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Abstract During early summer (May-June, MJ), East Asia (EA) subtropical front is a defining feature of
Asian monsoon, which produces the most prominent precipitation band in the global subtropics. Here we
show that dynamical prediction of early summer EA (20°N-45°N, 100°E-130°E) rainfall made by four coupled
climate models’ ensemble hindcast (1979-2010) yields only a moderate skill and cannot be used to estimate
predictability. The present study uses an alternative, empirical orthogonal function (EOF)-based physical-
empirical (P-E) model approach to predict rainfall anomaly pattern and estimate its potential predictability.
The first three leading modes are physically meaningful and can be, respectively, attributed to (a) the
interaction between the anomalous western North Pacific subtropical high and underlying Indo-Pacific warm
ocean, (b) the forcing associated with North Pacific sea surface temperature (SST) anomaly, and (c) the
development of equatorial central Pacific SST anomalies. A suite of P-E models is established to forecast the
first three leading principal components. All predictors are 0 month ahead of May, so the prediction here is
named as a 0 month lead prediction. The cross-validated hindcast results demonstrate that these modes may
be predicted with significant temporal correlation skills (0.48-0.72). Using the predicted principal
components and the corresponding EOF patterns, the total MJ rainfall anomaly was hindcasted for the period
of 1979-2015. The time-mean pattern correlation coefficient (PCC) score reaches 0.38, which is significantly
higher than dynamical models’” multimodel ensemble skill (0.21). The estimated potential maximum
attainable PCC is around 0.65, suggesting that the dynamical prediction models may have large rooms to
improve. Limitations and future work are discussed.

1. Introduction

East Asian summer monsoon (EASM) rainfall has a profound influence on the lives of billions of people.
Tremendous efforts and significant progress have been made in understanding the sources of variability of
the EASM rainfall over the past two decades. The mechanisms that have been identified to influence EASM var-
iations include El Nifio—-Southern Oscillation (ENSO) teleconnection during ENSO development phase [Zhang
et al., 1996], the positive feedback between the western North Pacific (WNP) subtropical high and warm pool
sea SST [Wang et al., 2000; Wang and Zhang, 2002; Lau et al., 2004; Lau and Nath, 2006; Kosaka et al., 2012;
Wang et al., 2013; Xiang et al., 2013], the North Atlantic Oscillation (NAO) through Atlantic—Eurasian teleconnec-
tion [Lu et al., 2006; Z. Wu et al., 2009], the northern Eurasian snow cover during the previous winter and spring
[Ogietal., 2004;Yimetal., 2010], the Tibetan Plateau snow coverand anomalous thermal conditions [Zhang et al.,
2004; Wang et al., 2008a], the spring arctic seaice [B. Y. Wu et al., 2009], and the enhancement (weakening) of the
thermal contrast between the Asian continent and the western North Pacific [Zhou and Zou, 2010; Zhao et al.,
2012]. The question is how to test and translate these to useful prediction tools?

Traditional seasonal forecast of EASM deals with June-July-August mean rainfall anomalies, which may not be
the best strategy because the EASM rainy season is typically from May to August [Wang and LinHo, 2002] and
pronounced differences exist between the early summer (May-June, or MJ) and peak summer (July-August,
or JA): both climatological mean states and the principal modes of interannual variability exhibit distinct spa-
tial and temporal structures [Wang et al., 2009a; Li and Zhou, 2011; Qin et al., 2014; Oh and Ha, 2015]. Besides,
the seasonal marches from May to June and from July to August are both relatively gradual [Wang et al.,
2009al. For these reasons, we are motivated to study separately the early and peak summer rainfall variability
and predictability.
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Figure 1. (a) May-June (MJ) mean precipitation rate (color shading in units of mm d_1), 850 hPa winds (arrows in units of
m 571), and 500 hPa geopotential (contours in units of 1 m? 572) averaged for 1979-2015. (b) Percentage map of the
difference of MJ mean precipitation between the multimodel ensemble mean and observation for the period of 1979-2010
showing models’ deficiency in simulating the MJ precipitation climatology.

During MJ the East Asia (EA) subtropical front is a defining feature of Asian monsoon circulation, and it pro-
duces the most prominent precipitation zone in the global subtropics. The observed long-term mean preci-
pitation in MJ is characterized by a salient rainband extending about 9000 km from the Bay of Bengal
northeastward via Indo-China, southern China, all the way to east of Japan (Figure 1a). This prominent rain-
band is as associated with the EA subtropical front [e.g., Tao and Chen, 1987]. This early summer rainband
reflects the EASM onset over the South China Sea in mid-May and the intense Meiyu/Baiu in mid-June
[Ding, 1992; Chu et al, 2012]. Asian monsoon rainy season commences from the southeastern Bay of
Bengal and rapidly expands northeastward through the Indochina peninsula (in early May) to the South
China Sea (mid-May) and east of Taiwan (late May), establishing the EA subtropical rainband [Wang and
LinHo, 2002]. In MJ, Indochina, southern China, Taiwan, and Okinawa all reach their yearly peak or one of
the peaks of the local rainy seasons [Chen, 1983; Yim et al., 2014]. Therefore, prediction of the MJ precipitation
is important for prediction of the total amount of summer rainfall of the EASM. Previous study has already
predicted area-averaged rainfall over southern China during MJ [Yim et al., 2014]. However, predicting the
spatial structure of the rainfall anomalies is more difficult but more valuable for end users.

The present work focuses on the MJ rainfall variability along the western portion of EA subtropical front that
covers important densely populated land areas (20°-45°N, 100°-130°E). As shown in Figure 1, the climatolo-
gical boreal summer precipitation amount in this region is large. It is also the region where the precipitation
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Figure 2. The time series of the PCC skill for MJ precipitation prediction over East Asia using the four coupled models’
multimodel ensemble (MME) initiated from the first day of May for the period of 1979-2010 (32 years). The PCC score
over the entire period is 0.21.

has large bias in climate models’ simulations [Wang et al., 2009b, Figure 1b]. Therefore, understanding the
physical mechanisms responsible for precipitation anomalies in this domain and establishing prediction
model are of vital importance for society.

The present work aims to develop physical understanding of the sources of the MJ rainfall predictability over
EA and further establish a suite of physically based empirical or physical-empirical (P-E) prediction models to
estimate the lower bound of the predictability. A detailed introduction about P-E prediction models will be
given in section 3.2.

2. Dynamical Models’ Performance in Hindcast of MJ EA Rainfall

To assess the performance of rainfall prediction by numerical models, we used retrospective forecasts of four
advanced atmosphere-ocean coupled models with initial conditions on various dates in May, including the
National Centers for Environmental Prediction Climate Forecast System version 2 [Saha et al., 2014], the
Australia Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia version 2.4 [Hudson
et al, 2011], the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 [Delworth et al., 2006],
and the Frontier Research Center for Global Change Scale Interaction Experiment-F model [Luo et al.,
2005]. Each model includes ensemble forecast with an ensemble size ranging from 10 to 40. It has been
demonstrated that the multimodel ensemble (MME) prediction has considerably higher skill than individual
model prediction [Lee et al., 2010]. To obtain higher skill, we used the MME prediction by simply averaging the
four coupled models’ ensemble mean anomalies after removing their own climatology.

The selected models are notoriously deficient in simulating MJ precipitation climatology (Figure 1b). The
models underestimate the strength of the subtropical rainband by about 40-60% while overestimating
rainfall amounts over the western-central Pacific intertropical convergence zone by more than 50%. Given
this large model bias, it is of interest to find out their prediction skills for MJ rainfall prediction.

Figure 2 shows the evaluation results for the four models’ MME hindcast experiments. The skill is measured by
pattern correlation coefficient (PCC) between the observed and model-predicted MJ rainfall anomaly pat-
terns over EA for each year from 1979 to 2010. The 32 year averaged PCC score is only 0.21. Is this low skill
due to intrinsic limit of the predictability or due to models’ deficiencies? To address these questions, we will
adopt a nondynamical model approach (i.e., physics-based empirical model), which will be introduced in
section 3.2. It should be pointed out that the MME prediction results will not be used when establishing
the physics-based empirical model. The performance of MME prediction given in Figures 1b and 2 is only
for the purpose of showing the limitation of dynamical models on predicting MJ EA rainfall.

3. Methodology and Data
3.1. Data Used
Several observed data sets are used in this study, including (@) monthly mean precipitation from the Global

Precipitation Climatology Project (GPCP) version 2.2 data sets [Huffman et al., 2011], (b) Climate Prediction
Center Merged Analysis Of Precipitation (CMAP) [Xie and Arkin, 1997], (c) monthly mean SST from the
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National Oceanic and Atmospheric Administration Extended Reconstructed SST (ERSST) version 3b [Smith
et al, 2008], and (d) monthly mean circulation data from ERA-Interim [Dee et al., 2011] for the period
of 1979-2015.

3.2. Empirical Orthogonal Function-Based Anomaly Pattern Prediction Using P-E Models

Objective prediction of precipitation anomalies in a given domain has been relied on either dynamical mod-
els or pure statistical models such as canonical correlation analysis [Barnett and Preisendorfer, 1987; Barnston,
1994] and empirical orthogonal function (EOF)-based partial least square method [Xing et al., 2016a]. Since it
has been demonstrated that the dynamical models have limited capability in reproducing observed EOF pat-
terns in section 5.1, we adopted an EOF-based physical-empirical model approach [Yim et al., 2015; Xing et al.,
2016b; Xing and Wang, 2016]. A comparison of prediction skill between dynamical models and EOF-based
physical-empirical model will be given in Figure 6.

The first step is to perform EOF analysis, which is the most convenient way to derive frequently observed pat-
terns and to reconstruct the total variation of a geophysical field. The second step is to explore the physical
processes that reproduce the pattern. Understanding the origin of the EOF patterns is more important than
statistical test of their separability, especially when the sample size is limited and the separation of modes is
difficult. If the EOF patterns are physical meaningful, we will use it as potentially predictable patterns. The
third step is to predict the principal components by establishing a set of P-E prediction models. If the principal
component (PC) can be predicted with significant skill, the corresponding EOF pattern may be considered as
predictable mode. The last step is to predict the precipitation anomaly pattern by using the predictable
modes, i.e., use the observed EOF patterns and the corresponding predicted principal components to recon-
struct the total anomaly pattern.

A P-E prediction model is established based on understanding of the physical processes linking the predic-
tors and the predictand. Statistical tests are used as an auxiliary tool to maximize the predictors-predictand
correlation in training periods and to confirm their significance and ascertain mutual independence among
the predictors [Wang et al., 2015].

Different from statistical approaches that fish predictors through variety of fields, the P-E model approach
detects predictors by focusing on only two fields that reflect ocean and land surface anomalous conditions,
i.e.,, the SST and 2 m temperature over land and the sea level pressure (SLP). The 2 m air temperature over land
can, to a large extent, reflect snow cover anomalies. The SLP, albeit interacting with atmospheric heating, is
often forced by surface thermal anomalies [Lindzen and Nigam, 19871, and persistent SLP anomalies often
induce atmospheric anomalous heating. The P-E approach also searches only two types of lower boundary
anomalies: (a) persistent signals from winter (January and February, JF) to spring (March and April, MA)
(JFMA) and (b) tendency signals from JF to MA (MA minus JF). The persistent signals normally reflect positive
feedback processes associated with the local atmosphere-ocean or atmosphere-land interaction, which may
help maintain the lower boundary anomalies. The tendency predictors denote changes from winter to spring
and frequently tip-off the direction of subsequent evolution.

Note that the physically based searching principle requires examination of only four correlation maps (i.e.,
two fields and two types of anomalies) This makes the selection procedure not only objective and reprodu-
cible but also easy to apply to other climate prediction problems. In the selection of predictors from the afore-
mentioned maps, we emphasize understanding of the processes that explain the lead-lag relationships
between predictors and the MJ rainfall patterns.

Stepwise multiple linear regression method is used to establish P-E models for prediction. Prior to the regres-
sion, all variables are normalized by removing their means and divided by their corresponding standard
deviation, which allows direct comparison of the relative contribution of each predictor by examining the
normalized regression coefficient. The stepwise regression procedure identifies statistically important predic-
tors at each step. Each selected predictor has significant contribution to increasing the regressed variance by
a standard F test [Panofsky and Brier, 1968]. A 95% statistical significance level is used as a criterion to select
new predictor at each step. Once in the model, a predictor can only be removed if its significance level falls
below 95% by the addition/removal of another variable. To circumvent overfitting, the number of predictors
is required to be less or equal to three (i.e., less than 10% of the sample size 37).
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Figure 3. (a) The spatial pattern and (b) the corresponding principal component of the first EOF mode (EOF1) derived from MJ precipitation over East Asia (20°N-
45°N, 100°E-130°E) for the period of 1979-2015. Wind vectors in Figure 3a show the correlation coefficients with respect to the PC1. The correlation maps of (c)
anomalous May-June (MJ) mean and (d) JFMA mean SST over ocean/T2m over land (color shading), and SLP (contours) with reference to the PC1. (e) The correlation
maps of MA-minus-JF SST (ocean), 2 m air temperature (T2M, land) anomalies with respect to the time series of the PC1. The areas exceeding 95% confidence level for
SST and T2M are dotted. The rectangular regions outline where the predictors are defined. The GPCP V2 and ERSST V3b data were used, and area weighting is applied
in the EOF analysis.

3.3. Cross-Validated Reforecast

To test the hindcast experiment skills, we used cross-validation method [Michaelsen, 1987] to make a retro-
spective forecast. To lessen overfitting problem, we leave 3 years of data out progressively centered on a fore-
cast target year for the period of 1979-2015, then train the model by using the data of the remaining years
and finally apply the model to forecast the three target years. A detailed procedure is described in section 5.1.

4. The Major Modes of MJ EA Rainfall Variability: Characteristics, Origins,
and Predictors

EOF analysis is used to identify the leading patterns of rainfall variability over EA (20°N-45°N, 100°E-130°E)
during May-June for the 37 year period of 1979-2015 using GPCP rainfall data. The first three leading EOF
modes of the MJ EA rainfall variability using GPCP data account for 26.7%, 13.1%, and 11.0% of the total
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Figure 4. The same as in Figure 3 except for EOF2 mode.

precipitation variance, respectively. These EOF patterns and the corresponding PCs are shown in plots (a) and
(b) of Figures 3-5, respectively.

Are these three EOF patterns physically meaningful? How do they link to lower boundary anomalies? What
are physically consequential predictors for each PC? In the following sections, these questions are addressed
for each pattern. We shall show that each of the three EOF patterns of the precipitation anomaly is physically
meaningful and associated with distinct lower boundary temperature and SLP anomalies.

4.1. EOF1: Western Pacific Subtropical High-SST Dipole Coupled Mode

EOF1 is characterized by enhanced rainfall over southern China that represents an enhanced subtropical
frontal rainfall in MJ and suppressed rainfall north of it (Figure 3a). The PC1 time series indicates that (a) this
pattern often occurs after a peak El Nifio, such as 1983, 1992, 1995, 1998, 2005, and 2010, and (b) there was a
prominent decadal shift around the mid-1990s which was consistent with previous studies [Kwon et al., 2005,
20071: The MJ mean rainfall amount increased significantly after the mid-1990s, and the periodicity also chan-
ged accordingly from 5-6 years to 2-3 years (Figure 3b). Since the central-Pacific El Nifo (or El Nifio Modoki)
happened more frequently after the 1994 than before [Ashok et al., 2007; Yeh et al., 2009] and its impacts on
the EASM are significantly different from the EP-type El Nifio [Feng et al., 2011; Weng et al., 2007; Feng and
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Figure 5. The same as in Figure 3 except for EOF3 mode.

Chen, 2014], the decadal shift around 1993-1994 may be associated with the secular change in the
ENSO properties.

The EOF1 is associated with a strong, large-scale anomalous high over the Philippine Sea and the North
Pacific that persists from the previous winter (JF) to MJ (Figures 3c and 3d). This is the key circulation system
that determines the EOF1 rainfall pattern. What mechanism drives the EOF1? The key process maintaining
the western Pacific subtropical high (WPSH) anomaly is the positive thermodynamic feedback between the
WPSH anomaly and the cooling to the southeast of the WPSH anomaly [Wang et al., 2000; Lau et al., 2004].
The positive SST anomalies over the Indian Ocean also persist from winter to spring, and these anomalies
can enhance the WPSH through Kelvin wave-induced Ekman divergence [Xie et al., 2009]. However, one
should note that the persistence of the northern Indian Ocean warming is also a result of the subsidence
and easterly anomalies associated with the WPSH (Figure 3d) [also Du et al., 2009]. The northern Indian
Ocean warming can in turn enhance the WPSH [Chowdary et al., 2011] by increasing precipitation heating
whose equatorial component can generate anomalous (Kelvin wave) easterly and associated negative shear
vorticity. Thus, the WPSH-SST dipole interaction over the entire Indo-Pacific warm pool maintains both the
SST anomalies and the WPSH anomalies [Wang et al., 2013]. For this reason, we refer EOF1 as WPSH-SST
dipole coupled mode. This mode has been recognized as responsible for the origins of the first EOF mode
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of EA summer rainfall [Wang et al., 2009a; Xing et al., 2016a] and the second EOF mode of the entire Asian
summer monsoon rainfall [B. Wang et al., 2014].

The predictors for PC1 are shown in Figures 3d and 3e. There are two pronounced persistent predictors
(Figure 3d): (a) the equatorial zonal tripolar SST anomalies that are often seen during a decaying El Nifio phase
and (b) the meridional tripolar SST anomalies over North Atlantic associated with a negative North Atlantic
Oscillation (NAO). To depict the zonal tripolar SST anomaly, a predictor named JFMA EQSST is defined by
the SST anomalies (SSTAs) averaged over the equatorial eastern Pacific (5°S-10°N, 120°W-80°W) and mari-
time continent (10°S-20°N, 80°E-140°E) minus the SST anomalies averaged over the central Pacific (5°N-
15°N, 160°E-160°W). To quantify the North Atlantic meridional tripolar SSTA, a predictor JFMA NAT is defined
by the SSTA averaged over the tropical (0-15°N, 60°W-15°W) and high-latitude (40°N-55°N, 60°W-30°W)
Atlantic minus that averaged over the midlatitude Atlantic (25°N-35°N, 80°W-45°W). Figure 3e indicates that
significant opposite tendency signals exist between the WNP SST and Eurasian 2 m air temperature (T2m). To
depict this Eurasian-Pacific thermal tendency contrast, a predictor MA-JF EU-WPT is defined by the MA-JF ten-
dency in 2m air temperature averaged over Eurasia (EU) (40°N-60°N, 50°E-120°E) minus that in SSTA aver-
aged over WNP (15°N-30°N, 120°E-180°E).

The three predictors represent three different processes that affect subsequent MJ EA rainfall. The predictor
JFMA EQSST reflects SSTAs during a decaying ENSO that sets up a favor able condition for persistence of the
WPSH anomaly. The warming to the west of the Philippine Sea and the cooling to its southeast imply an
enhancement of Philippine Sea high pressure (anticyclone) [Wang et al., 2000]. Numerical experiments have
shown that the positive thermodynamic feedback between the Philippine Sea anticyclonic anomaly and
underlying Indo-WP SST dipole anomalies can maintain both the Philippine Sea anticyclone and the SST
dipole through spring to early summer [Lau et al., 2004; Wang et al., 2013; Xiang et al., 2013]. Thus, the
JFMA EQSST is a precursor for the enhanced MJ Philippine Sea anticyclone (Figure 3d).

The second predictor JFMA NAT reflects spring North Atlantic Oscillation (NAO) affecting MJ EA rainfall.
Previous studies found that the North Atlantic SST anomalies can have a positive feedback with the local
winds, which maintains themselves from winter into MJ [Z. Wu et al., 2009] (also Figure 3d). The NAO related
SST anomalies may affect EASM through (a) excitation of the Eurasian wave train extending to northeast Asia
and consequently influencing EA subtropical frontal rainfall [Z. Wu et al., 2009; Yim et al., 2013], (b) alternation
of Arctic oscillation that changes the EA westerly jet stream and thus the strength of the WNPSH [Gong et al.,
2011], and (c) excitation of westward propagating tropical Rossby waves to affect eastern Pacific trade winds
and generate SST anomalies over the equatorial central Pacific, which in turn impact the strength of the
Philippine Sea subtropical high [Wang et al., 2013]. Therefore, the SST anomalies during winter and early
spring over the North Atlantic can be a physically meaningful predictor.

The third predictor MA-JF EU-WPT reflects the Asia-Pacific thermal contrast tendency, which presages devel-
opment of the pressure gradient between EA low and WP high [Zhou and Zou, 2010]. The EU warming ten-
dency also reflects reduced snow anomalies over central Asia, which is consistent with the results of Yim
et al. [2010].

4.2. EOF2: North Pacific SST Mode

The EOF2 features an enhanced Meiyu over the lower reach of Yangtze River valley and western Japan, repre-
senting a northward advance of the normal subtropical front zone in MJ. The increased rainfall is associated
with high SLP anomaly that extends from North Pacific to East China Sea. The corresponding PC2 shows a
dominant 5 year oscillation but has no significant correlation with ENSO (Figure 4b). In fact, the equatorial
SSTA across the Indo-Pacific region is insignificant from the previous winter to spring except over the WP
where weak positive SSTAs persist (Figures 4c and 4d). However, EOF2 is associated with pronounced SSTA
and SLP anomaly (SLPA) over the North Pacific (NP) (Figure 4c), similar to a pattern associated with a negative
phase of Pacific Decadal Oscillation (PDO) [Mantua and Hare, 2002]. We speculate that the key system that
shifts Meiyu northward, namely, the high SLP anomaly over the East China Sea and south of Japan, is a west-
ward extension of the North Pacific high-pressure anomaly; thus, anomalous North Pacific SST is probably the
origin of the EOF2 pattern. For this reason, the EOF2 is called north Pacific SST mode.

Figure 4d shows that significant persistent precursory signals for PC2 include (a) North Pacific SSTA and (b) a
pronounced warming over the southeastern |0 and maritime continent. Thus, two JFMA persistent predictors
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are selected: (a) SSTA in the North Pacific (NP SST) defined by JFMA mean SST anomalies averaged over
domain A (30°N-50°N, 150°W-130°W) minus that averaged over the domain B (30°N-45°N, 150°E-180°E)
and (b) the IO SST anomalies defined by the JFMA mean SSTA averaged over the southeastern Indian ocean
(45°S-10°S, 90°E-120°E).

The persistent NP SSTA and SLPA imply a positive feedback between the anomalous PDO high SLP and
underlying SST dipole through reduced evaporation cooling in the west and enhanced coastal upwelling-
induced cooling in the east. Thus, the PDO-like SSTA foreshadows the further development/maintenance
of a North Pacific high SLP anomaly whose westward extension may lead to the increased SLP to the south
of Japan and East China Sea (Figure 4c). As shown in Figure 4a, the anticyclonic circulation anomaly over East
China Sea is a major circulation anomaly that produces the rainfall anomaly pattern of EOF2.

The persistent southeastern 10 warming is a large-scale manifestation of the warming over and north of the
maritime continent (Figure 4d), which may be associated with an early retreated EA winter monsoon and a
weak Australian summer monsoon. The southeastern IO warming has been also recognized in Oh and Ha
[2016]. The latter induces ocean warming to the west and north of Australia, which causes increased rainfall
over the maritime continent in MJ (not shown). The intensified condensational heat over the maritime con-
tinent helps to establish the cyclonic circulation anomaly over the South China Sea through equatorial Rossby
wave response and to reduce the rainfall over the southern coast of China (Figure 4a).

Figure 4e shows that the most evident tendency precursor is the SST cooling tendency over the northern
Indian Ocean (NIO). Thus, the third predictor, MA-JF NIO SST, is defined by the SST tendency (MA minus JF
means) averaged over the NIO (0°-15°N, 50°E-110°E). The cooling tendency in NIO foreshadows reduced
rainfall there in MJ, which favors a cyclonic anomaly over the South China Sea through excitation of anom-
alous (Kelvin wave) westerly and associated cyclonic shear vorticity [Xie et al., 2009], thus reducing the rainfall
along the southern coast of China, a feature of EOF2 (Figure 4a).

4.3. EOF3: Equatorial Central Pacific (ECP) Mode

EOF3 has large loading over South Korea, Taiwan, and the East China Sea (Figure 5a) but has little weight over
mainland China. This rainfall patter is associated with a strong anomalous high over Japan and enhanced
southerly monsoon along the sea board of EA (Figures 5a and 5d). The corresponding PC3 shows an irregular
year-to-year fluctuation but has no significant correlation with ENSO index (Figure 5b). Note, however, the
EOF3 concurs with a notable cooling in the equatorial central Pacific (ECP) (Figures 5¢ and 5d). Previous stu-
dies have shown that ECP SSTA can affect EASM through teleconnection [e.g., Yim et al., 2008; Li et al., 2010].
For simplicity, we name EOF3 the ECP mode.

There are two precursors for development of the ECP cooling. The first is a PDO-like SST tendency pattern in
the northeast Pacific (NEP) defined by the SST tendency (MA minus JF) between Area 1 and Area 2, where
Area 1 is (20°N-35°N, 180-150°W) and Area 2 includes (5°N-20°N, 160°W-130°W) and (20°N-35°N, 140°W-
120°W) (Figure 5e). This tendency predictor is referred to NEP SST, which is consistent with the anticyclonic
anomaly over the NEP in the previous spring (Figure 5e). The second is a persistent predictor, JFMA CPT,
which is defined by the JFMA mean SSTA averaged over the equatorial-south central Pacific (20°S-5°N,
175°E-155°W) (Figure 5d).

The third predictor features a significant persistent high SLP anomaly over northeast Asia (northeast China
and southeast Siberia) from JF to MA (Figure 5d) and the associated warming tendency (Figure 5e). It foresha-
dows the anomalous high over Japan, which is a key system to produce the EOF3 rainfall anomaly pattern. It
seems that during MJ the high SLP anomaly over northeast Asia shifts slightly southeastward to form the
anomalous high over Japan due to the effects of land warming and relatively ocean cooling toward summer.
Thus, the third predictor named JFMA NEAP is defined as the JFMA mean SLP anomalies averaged over
(40°N-60°N, 115°E-140°E). The warming tendency over northeast Asia (Figure 5e) is not selected because
of its dependence of NEAP.

5. Hindcast With P-E Models and Potential Predictability

In the previous section, we have shown that the first three EOF patterns have different origins and predictors.
Prediction of the early summer EA rainfall over the entire domain includes two steps. First, each PC is
predicted. Second, the forecast field of the EA rainfall anomaly is reconstructed by using the sum of the
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a) PC1

——0BS —— EmpM(0.72) —— MMH(0.47)
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b) PC2

——0BS —— EmpM(0.56) —— MME(0.07)
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c) PC3

—— O0BS —— EmpM(0.48) —— MME(0.14)
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Figure 6. The corresponding PCs of the first three EOF modes (a—c) in observation (OBS), cross-validated physical-empirical
prediction (EmpM) by using three 0 month lead predictors for 1979-2015 and multimodel ensemble (MME) dynamical
prediction. The numbers within the parenthesis in the figure legend indicate the PCC between the observed and
predicted PC.

three observed spatial EOF patterns multiplied by their corresponding predicted PCs. It is worthy to mention
that all predictors can be obtained 5 day before 1 May because the values for the last 5 days of April can be
obtained from weather forecast, so the prediction here may be called a 0 month lead prediction.

5.1. Prediction of Principal Components With P-E Models

A suite of P-E models for prediction of each PC was established through stepwise multilinear regression
method as introduced in section 3.2. To test the hindcast experiment skills, we applied cross-validation
method to each P-E model [Michaelsen, 1987] to make a retrospective forecast. In the cross-validation
method, the “training” and “prediction” samples at each step are strictly separated. At each cross-validation
step, 3 years were taken out as “target prediction year” and the remaining years are used as training period.
The EOF patterns and PCs are derived from “training period.” The PCs of the target years are predicted by
using the multiregression equation derived from the corresponding training period.
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Spatial Pattern Correlation

potentially maxi skill' (0.65)

cross—validated P—E hindcast -PCC skill (0.38)
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Figure 7. The temporal evolution of the pattern correlation coefficient (PCC) skill for MJ precipitation prediction over EA as
a function of forecast year using the 3 year out cross-validated P-E model prediction (red line). The potential attainable
forecast skill obtained by using observed three PCs (OBS, black line) is also compared. The numbers within the parenthesis
in the figure legend indicate the averaged PCC skill through the 37 years.

The predicted PCs are shown in Figures 6a-6c¢. For comparison the corresponding observed PCs are also
shown in each panel. The cross-validated correlation skills between observation and prediction are 0.72,
0.56, and 0.48, respectively. The correlation coefficients are all significant at 99% level, which means that,
to a large extent, the first three EOF modes can be regarded as “predictable.” Figure 6 also shows the predic-
tion skills of MME. The dynamical models can only capture EOF1. The correlation coefficient between
observed PC1 and MME predicted PC1 is only 0.47, which is lower than PEM prediction skill (0.72). The pre-
diction skills of MME for PC2 and PC3 are only 0.07 and 0.14, respectively. So the MME cannot capture
EOF2 and EOF3. Therefore, the dynamical models have limited capability in reproducing observed EOF.

5.2. Prediction of Anomaly Pattern and the Potential Predictability

Given the fact that the first three EOF modes can be potentially predicted by the P-E models, we may estimate
the potential maximum attainable forecast skill for the May-June EASM rainfall by assuming that the first
three modes can be predicted perfectly. The potentially attainable forecast skill can be obtained from the cor-
relation between the observed total field and the reconstructed predictable part (i.e., the first three predict-
able modes). For detailed formulation the reader may refer to Lee et al. [2013] and D. Wang et al. [2014].

Figure 7 shows the temporal evolution of the potentially maximum attainable pattern correlation coefficient
(PCC) skill. It fluctuates from year to year with a skill in between 0.3 and 0.9 and the 35 year averaged PCC skill
around 0.65. The red line in Figure 7 shows the pattern correlation coefficient (PCC) skill for each year
obtained by using 3 year out cross-validated P-E models. The long-term mean of the PCC skill is 0.38, which
shows large year-to-year variation with high skills (over 0.7) in the years of 1981, 1985, and 1998 and low skills
(below —0.2) in the years of 1990, 1993, 2000, and 2009.

6. Concluding Remarks

6.1. Conclusion

We have identified three predictable EOF modes of EA rainfall variability during May and June for the period
of 1979-2015 (Figures 3-5). The EOF1 often occurs during ENSO decay phase and is sustained by the positive
thermodynamic feedback between the western Pacific subtropical high (WPSH) and underlying dipole SST
anomalies over the Indo-Pacific warm ocean. The EOF2 is mainly associated with the SST anomalies over
the North Pacific Ocean, and the EOF3 is primarily induced by the equatorial central Pacific (ECP) SST anoma-
lies. The factors that determine EA early summer rainfall variability include (a) positive thermodynamic feed-
back between the anomalous WPSH and underlying ocean, (b) the atmosphere-ocean interaction involved in
North Pacific SST anomalies, and (c) the development of equatorial central Pacific SSTA.

To better understand the source of the potential predictability and to improve prediction skills, a suite of
physical-empirical (P-E) models is established for prediction of first three leading principal components.
The physically meaningful and statistically robust predictors are selected based on atmospheric lower
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boundary anomalies that reflect persistence from winter to spring (January to April) and the tendency from
winter (January-February) to spring (March-April). The major precursory conditions before May include (1)
the following persistent signals from January to April: the equatorial Indo-Pacific tri-polar SSTA, the equatorial
central Pacific SSTA, the tripolar North Atlantic SSTA associated with NAO anomalies, the SSTA over the North
Pacific, and the SSTA over the southeastern IO and the maritime continent; and (2) the following tendency
precursors from winter to early spring: the Eurasia-WNP thermal contrast tendency, the northern Indian
Ocean SST tendency, and the North Pacific dipolar SST tendency.

By examining the normalized regression coefficient of each P-E model, we can directly compare the relative
contribution of each predictor. Among the above precursors, the Eurasian—Pacific thermal tendency contrast
has large contribution to the first MJ EA rainfall mode. On the other hand, ENSO is the most important pre-
cursor for the EASM prediction during JA [Xing et al., 2016a]. This justifies the necessity to predict EA rainfall
in MJ and JA separately. The predictors “JFMA IO SST” associated with air-sea interaction over warm pool
region and “MA-minus-JF ECP SST” associated with development of ECP SSTA are the major contributor for
EOF2 and EOF3, respectively. Some high-latitude signals (i.e,, NAO, Eurasian, and Tibetan Plateau snow cover
and arctic sea ice) seem to show less importance for the first three modes.

The cross-validated prediction results demonstrate that the first three modes can be predicted with signifi-
cant skills ranging from 0.48 to 0.72 (Figure 6). Thus, they are identified as predictable modes. Using these
predictable modes, we have made MJ rainfall hindcast over the EASM domain. The cross-validated (by taken
3year data out) prediction skill (pattern correlation coefficient averaged through the 35years) is 0.38
(Figure 7), which is substantially higher than the corresponding skill obtained by the current dynamics mod-
els’ multimodel ensemble (MME) hindcast (0.21; Figure 2), suggesting that the models have large room
to improve.

We also estimated the predictability of the MJ rainfall over the EASM domain and found that the potential
maximum attainable pattern correlation coefficient (PCC) skill may fluctuate between 0.3 to 0.9 from year
to year and averaged PCC skill is about 0.65 (Figure 7c).

6.2. Discussion

The first three EOFs account for 45% of the total variance of interannual variability. With a short historical
record, the EOF2 and EOF3 do not to meet the North et al. [1982] rule for the separability test. However, when
data record increases, they may become statistically separable. To test this assertion, we made an EOF ana-
lysis of land precipitation for the same EA domain (i.e., the land coverage is the same except no ocean rainfall)
during the 56 year period (1960-2015). The results show that the first three EOF patterns of rainfall over land
and the corresponding PCs bear close similarity with those shown in Figures 3-5 (figure not shown), suggest-
ing that the first three EOF modes derived from the two data sets are consistent and robust. Since the land
only rainfall data set is longer (56years), the first three EOFs became statistically separable at 95%
significance level.

Understanding the physical linkages between the selected predictors and the corresponding PCs holds the
key, but it is also challenging for the P-E prediction models. The first three principal components basically
involve only the predictors that reflect anomalous surface thermal conditions, and we have detailed explana-
tions regarding how these lower boundary thermal anomalies could lead to ensuing EA MJ precipitation and
circulation anomalies through teleconnection and/or local atmosphere-ocean-land interaction. Based on the
above discussion, we may conclude that the first three EOF modes are predictable. Therefore, about 45% of
the total variance may be predictable for MJ EA rainfall.

With similar methodology one can derive a suite of prediction equations with longer lead time. The PC1 can
be predicted at a 2 month lead using similar predictors as used for the forecast made in the end of April. In a
previous study, we have revealed the processes that determine the MJ southern China rainfall and estab-
lished a P-E model for its prediction at various lead times [Yim et al., 2014]. The predictors for the PC1 are gen-
erally consistent with those predictions for the MJ southern China rainfall but offer detailed spatial structure
of the rainfall anomalies. The southern China rainfall reflects only the EOF1 very well. In the present study we
further explored EOF2 and EOF3 and found their sources of predictability for seasonal prediction. However, at
a longer lead the physical interpretation of the predictors would be more difficult and the skills would
decrease as the lead time increases [Wang et al., 2008b; Lee et al., 2011].
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We have examined four state-of-the-art dynamical models’ MME dynamic prediction. The current models
have great difficulty in capturing EOF2 and EOF3 (figure not shown). This is likely due to the models’
bias in simulating climatology (Figure 1b), and more importantly, the models’ inability to capture the
following processes: the atmospheric responses to SST anomalies outside the equatorial Pacific, the local
monsoon-ocean interaction, and especially the impacts of land surface anomalous conditions and land-
atmosphere interaction. The P-E model, at this stage, is valuable in detecting the sources of the predict-
ability for the higher EOF modes and may serve as an effective tool for the difficult seasonal
rainfall prediction.

In some years, the P-E model shows low prediction skills while the perfect PC prediction yields high PCC such
as 1990, 2000, 2009, and 2013. The low skills in these years come from the deficiency of the PC prediction
equations. The selected predictors cannot capture the variations in these years; hence, other sources of pre-
dictability should be further explored. For instance, the Baiu rainfall variabilities over Japan during June—July
months have linkage with the monsoon rainfall over north-central India through teleconnection patterns
[Krishnan and Sugi, 2001]. Observations and model simulation experiments show that warm SST anomalies
in the equatorial eastern Indian Ocean (EEIO) during 2000 played an important role in driving long monsoon
breaks over India [Krishnan et al., 2003]. Thus, it would be interesting to see whether the teleconnection
between the EEIO SST anomalies and the early summer rainfall anomalies over East Asia is mediated through
convection anomalies over India. Besides more and more studies that focus on the impacts of Arctic sea ice
and aerosol on East Asia climate [Lau and Kim, 2006; Chen et al., 2014], related predictors may also be added
to P-E models to improve the prediction skill in the future work. Given that there is still uncertainty among
different data sets, further efforts should strive to assess the possible influence of such uncertainty on the
seasonal precipitation prediction [North et al., 1982; Beven et al., 2008; Li and Zhou, 2011; Laloy and Vrugt,
2012; B. Wang et al., 2014].
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