationship between BSISO activity and extreme

precipitation events.

This paper is organized as follows. Section 2 de-

scribes the data and analysis methods. In section 3, we

show the climatological spatiotemporal features of

extreme precipitation events and BSISO evolution

with the seasonal march. Section 4 presents the re-

lationship between BSISO activity and extreme pre-

cipitation events, and BSISO-based probability of

extreme events. The prediction skill of leading BSISO

modes and probability of extreme events estimated by

BSISO forecasts are given in section 5. The last section

is a summary and discussion.

2. Data and analysis methods

a. Data

1) PRECIPITATION

To identify the extreme events in terms of pre-

cipitation, we use daily Global Precipitation Climatol-

ogy Project (GPCP) data (Huffman and Bolvin 2013)
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for the period 1997–2015 (19 yr), which have 18 3 18
resolution. The target region is selected as 08–408N, 708–
1408E and the boreal summer period from May to Oc-

tober is considered.

2) BSISO INDICES

To represent BSISO activity over the Asian summer

monsoon region, we use two real-time multivariate in-

dices (i.e., BSISO1 and BSISO2) proposed by Lee et al.

(2013). BSISO1 (BSISO2) is defined by the first and

second (third and fourth) principal components (PCs)

of the MV-EOF analysis. To show the evolution and

propagation of BSISO1 (BSISO2), eight phases are

defined based on sign and amplitude of PC1 and PC2

(PC3 and PC4) (Lee et al. 2013). In this study,

the definition of BSISO’s eight phases follows Lee

et al. (2013).

General features of BSISO evolution are as follows.

Convection anomaly associated with BSISO1 appears

over the equatorial Indian Ocean in phase 1, and then

propagates northeastward. It reaches the Indian sub-

continent in phase 3 and the Bay of Bengal in phases 4

and 5. During these phases, convection anomaly is

characterized by the northwest–southeast-tilted rain-

band. Then, convection anomaly over the Maritime

Continent and equatorial western Pacific propagates

northward and reaches the South China Sea in phase 7

and the WNP in phase 8. For BSISO2, the convection

anomaly is located in the equatorial Indian Ocean and

Philippine Sea in phase 1. Then, it propagates north-

westward over the Indian Ocean and WNP–East Asian

(EA) regions. In phases 4 and 5 convection anomaly

shows a southwest–northeast-tilted horizontal structure

from the Bay of Bengal to the WNP–EA region. For

further details of the BSISO indices, the readers are

referred to Lee et al. (2013).

In APCC, real-time BSISO forecast activity is initiated

in 2013 for improving the ability to understand and forecast

BSISO (http://www.apcc21.org/ser/casts.do?lang5en).

Real-timeBSISO forecasts produced by three operational

numerical models fromAPCC are used as a counterpart

to observed BSISO indices. In the present study, these

models are named simply BOM (from the Australian

Bureau of Meteorology; Hudson et al. 2013), CFS (from

NCEP; Saha et al. 2014), and ECM (from ECMWF;

Buizza et al. 2005) in the present study. The models

provided by APCC together with a description of

BSISO forecast setup are presented in Table 1.

b. Analysis methods

1) EXTREME PRECIPITATION: DEFINITION AND

ESTIMATION OF PROBABILITY USING BSISO
MODES

As the flooding events are observed to have seasonal

variation (Adhikari et al. 2010), we calculate the ex-

treme precipitation threshold in each month. For each

month, we select precipitation events with greater than

0.3mmday21 of daily precipitation. Dry regions where

the climatological monthly mean precipitation rate is

less than 2mmday21 are excluded in our analysis. With

these considerations, the daily precipitation at indi-

vidual grid point for each month fits in an approximate

gamma distribution. The 90th percentile is used as

threshold value to define the extreme precipitation

events. The spatial distribution of 90th percentile pre-

cipitation in each month is shown in Fig. 1b and its

pattern is very similar to 95th percentile precipitation

(not shown).

The empirical probability of extreme precipitation

events is estimated using observed BSISO indices. Using

19 years of precipitation and BSISO index data, we

estimate the BSISO phase-dependent (P-dependent)

probability of extreme precipitation:

P-dependent Pr_O(%)5P(Ext jBSISO_XZ) , (1)

where Pr_O denotes estimation of extreme precipitation

probability using observed BSISO indices, P(BSISO_XZ)

indicates the probability of BSISOphaseX occurrence in a

certain month Z, and P(Ext j BSISO_XZ) represents

TABLE 1. Model names and description of BSISO forecasts of APCC.

Model Institution Initializations Ensemble size Analysis period

Predictive Ocean Atmosphere

Model for Australia, version 2.4

(POAMA-2.4) multiweek

model (BOM)

Australian Bureau

of Meteorology

Twice per week 33 From May to

October 2013–15

Climate Forecast System (CFS) National Centers for

Environmental Prediction

Every day 4 From May to

October 2013–15

ECMWF Ensemble Prediction

System (ECM)

European Centre for

Medium-Range

Weather Forecasts

Twice per week 51 From May to

October 2013–15
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FIG. 1. (a) Climatology (shading) and daily variability (white contour, $12mmday21, interval: 4mmday21) of precipitation in each

month (1997–2015). (b) The 90th percentile precipitation (mmday21) as a threshold of extreme precipitation. (c) Mean occurrence days

(occurrence days averaged over 19 yr) of extreme precipitation events.
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the conditional probability of extreme precipitation oc-

currence when BSISO phase is X in a month Z.

Further, to consider the effects of BSISO amplitude on

extreme precipitation occurrence, the BSISO phase–

amplitude (PA)-dependent probability is calculated. For

this calculation, BSISO index data are classified into four

groups according to large and small BSISO amplitudes,

namely (PC12 1 PC22)1/2 $ 1.0, (PC12 1 PC22)1/2 , 1.0,

(PC32 1 PC42)1/2 $ 1.0, and (PC32 1 PC42)1/2 , 1.0. The

PA-dependent probability estimated by observed BSISO

phase and amplitude at a givenmonth can be obtained by:

PA-dependent Pr_O(%)5P(Ext jBSISO_XYZ) , (2)

where P(BSISO_XYZ) is the probability that BSISO

phase X, which meets the amplitude criteria Y, occurs

in a certain month Z.

Similar to the estimation of extreme precipitation

probability using observed BSISO indices (i.e., Pr_O), we

examine the corresponding probability using predicted

BSISO indices (Pr_F). For this analysis, we classify four

forecast groups according to the forecast lead time, on

which forecast capability depends: ‘‘weather forecast’’

with 0–3 forecast lead days, ‘‘pentad 1 forecast’’ with 4–8

forecast lead days, ‘‘pentad 2 forecast’’ with 9–13 forecast

lead days, and ‘‘pentad 3 forecast’’ with 14–18 forecast

lead days. Using BSISO forecast data and observed pre-

cipitation, the P-dependent and PA-dependent probabil-

ities of extreme precipitation events can be calculated by:

P-dependent Pr_F(%)5P(Ext jBSISO
F
_XZ) and

(3)

PA-dependent Pr_F(%)5P(Ext jBSISO
F
_XYZ) ,

(4)

where P(BSISOF_XZ) indicates the probability that

predicted BSISO phase is X in a certain month Z, and

P(Ext jBSISOF_XZ) represents the probability that

extreme precipitation occurs in observation when the

predicted BSISO phase is X in a month Z. Because of

the limited data length of BSISO forecasts, the proba-

bility is calculated using the data for summer from 2013

to 2015. Although the forecast data for three seasons are

not long enough to evaluate prediction capability, the

present study attempts to show the potential for moni-

toring and forecasting extreme precipitation events us-

ing real-time BSISO forecast data.

2) FORECAST SKILL OF BSISO MODES

The forecast skill of BSISO indices is assessed in terms

of bivariate correlation [Eq. (5)], which measures the

linear relationship between PC pairs (Lin et al. 2008;

Gottschalck et al. 2010). We use the ensemble mean for

this analysis:

Corr(t)5
�
N

i51

[a
1
(t)b

1i
(t, t)1 a

2i
(t)b

2i
(t, t)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51

[a21(t)1 a22(t)]

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

[b2
1i(t, t)1 b2

2i(t, t)]

s ,

(5)

where a1(t) and a2(t) are the observed BSISO PC1 and

PC2 (or BSISO PC3 and PC4) at day t, and b1i(t, t) and

b2i(t, t) are their respective forecasts at day t for a lead

time of t days. Here, N is the number of forecasts.

3. Seasonal march of mean precipitation, extreme
events, and BSISO evolution

Understanding the climatological features and daily

variability of precipitation over Asia is necessary before

examining the features of extreme precipitation events.

Figure 1a presents the spatial distribution of climatology

and daily standard deviation of precipitation in each

month from May to October. It is noted that both cli-

matology and daily variability of precipitation change

with the seasonal march. Major rainbands in South and

Southeast Asia are enhanced and propagate northwest-

ward from May to August and weaken from September

to October. Daily variability is strong over land, land–

ocean boundaries, and the WNP, particularly the 108–
308N band. However, over the equatorial eastern Indian

Ocean and WNP monsoon trough (intertropical conver-

gence zone), daily variability is weak, which indicates

high mean precipitation is not necessarily linked to large

daily variability over those regions. The distribution of

daily variability is likely related to the distributions of

synoptic-scale and intraseasonal oscillation (ISO) vari-

ability. The synoptic-scale variability is much larger over

the land and land–ocean boundary regions, but ISO

variability is great over oceans (not shown).

Figures 1b and 1c exhibit the 90th percentile pre-

cipitation as a threshold of extreme precipitation events

and mean occurrence days of extreme events, re-

spectively. In general, the 90th percentile precipitation

tends to be large over the regions ofmajor rainbands and

strong daily variability (Fig. 1b). Similar to the clima-

tology and daily variability, occurrences of extreme

precipitation events show distinct intraseasonal changes

(Fig. 1c). Climatologically, extreme precipitation events

are observed most frequently over the East China Sea in

June and northern Indian Ocean in September (more

than 10 days in a month).

Characteristics of BSISO activity, such as the life cycle

and location of maximum amplitude, change with the
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seasonal march (e.g., Kemball-Cook andWang 2001; Liu

and Wang 2014; Lee and Wang 2016). Therefore, before

exploring the relationship between BSISO activity and

extreme precipitation events, we examine the sub-

seasonal features of BSISO evolution. Figure 2 shows the

number of occurrence days for each phase of BSISO1 and

BSISO2. The composite precipitation anomaly related to

the most frequently occurring BSISO phase is also pre-

sented. It is worth noting that several phases show a dis-

tinct time preference for their occurrence (Lee andWang

2016). In May, phase 7 of BSISO1, which shows strong

positive precipitation anomaly from the South China Sea

to WNP (Fig. 2g), is observed 122 days out of total

589 days (31 days 3 19 yr), but phase 4 is found in only

42 days. In August, phase 2 of BSISO1, which shows a

strong dry anomaly over the Bay of Bengal and WNP

(Fig. 2h), occurs on 122 days whereas phase 1 occurs on

41 days. In September and October, phases 5 and 1 of

BSISO1 are the most frequently occurring phases, re-

spectively, and their spatial patterns of precipitation

anomaly are nearly opposite (Figs. 2i,j). The phase pref-

erence of BSISO1 is relatively weak in June and July

compared to other months, but BSISO2 shows a strong

phase preference in these months. In June, phase 6 of

BSISO2, which has a positive precipitation anomaly in

southeastern China and the Bay of Bengal (Fig. 2k),

shows the highest frequency with 123 days. Phase 8 of

BSISO2 (Fig. 2l) occurs for 110 days in July. Reasons for

the phase preference of BSISOactivity are of interest and

will be further discussed in the last section.

Furthermore, BSISO evolution from phase 1 to phase

8 reflects the seasonal shift. In general, BSISO pre-

cipitation anomalies evolve northeastward over the In-

dian Ocean sector and northward over the western

Pacific from phase 1 to phase 8, but the location of

maximum amplitude of ISO activity changes with the

seasonal march. In May a strong positive precipitation

anomaly prevails over the equatorial IndianOcean from

phase 2 to phase 4 (Fig. 3a), whereas in August the most

dominant precipitation anomaly is observed over the

WNP from phase 6 to phase 8 (not shown).

4. Empirical relationship between BSISO and
extreme precipitation events

Establishing useful linkages between BSISO activity

and extreme precipitation events is important for sub-

seasonal prediction of extreme events. To find out

whether BSISO activity can be indicative of extreme

precipitation occurrence, the probability of extreme

precipitation events is estimated as a function of BSISO

phase and amplitude. The present study will mainly

discuss the results related to BSISO1 mode.

Figure 3 presents the precipitation anomaly, P-dependent

probability, and PA-dependent probability (case of

large BSISO amplitude) according to BSISO1 phases in

May. Note that the probability of extreme precipitation

over a certain area substantially changes with BSISO1

phases. For example, the P-dependent probability is

about 30%–40% in the equatorial Indian Ocean when

BSISO1 phases are 2 and 3. However, it is less than 10%

over the corresponding region in BSISO1 phase 7. In

addition, the probability tends to be higher if we con-

sider both BSISO phase and large amplitude (PA-

dependent probability).

Several phases, such as phases 2–4, exhibit high spatial

similarity between BSISO precipitation anomaly and

extreme precipitation probability pattern (i.e., regions

with a strong precipitation anomaly correspond to re-

gions of high probability). However, some phases such

as phase 8 show low spatial coherence between the two

fields. To select key phases that show high spatial simi-

larity between BSISO precipitation anomaly and ex-

treme precipitation probability pattern, we examine

pattern correlation coefficients (PCCs) between BSISO

precipitation anomaly field and P-dependent probability

distribution over 08–408N, 708–1408E. For the PCC cal-

culation, we consider the grid points where precipitation

anomalies are positive only. BSISO1 phases are ordered

by the PCC in each month and the top three BSISO1

phases are presented in Figs. 4 and 5. In all selected

phases, the spatial patterns of P-dependent probabilities

are very similar to precipitation anomaly fields. This

indicates that, during these phases, regions with strong

precipitation anomalies have higher chances of reaching

the extreme stage.

In May, strong precipitation anomaly during phases

2–4 (Fig. 4a)maymainly contribute to the distribution of

extreme event occurrence shown in Fig. 2c. In June,

precipitation anomalies during BSISO1 phase 8 and

phase 1 are very strong over the East China Sea (Fig. 4b)

and it is consistent with spatial pattern of extreme event

days in the correspondingmonth (Fig. 2c). Inmost cases,

high probabilities are observed over ocean. However, it

is interesting to note that probability over some land

regions is largely controlled by BSISO activity. The

extreme precipitation probability over southeastern

China is about 30%–40% in May when the BSISO

precipitation anomaly arrives over the corresponding

region (phase 4). Similarly, the probability of extreme

precipitation over western China reaches 40%–50% in

September when the BSISO precipitation anomaly ar-

rives over the region (phase 1). The probability over

Indochina is 20%–30% during phase 6 in October.

Similar to BSISO1, BSISO2 phases are ranked by

PCC between precipitation anomaly and probability
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FIG. 2. (a)–(f) Total occurrence days of each BSISO phase in a givenmonth (1997–2015). (g)–(l) Precipitation anomaly (mmday21) at the

most frequently occurring BSISO phase.
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FIG. 3. (a) Precipitation anomaly (mmday21), (b) P-dependent probability (%), and (c) PA-dependent

probability (%) of extreme precipitation at each phase of BSISO1 in May. The numbers at the top-left

corners in (a) and (b) indicate the total occurrence days of each BSISO1 phase. The numbers at the top-left

corners in (c) is the total occurrence days of each BSISO1 phase with large amplitude.
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fields. Figure 6 shows the top two BSISO2 phases in each

month. Precipitation anomalies at these phases also

contribute to the occurrence of extreme precipitation

events to some extent. The P-dependent probability is

very high (about 40%–50%) over the equatorial Indian

Ocean at BSISO2 phase 2 in May, the East China Sea at

phase 4 in June, and the South China Sea at phase 3

in August.

What is an advantage of utilizing BSISO information

as an indicator of extreme precipitation events? To ad-

dress this question, the climatological probability of

extreme precipitation events that are not related to

BSISO activity is compared with the BSISO-based

probability. Figure 7 presents the climatological and

PA-dependent probabilities of extreme precipitation

events over Indochina and southeastern China. These

regions are important for the global rice market (e.g.,

Chen and Yoon 2000) and are vulnerable to flooding

(Jonkman 2005; Mirza 2011). The overall climatological

probability over these regions is about 10%–15% in

May. During BSISO1 phase 4, the PA-dependent

probability increases up to 30%–40% over southeast-

ern China. The PA-dependent probability is quite low

(less than 10%) over Indochina during BSISO1 phase 2.

In August, compared to the climatological probability,

the PA-dependent probability during phases 5 and 7 is

very high over the Bay of Bengal, Indochina, and west of

the Philippines. This indicates that we can specify the

timing and area of high probability based on the BSISO

information including phase and amplitude. These re-

sults demonstrate an obvious advantage of using BSISO

to predict extreme precipitation events.

5. Possibility of predicting extreme precipitation
events using BSISO forecasts

In the previous section, it is suggested that the BSISO

indices can be a useful indicator for forecasting extreme

FIG. 4. P-dependent probability (%; shading) and precipitation anomaly (mmday21; contour interval is 2 mmday21, starting at

1mmday21) during three key phases of BSISO1 in (a) May, (b) June, and (c) July. Three key phases are selected by PCC between the

BSISOprecipitation anomaly and P-dependent probability of extreme precipitation events (08–408N, 708–1408E). The numbers at the top-

left corners of each panel indicates the total occurrence days of each BSISO1 phase.

15 APRIL 2017 LEE ET AL . 2857



precipitation events. To evaluate our finding we estimate

the probability of extreme events using predicted BSISO

indices and compare it with observed results. Although

three years of BSISO forecast data from APCC may not

be sufficient to estimate probability of extreme pre-

cipitation occurrence, our results would be helpful to

verify the usefulness of real-time BSISO forecasts for the

prediction of extreme precipitation events over Asia.

Before calculating the probability of extreme events

using BSISO forecasts, we evaluate the prediction skill

of leading BSISO modes. The prediction skill of BSISO

indices vary with model, initial season, and initial am-

plitude of BSISO (Lee et al. 2015; Lee and Wang 2016).

In the present study, the dependence of BSISO pre-

diction skill to initial season (i.e., the month in which

prediction is initiated) is examined. Figure 8 shows the

bivariate correlation skill of BSISO forecast data pro-

vided by three models of APCC. The prediction skill is

determined by the forecast lead day when the correla-

tion drops below a threshold of 0.5. The correlation skills

of BSISO1 and BSISO2 vary considerably with the

initial season. The ECM exhibits the best skill for both

BSISO1 (.15 days) and BSISO2 (.13 days) except in

May. BSISO1 tends to show high skill when initialized in

September or October, whereas the skill of BSISO2

tends be high when initialized in June or July. In-

terestingly, all three models show the lowest skills for

BSISO1 and BSISO2 when initialized in May. Because

BSISO prediction skill is higher than 1 week in most

cases, we can expect the pentad 2 and pentad 3 forecasts

to be able to capture the empirical relationship between

BSISO and extreme precipitation events to some extent.

Figure 9 depicts the P-dependent probability of extreme

precipitation events determined by observed BSISO

and BSISO forecasts of pentad 2, respectively. For a fair

comparison, the observed probability (i.e., Pr_O) in

Fig. 9 is calculated using observed BSISO indices from

2013 to 2015. The probability patterns estimated by

BSISO forecasts (i.e., Pr_F) exhibit similar distribution

to observations although the forecast lead time of the

pentad 2 forecast is relatively long (9–13 days). Major

regions with high probability such as the WNP and

FIG. 5. As in Fig. 4, but for (a) August, (b) September, and (c) October.
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FIG. 6. P-dependent probability (%; shading) and precipitation anomaly (mmday21;

contour interval is 2mmday21, starting at 1mmday21) during key phases of BSISO2 in

(a) May, (b) June, (c) July, (d) August, (e) September, and (f) October. Two key phases are

selected by PCC between the BSISO precipitation anomaly and P-dependent probability of

extreme precipitation events (08–408N, 708–1408E). The numbers at top-left corners in each

panel indicates the total occurrence days of each BSISO2 phase.
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FIG. 7. Climatological and PA-dependent probabilities of extreme precipitation events in (a) May and (b) August. The PA-dependent

probability of extreme precipitation is estimated by each phase of BSISO1 with large amplitude.
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South China Sea during BSISO1 phase 7 in July are

captured in all models.

Furthermore, to evaluate the capability of real-time

BSISO forecasts for predicting extreme events quanti-

tatively, we examine the PCC skill score between the

probability distributions estimated by observed and

predicted BSISO indices (i.e., PCC between Pr_O and

Pr_F). The PCC is calculated over the region 08–408N,

708–1408E, but only for the grid points where the prob-

ability derived from observedBSISO is greater than 5%.

Figure 10 presents the PCC skill score for P-dependent

probability of extreme precipitation estimated by

BSISO1 of the pentad 3 forecast (14–18 forecast lead

days). TheBSISO1phase that occurs less than 5 days over

three years (2013–15) is excluded in this analysis. Since

ECM shows superior prediction capability of the leading

BSISO modes as shown in Fig. 8, the PCC skill score of

theECMforecast is high inmost cases. In some cases such

as phase 5 in September and phase 7 inOctober, the PCC

skill score is very high, exceeding 0.8. The PCC skill score

is very low inMay (not shown), and thismay be attributed

to the low skill of BSISO in May (Fig. 8). Consequently,

Figs. 9 and 10 support the potential for subseasonal pre-

diction of extreme precipitation events 1–2 weeks ahead

using real-time BSISO forecasts.

6. Summary and discussion

Forecasting extreme precipitation events is one of the

challenges in climate prediction. The main objectives of

this study are to establish the useful relationship between

BSISO activity and extreme precipitation occurrence and

to apply its empirical relationship to the subseasonal

prediction of extreme precipitation events. The proba-

bility of extreme precipitation is estimated based on the

BSISO phase and amplitude. Additionally, we evaluate

the prediction skill of BSISO forecast data provided by

APCC and the capability of BSISO forecasts to capture

the empirical linkage between BSISO activity and ex-

treme precipitation events.

Our major findings are summarized as follows:

d The extreme precipitation probability changes from less

than 10% to over 40%–50%according toBSISOphases

at a given area and month (Fig. 3). The probability

FIG. 8. Bivariate correlation coefficients for (a) BSISO1 (PC1 and PC2) and (b) BSISO2 (PC3 and PC4).
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of extreme precipitation events tends to be high when

BSISO amplitude is large. Therefore, use of BSISO

information including phase and amplitude facilitates

identifying area and timing of high probability of ex-

treme precipitation occurrence (Fig. 7).
d In general, the probability of extreme precipitation

estimated by BSISO activity is high over ocean.

Particularly, it is greater than 40% over the Indian

Ocean in May, the East China Sea in June, and the

WNP in October when BSISO precipitation anomaly

is strong over the corresponding regions.

d Occurrence of extreme precipitation over some land

regions is highly controlled by BSISO activity (Figs. 4

and 5). Probability of extreme precipitation over

southeastern China is 30%–40% in May when the

BSISO precipitation anomaly arrives over the region

(BSISO1 phase 4). Similarly, the extreme precipitation

probability overwesternChina reaches about 40%–50%

in September when the BSISO precipitation anomaly

occurs over the corresponding region (BSISO1 phase 1).

d BSISO forecasts at lead times longer than two weeks

can capture the empirical relationship betweenBSISO

FIG. 9. The P-dependent probability of extreme precipitation estimated by (a),(e) the ob-

served BSISO1 and (b)–(d) and (f)–(h) the BSISO1 forecast of pentad 2, for (left) BSISO1

phase 7 in July and (right) phase 6 in September.
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activity and extreme precipitation events to some

extent (Figs. 9 and 10). This is attributed to the use-

ful prediction skill of real-time BSISO produced by

APCC models (Fig. 8), particularly in ECM, which

shows about 20 days of prediction skills except inMay.

The methodology adopted in this study serves as a

guideline to utilize the real-time BSISO forecasts. Our

results show that the ability of real-timeBSISO forecasts

to capture extreme precipitation occurrence is promis-

ing. However, we need to be cautious because the three

years of forecast duration are limited and not long

enough to estimate the probability of extreme events

from a climatological perspective. For a more thorough

assessment of BSISO forecast skill and its ability of

monitoring extreme precipitation occurrence, the ex-

tended forecast record (e.g., from the Subseasonal-to-

Seasonal Prediction Project database; http://apps.

ecmwf.int/datasets/data/s2s/levtype5sfc/type5cf/) will

be required in the future work. In addition, a suitable

approach to combine probabilities estimated by BSISO1

and BSISO2 needs to be developed for improvement of

extreme precipitation prediction. We believe that this

work encourages further investigation into a better fore-

cast approach to predict and manage extreme precipita-

tion events.

Our results indicate that improving the BSISO forecast

can lead to better prediction andmanagement of extreme

precipitation events. In all models, prediction skills of

BSISO1 and BSISO2 are the lowest in May (Fig. 8). The

low prediction skill of BSISO in May is partly attributed

to small BSISO amplitude in the corresponding month

(Lee et al. 2013) because the BSISO prediction skill with

large initial amplitude is better than that with small initial

amplitude (Lee et al. 2015). Another possible reason is a

model’s capability to capture the annual cycle of SST and

low-level moisture distribution since the character of the

ISO tends to depend on these factors (Wang and Xie

1997; Kemball-Cook and Wang 2001). In early summer,

the northeastern Indian Ocean, Bay of Bengal, and

Arabian Sea are warmer than 298C and their ability to

support deep convection and low-level moisture is sub-

stantially greater over these regions compared with other

months (Kemball-Cook and Wang 2001). The model’s

deficiency in capturing these aspects may be responsible

for the poor simulation of the ISO in early summer. This

shortcoming can be improved by a realistic atmospheric

initialization to some extent. Alessandri et al. (2015)

showed that the realistic phase initialization of ISOmodes

improves the forecast skill of Indian summer monsoon

onset triggered by northward propagating ISO mode.

Meanwhile, a noticeable phase preference of BSISO

activity is found (Fig. 2). BSISO1 phase 7 in May, phase 2

in August, phase 5 in September, and phase 1 in October

are themost frequently occurring phases at a givenmonth.

We speculate that these phases are likely associated with

the persistence of the corresponding phase. Figure 11

depicts the duration days of BSISO1 phase in eachmonth.

Here the duration days of each phase indicate the con-

secutive days of a certain phase after its occurrence. It is

noted that the most frequently occurring phases tend to

persist for many days once they appear. Since social and

economic impacts of extreme precipitation depend on the

duration of extreme precipitation events, more work on

the BSISO behavior including the physical mechanism of

FIG. 10. The PCC skill score for the P-dependent probability of

extreme precipitation events estimated by BSISO1 of the pentad 3

forecast. The PCC is calculated in the region 08–408N, 708–1408E,
but using only grid points where the probability estimated by ob-

served BSISO1 is greater than 5%.
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long-lasting phase, transition between phases, and phase-

locking of ISO toannual cycle (Wang andXu1997)will be

of great value for improving prediction capability of ex-

treme precipitation events.
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