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ABSTRACT

This study develops an empirical orthogonal function (EOF)-based self-organizing map (SOM) (ESOM)

analysis to identify the nonlinear characteristics of the boreal summer intraseasonal oscillation (BSISO),

which involves interactions between the summer mean circulation and the convectively coupled equatorial

waves, which make BSISO evolution more complex than theMadden–Julian oscillation. The method utilizes

the first five principal components of the outgoing longwave radiation (OLR) and the zonal wind at 850 hPa

(U850) and has the advantages of filtering out uncertainties from noise and being free from mathematical

restrictions, such as orthogonality and linearity.

The ESOM analysis enables the detection of BSISO over the Asian summer monsoon region with eight

phases. The four most distinguishable phases represent 1) a pair of stationary patterns with a dipole between

the eastern Indian Ocean and the Philippine Sea (phases 1 and 5) and 2) a pair of propagating patterns with a

northwest–southeast-tilted rain belt structure (phases 3 and 7). Phases 1 and 5 show an alternating seesaw

oscillation throughout the summer with a 30–60-day period, whereas phases 3 and 7 peak in mid-June and

early June denoting the monsoon rainy season and premonsoon period of Asian summer monsoon. ESOM

captures that phases 1 and 5 happenmore frequently and last longer than phases 3 and 7, whereasmultivariate

EOF analysis fails to describe this nonlinear occurrence. Phases 3 and phase 7 display distinct asymmetries in

convective activity over the eastern Indian Ocean related to the relatively slow-growing and fast-decaying

convective activity. The relationship with large-scale SST forcing is also discussed.

1. Introduction

The boreal summer intraseasonal oscillation (BSISO)

is a dominant mode of intraseasonal variability in

the tropics during the boreal summer [May to October

(MJJASO)] (Wang and Xie 1997; Kemball-Cook and

Wang 2001; Lee et al. 2013). The BSISO is known to

affect climate variability, including the summer mon-

soon onset (Wang and Xie 1997; Kang et al. 1999),

the active/break phases of the summer monsoon

(Annamalai and Slingo 2001; Ding and Wang 2009),

extreme wet and dry events (Hsu et al. 2016, 2017,

manuscript submitted to J. Climate), and climate pre-

dictability for precipitation (Wang et al. 2009; Lee et al.

2010, 2013). While the boreal winter intraseasonal
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oscillation known as the Madden–Julian oscillation

(MJO) is characterized by an eastward propagation of

deep convection with an approximate 30–60-day period

(Madden and Julian 1972; Lau and Chan 1986), the

BSISO exhibits more complex features than MJO

because it involves interactions between Asian summer

monsoon (ASM) circulation and convectively coupled

equatorial waves. The BSISO tends to have a north-

ward/northeastward propagation over the Indian sum-

mer monsoon (ISM) region (Yasunari 1979, 1980; Lau

and Chan 1986; Wang et al. 2005) and a northward/

northwestward propagation over the western North

Pacific–East Asian region (Wang et al. 2001; Kajikawa

and Yasunari 2005; Yun et al. 2009, 2010). This north-

ward propagation makes the BSISO evolution more

complex as it interacts with the ISM and the East Asian

summer monsoon (EASM).

A number of statistical studies have attempted to

explain the characteristics of the BSISO in terms of

their spatial patterns and propagation. By using empir-

ical orthogonal function (EOF) analysis, Lau and Chan

(1986) found that the dominant EOF modes of outgo-

ing longwave radiation (OLR) over the Indian Ocean–

western Pacific region during the northern summer

showed a dipole pattern with the convection centered

over the Indian Ocean and the western Pacific–South

China Sea. In addition, they showed that the first two

leading modes describe different phases of the same

large-scale phenomenon (i.e., eastward and northward

propagation) and the EOF1 time series leads that of

the EOF2 by about 10 to 15 days. Wang et al. (2005)

applied a composite method using 28 selected convec-

tive events with reference to the eastern equatorial In-

dian Ocean and showed the propagating characteristics

of BSISO using consecutive phases of the events with

a 4-day interval (the mean interval of two adjacent

phases). However, the periods of the individual cycles

were notably irregular. Therefore, if the individual pe-

riods of a cycle in the real world do not have a regular

interval, previous studies (Lau and Chan 1986; Wang

et al. 2005) could not fully describe the irregular

nature of the convective phases, such as the interaction

with the ASM. In contrast to the previous studies, Lee

et al. (2013) suggested two real-time BSISO indices that

are capable of describing a large fraction of the total

intraseasonal variability in the ASM region based on

multivariate EOF (MV-EOF) analysis of the daily

anomalies of the OLR and the zonal wind at 850 hPa

(U850). However, the results of the EOF-based princi-

pal component analysis (PCA) are constrained by the

orthogonality and sometimes miss information regarding

the asymmetry of opposite phases and the nonlinear spa-

tiotemporal features (Oettli et al. 2014).

To overcome the shortcomings of the linear analysis, a

self-organizing map (SOM) based on an unsupervised

neural network (Kohonen 1982, 1990) appears to be an

effectivemethod for feature extraction and classification

(Chattopadhyay et al. 2008, 2013; Joseph et al. 2011; Chu

et al. 2012; Borah et al. 2013; Johnson 2013; Sahai et al.

2014). Liu et al. (2006) evaluated the performance of

the SOM in extracting linear progressive sine waves by

using artificial data and demonstrated that the SOM

extracts the essential patterns from noisy data in com-

parison to the EOF. This is because the SOM-derived

patterns are local in nature, which means the SOM

patterns are not dependent on a covariance matrix as

required in the EOF or extended EOF (EEOF) analyses

(Kohonen 1997; Sahai et al. 2014). Therefore, the ap-

plication of the SOM technique to extract monsoon in-

traseasonal characteristics would be free from various

mathematical restrictions, such as orthogonality and

linearity in the EOF analysis (Chu et al. 2012).

The main purpose of this study is to apply an EOF-

based nonlinear SOM analysis, named by ESOM, to

detect the BSISO phases without restrictions of linearity

and orthogonality. The method first performs EOF

analysis of the OLR and U850 over the ASM region and

then applies the derived principal component (PC) time

series to the SOM analysis. The EOF analysis acts as

a filter that removes the uncertainties from transient

eddies and noisy patterns. Therefore, the ESOM can

readily obtain physically meaningful patterns while

conserving major low-frequency variability. In addi-

tion, applying the PC time series instead of the EOF

patterns reduces the computational time while con-

serving the dominant modes. Recently, Sahai et al.

(2014) developed a SOM-based PCA analysis to obtain

the linearly decorrelated PCs of the EOFs of the mon-

soon intraseasonal oscillation. Our ESOM analysis is

different from the method applied in Sahai et al. (2014)

because their method uses the SOM-based local PCA

analysis and is statistically similar to an EEOF analysis.

Our result will be qualitatively compared with a linear

EOF analysis in addition to the MV-EOF analysis con-

ducted by Lee et al. (2013).

2. Data and method

a. Data

The data used for the ESOM analysis included the

daily Advanced Very High Resolution Radiometer

(AVHRR) OLR data with 2.58 horizontal resolution

from the National Oceanic and Atmospheric Adminis-

tration (NOAA) polar-orbiting satellites (Liebmann

and Smith 1996) and the U850 data from the NCEP–

Department of Energy (DOE) AMIP-II reanalysis
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(Kanamitsu et al. 2002) with 2.58 3 2.58 horizontal

resolution.

Data fromMay toOctoberwere used in the diagnostics

of the BSISO. For a given field, its daily anomalous

time series was generated by the same method used by

Lee et al. (2013), which removes its annual cycle (the

mean and first three harmonics of the climatological an-

nual variation) as well as the interannual variability by

subtracting the running mean of the previous 120 days as

in Wheeler and Hendon (2004). After that, the two

anomaly fields were normalized by their area-averaged

temporal standard deviation over the ASM region

(108S–408N, 408–1608E). The normalization factors are

31.79Wm22 for OLR and 3.81ms21 for U850. No in-

traseasonal bandpass filtering was applied to the data.

b. ESOM analysis

This study develops an ESOM using a synthetic PC

time series of two different variables, OLR and U850, to

obtain the nonlinear and asymmetric behavior of the

BSISO. The SOM is an unsupervised artificial neural

network and a useful tool in reducing a high-

dimensional dataset into a low-dimensional version to

summarize the key aspects of the larger dataset

(Kohonen 1982, 1990, 1997; Oettli et al. 2014). The

method has been successfully applied to climate re-

search, including in the MJO (Chattopadhyay et al.

2013, Oettli et al. 2014), the EASM (Chu et al. 2012; Oh

and Ha 2015), the ISM (Chattopadhyay et al. 2008;

Borah et al. 2013; Joseph et al. 2011; Sahai et al. 2014),

and the El Niño–Southern Oscillation (ENSO)

(Johnson 2013).

The principal steps in an ESOM analysis are as fol-

lows: given any data matrix D(s, t), where s represents a

spatial dimension (e.g., latitude and longitude) and t

represents the time coordinates, the EOF can be de-

scribed as follows:

D(s, t)5D0(s, t)1 residual

D0(s, t)5�
N

i51

EOF
i
(s)3PC

i
(t) ,

whereN is the number ofmajormodes andD0 represents
the filtered data. The degree of filtering depends on the

value ofN. In this study, we use theOLR andU850 daily

anomalies over the ASM region (108S–408N, 408–1608E)
from 1May to 31October for a 30-yr period (1981–2010)

as the input D. The number of PCs (N) selected is 5,

based on the consideration that N is large enough to

capture the major observed daily fields and small

enough to conveniently extract the ISO phases. A sen-

sitivity test for the selection of the optimal value of N

will be discussed in section 2c.

After conducting the EOF analysis, we prepare the

synthetic PC time series of the daily OLR and U850 as

an input for the SOM analysis as schematically shown

below:

X(s, t)5

2
664
PC

s51,t51
, PC

s52,t51
, . . . PC

s52N,t51

..

. . .
. ..

.

PC
s51,t5M

, PC
s52,t5M

. . . PC
s52N,t5M

3
775,

where X is an input of the SOM analysis, s is the input

vectorwhere the size of the input vector corresponds to the

total number of PCs 2N (here it is 10 including 5 PCs from

the OLR and 5 PCs from the U850), t is the input sample

that corresponds to the time where the size of time cor-

responds to total number of days M (184 days 3 30yr 5
5520 days). The SOM trains the large number of input

vectors X(s, t) to be projected to a reduced number of

output arrays (mostly two-dimensional space) and clas-

sifies the input samples into the two-dimensional space.

The output array represented in two-dimensional space is

called a map and the individual vector that has the same

size as the input vector (i.e., 2N) is called a reference vector

or a weighing vector. After testing different sizes, we

selected a 33 3map following Chattopadhyay et al. (2008,

2013) and Chu et al. (2012), who described that a 3 3 3

map is optimal for describing intraseasonal variability and

its life cycle. At the first stage, the reference vectors are

randomly initialized. The final reference vectors are ob-

tained through an iterative training process. During the

iterative process, a node with the smallest Euclidean dis-

tance (EUD) with respect to the input data is identified:

EUD5 jX2W
j
j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
2N

i51

(X
i
2W

ij
)2

s
,

where X is the input vector, Wj is the reference vector,

and i and j correspond to the index for the position on

the vector and map, respectively. The reference vector

with the smallest Euclidean distance updates the refer-

ence vector and its associated weights together with

those of the neighbor nodes within the neighborhood

radii. Since each reference vector has to be adjusted

relative to its neighbor, inclusion of the neighborhood

makes the SOM classification nonlinear compared to

other clustering analyses. The updated equations for the

reference vector are described as follows:

W
j
(n1 1)5

(
W

j
(n)1 c(n)[X(n)2W

j
(n)], j 2 R

j
(n)

W
j
(n), otherwise

.

In this reference vector for the nth training cycle,Rj(n)

is the predefined neighborhood around the reference
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vector j, and c(n) is the neighborhood kernel, which

defines the neighborhood. The neighborhood kernel

maybeamonotonic decreasing functionofn (0, c (n), 1),

known as a bubble, or it may be of a Gaussian type as

follows:

a(n) exp

"
2kr

j
2 r

i
k2

2s2(n)

#
,

where a(n) and s(n) are constants that monotonically

decrease with n. In this equation, a(n) is the learning

rate, which determines the velocity of the learning pro-

cess, while s(n) is the amplitude, which determines the

width of the neighborhood kernel. In addition, rj and ri
are the coordinates of the reference vectors j and i, re-

spectively, in which the neighborhood kernel is defined.

Throughout training, the learning rate and the size of the

update neighborhood (the update radius) decrease,

leading to progressively refined initial generalized pat-

terns. Finally, the SOM consists of a number of patterns

that are characteristic of the data, with similar patterns

nearby and dissimilar patterns farther apart. After the

training process, the final output arrays (i.e., map) rep-

resented in two-dimensional space is completed. The

mapping process distributes each input vector to a cor-

responding reference vector based on its similarity (i.e.,

the least Euclidean distance). In this way, the reference

vectors in a self-organizing map compete to most ef-

fectively represent input samples. The schematic dia-

gram of the SOM algorithm is described in Chu et al.

(2012). A detailedmathematical description of the SOM

algorithm is found in Kohonen (1982, 1990).

At the end of clustering, we obtain a 3 3 3 map, and

the index of location for individual input vector best-

matched to reference vector. In our case, the input

data consist of 5520 vectors, made up of daily OLR and

U850 PCs from 1 May to 31 October for the period

1981–2010. To enhance the visualization, the com-

posite of the classified dates provides a spatial struc-

ture for each phase; that is, if the summer monsoon

ISO is a convectively coupled oscillation, each pattern

should be strongly related to a particular phase of the

precipitation oscillation. Therefore, the ESOM anal-

ysis has advantages in filtering out uncertainties from

high-frequency noise and being free from mathemati-

cal restrictions, such as orthogonality and linearity as

in an EOF-like analysis. In addition, the use of the

synthetic PC time series of OLR and U850 enables a

multivariate approach that illuminates the in-

terrelatedness between and within sets of variables

while reducing computational time. Through the sen-

sitivity test, we found that the computational time for

ESOM analysis using synthetic PC time series of OLR

and U850 is 10 times faster than the analysis using

spatial pattern of OLR or U850.

c. Sensitivity tests

To determine the optimal number of PCs, we com-

pared the sensitivity of the number of PCs between

ESOM and MV-EOF analysis in Fig. 1. The idea of the

sensitivity test is to compare results derived from the

ESOM analysis and the MV-EOF analysis in terms of

consistencies in the horizontal patterns and percent

variances. For this purpose, we conducted nine different

ESOM experiments by altering the number of PCs (N)

used as input vectors from 2 to 10. If we assume that the

horizontal pattern of the ISO modes and their percent

variance are no longer sensitive to N after a critical

value, we can compare the horizontal patterns and

percent variance of the four major modes when N 5 10

with the other experiments (i.e.,N5 2 toN5 9). For the

sensitivity test of theMV-EOF analysis, the four leading

EOF patterns are compared with original OLR anomaly

fields reconstructed using 2 to 10 PCs.

The results show that there are strong consistencies in

theESOMpatterns and the percent variances of the four

major modes even if we decrease the number of PCs to

N 5 5. However, the consistencies abruptly decrease

when N , 5. In contrast, the pattern similarities of the

MV-EOF modes are stable up to N5 6, but the percent

variances are either exponentially or abruptly changed

as the number of reconstructed PCs decreases. There-

fore, we conclude that five PCs are needed for consis-

tencies in the ESOM patterns and the percent variances.

More than five PCs are likely unnecessary.

Another issue is the selection of variables for the

BSISOused in theESOManalysis. In this study, we used

OLR and U850 as representative variables of BSISO as

in Lee et al. (2013) for the MV-EOF analysis. The

leading EOF modes of the northward wind at 850hPa

(V850) or the zonal wind at 200 hPa (U200) do not have

strong signals over the tropical region but are strong in

the midlatitude EASM area. Inclusion of V850 and

OLR provides the BSISO components weighted for the

EASM (figure not shown). Therefore, we use OLR and

U850 as major variables in detecting the BSISO modes

using the ESOM analysis.

3. Comparison of BSISO features extracted by
ESOM and EOF analysis

a. BSISO described by EOF analysis

Figures 2a and 2b show spatial patterns of the first five

leading EOF modes for the daily OLR and U850

anomalies over the ASM region (108S–408N, 408–
1608E), respectively. The horizontal structure of the
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EOF1 of the OLR shows an east–west-oriented dipole

with two centers over the eastern Indian Ocean and the

Philippine Sea with opposite polarities. Their percent-

age variance has a fairly low value of 5.5% because the

EOF analysis is applied to daily unfiltered data. In the

EOF2 of the OLR, the centers of the east–west dipole

are slightly displaced northward, displaying a narrow

band structure tilted from the Indian subcontinent to the

southeastern Philippine Sea. In contrast, the EOF3 and

EOF4 of the OLR show a southwest–northeast-tilted

horizontal structures stretching from the equatorial In-

dian Ocean to the South China Sea. The EOF5 shows a

north–south contrast over the Indian Ocean and a

northwest–southeast contrast over the western Pacific/

South China Sea region. The first five OLR EOF modes

together explain 19% of the total daily variance. The

U850 components of the first two EOF modes sup-

port the convectively coupled characteristics with

westerly anomalies occurring to the north of the positive

OLR anomalies and vice versa for the easterlies

(Fig. 2b). The U850 fields support the coupling between

the circulation and convection; however, the southwest–

northeast tilting of the winds in EOF3 andEOF4 is more

prominent in the western North Pacific than in the

Indian Ocean. The EOF5 of U850 does not appear to

be a physically meaningful pattern and maybe a

computationally generated higher-order mode as a

function of the domain size.

The first and second (the third and fourth) EOF modes

of OLR and U850 resemble the two components of

BSISO1 (BSISO2) identified by Lee et al. (2013). In that

study, they treated the first two modes as a pair and de-

scribed them as a canonical northward-propagating BSISO

component. The lag correlation coefficient between PC1

andPC2 reveals that PC1 andPC2 have greatest coherence

in the 30- to 60-day range with a 908 phase difference in-

dicating that PC1 leads PC2 by a quarter of cycle. It sup-

ports the arguments in Lee et al. (2013) that the first two

modes are different phases of the same large-scale phe-

nomenon, which reflects northward propagation. They also

noted the EOF3 and EOF4 describe the northwestward

propagation of convection and interaction with the EASM

and named the EOF3 and EOF4 modes as the ASM pre-

monsoon and onset components, respectively. Although

theEOF analysis as shown in Fig. 2 is capable of explaining

large-scale dominant patterns such as northward and

northwestward propagation to some degree, it is hard to

demonstrate how they interact with the ASM system.

b. BSISO described by ESOM analysis

In this section, we present the major BSISO patterns

obtained by the ESOM analysis. ESOM provides

FIG. 1. Sensitivity tests for (a),(b) ESOM and (c),(d) MV-EOF analysis in terms of maximum (top) pattern

correlation coefficients (PCC) and (bottom) percent variance of fourmajor modes. ThemaximumPCCs for ESOM

are calculated by comparing spatial structure of 10-PC experiments with others from 2- to 10-PC experiments. The

maximum PCC for the MV-EOF four major modes using reconstructed data with 2- to 10-PC are compared with

the spatial structure of the 10-PC MV-EOF experiment.
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information about most frequently observed spatial

patterns of BSISO. After training a large number of

input vectors, we obtain the nine patterns distributed

in a two-dimensional 33 3 lattice. The trained vectors in

each panel are called the reference vectors, which have

the same size with input vectors but with the reduced

number of patterns. In other words, the reference vec-

tors in the 3 3 3 lattice are nine representative patterns

FIG. 2. Spatial structure of the five leading EOF modes of daily (a) OLR and (b) U850 anomalies over the ASM

region (108S–408N, 408–1608E). The EOF modes were obtained during MJJASO for the 30 years of 1981–2010.
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of the total number of samples (i.e., 184 days 3 30 yr 5
5520 days). Each reference vector corresponds to the

combined PCs, five from the OLR and the other five

from the U850. As shown in Fig. 3, the 3 3 3 reference

vectors have unique combinations of PCs, which are

predominantly separated by first two PCs of OLR and

U850. For instance, (0,0) and (2,2) are characterized by

the large magnitude of PC1 of both OLR and U850,

while (2,0) and (0,2) have relatively comparable (larger)

magnitudes of PC2 ofOLR (U850) than those of PC1. In

addition, the reference vectors located at the diagonally

opposite side tend to have opposite signs, though it is not

exactly a mirror image.

The composite patterns of OLR and winds at 850 hPa

identified by ESOM analysis are displayed in Fig. 4.

The patterns are obtained by compositing OLR and

winds at 850-hPa anomalies corresponding to the days

classified at each mode (see section 2b for more details

on methodology). As will be mentioned later, each

pattern represents the individual BSISO phase, and

they together describe a phase evolution of BSISO

following a clockwise direction. For this reason, we

will call each panel a ‘‘phase’’ for more readable un-

derstanding of physical phenomenon. We also named

each pattern phase 1, phase 2, through phase 8

following a clockwise direction starting from the top

left-hand corner. The percentages to the top right of

each panel refer to the frequency of occurrence (the

number of clustered days divided by the number of

total days for the 30-yr period). Therefore, summing all

of the percentages gives 100%.

The four phases at the corners tend to have larger

percentages than those in the middle panels. This is

because the SOM tends to locate similar patterns

nearby and dissimilar patterns farther away according

to the neighborhood function. As a result, dominant

phases tend to be located at the corner with the most

different phases located at the opposite corner. The

dominant phases located in the corner (i.e., phases 1, 3,

5, and 7) have a total variance greater than 13%, and

they are similar to the first and second modes in the

EOF analysis with opposite polarities. Phases 1 and 5

explain 20.9% and 18.2% of the total, respectively. The

horizontal patterns of phases 1 and 5 show a pair of

stationary patterns with a dipole between the eastern

Indian Ocean and the Philippine Sea. Although the

percent explained by phase 1 is 2.7 percentage points

higher than that of phase 5, their spatial patterns and

percentages show a symmetric system of the tropical

convection during boreal summer. Phases 3 and 7

have a quadrupole structure characterized by north-

west to southeast tilted structure as identified in

the EOF2.

These two pairs of ESOM patterns are similar to the

first two leading MV-EOF modes, but they also show

important differences. Although the northwest-to-

southeast slope of the anomalous convection in phases

3 and 7 seems to have an opposite pattern, considerable

differences are found over the equatorial eastern Indian

Ocean. In phase 3, strong monsoonal flows are found

over both the ISM and EASM regions. Intense low-level

southwesterly winds in the Arabian Sea bring heavy

rainfall to India, related to the annual occurrence of the

ASM rainy season. However, phase 7 has a weak signal

in convection and circulation over the Indian Ocean

while frontal convection extends from the South China

Sea to southeastern Japan. The zonally elongated nar-

row convection zone over the northeast Asian region in

phase 7 shows a similar structure to the premonsoon

states of the ISM and EASM. The physical meaning of

the asymmetries in the eastern Indian Ocean will be

discussed in section 4.

The middle panels, including phases 2, 4, 6, and 8, have

lower percentages than those at the corner, covering only

7%–8% of the total variance. Their patterns are in-

termediate between two adjacent phases. While phases

2 and 6 have strong signals over the western North Pacific

region, phases 4 and 8 have extended convection over the

equatorial central Indian Ocean. The pattern in the

center does not have a meaningful spatial structure and

the percent variance is the smallest (only 2.4%). There-

fore, it will be regarded as random noise.

4. New features of BSISO revealed by ESOM
analysis

a. Preferred seasonal occurrence and phase-locking
to annual cycle

The ESOM analysis provides dates clustered to the

most similar pattern in addition to the 33 3 patterns; it is

possible to examine the preferred seasonal occurrence

and phase locking to annual cycle. Figure 5 shows the

occurrence of each phase by accumulating the number

of clustered days from May to October. Phases 1 and 5

have a regular oscillation with a 30–60-day period. It is

interesting to note that phases 1 and 5 show alternating

oscillations throughout the whole summer with an ap-

proximately 30-day period. The seasonally phase-locked

temporal variations of phases 1 and 5 support the exis-

tence of the climatological intraseasonal oscillation

suggested by Wang and Xu (1997). It is interesting to

note that phase 5, which has strong (weak) convective

activity center over the western North Pacific (Indian

Ocean) shows constant occurrence time series during

late boreal summer (August–October) because the
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western North Pacific seasonal mean monsoon trough

plays an essential role in sustaining a strong stationary

ISO (Liu and Wang 2014).

On the contrary to stationary phase 1 and phase 5, the

preferred seasonal peaks are apparent in phase 3 and

phase 7. A large number of phase-3 events are concen-

trated from mid-June to mid-July, and the strongest

peak occurs in mid-June. Those peaks correspond to

the period of active and break phases of the ISM and

EASM, which is accompanied by small and large water

fluxes across the Arabian Sea and subtropical western

North Pacific. Phase 7 has one prominent peak in early

June, and this period corresponds to the preonset period

of ISM and EASM. Previously, Lee et al. (2013) defined

the third and fourth modes of the MV-EOF results as

the ASM premonsoon and onset component and con-

sidered the northward-propagating BSISO and ASM

onset separately. Lee et al. (2013) showed that 18 out of

28 cases of the Indian monsoon onset (i.e., 64%) tend to

occur in phases 2–4 of BSISO2. Our results show that

the phase locking of the ASM is also embedded in the

occurrence of phases 3 and 7. This argument is further

supported by Fig. 6.

Figure 6 displays the composite spatial pattern of the

OLRandU850 during the premonsoon and rainy season

of ASM, which correspond to the peak periods of phase

7 and phase 3 in Fig. 5, respectively. The peak period for

phase 7 is from 25May to 5 June, while that for phase 3 is

from 10 to 20 June. Previously, it was suggested that the

whole procedure of the outbreak of the Asian monsoon

onset is composed of three consecutive stages: first over

the Bay of Bengal in early May, then over South China

Sea in mid-to-lateMay, and last over Indian continent in

mid-June (Wu and Zhang, 1998; Liu et al. 2002; Liu et al.

FIG. 3. The 3 3 3 reference vectors trained by the ESOM. The size of reference vector is 10

and is composed of five OLR and five U850 PCs.
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2015). During the period of 25 May to 5 June, there

are large-scale deep convection developments over the

southern Arabian Sea and the oceanic region extending

from the South China Sea to south of Japan. It de-

notes the preonset period of ISM at Kerala and the es-

tablishment of the East Asia subtropical front after

the South China Sea summer monsoon onset as identi-

fied previously (Liu et al. 2002; Ding and Chan 2005;

Wang et al. 2009; Liu et al. 2015). During the period

from 10 to 20 June, the enhanced convection of the ISM

moves northward and reaches around 158–208N. The

variation of the 850-hPawind over the southernArabian

Sea and East Asia is relevant to rainfall changes as a

Rossby wave response to anomalous convective heating

generating southwesterly flow over the Arabian Sea and

western North Pacific. This period corresponding to the

monsoon rainy season after grand onset of ASM iden-

tified by Wang and Xu (1997) and Linho and Wang

(2002), which is characterized by the simultaneous

rainfall event of the ISM over the Ganges River val-

ley and the mei-yu/baiu in East Asia. Therefore, phases

7 and 3 explain the climatologically phase-locked

ASM premonsoon and monsoon rainy season, which is

manifested in particular phases with a pair of propa-

gating patterns.

b. Stationary and propagating characteristics revealed
by ESOM

One of the most important aspects of ESOM analysis

compared with EOF and other approaches is that

ESOM depicts different stationary and propagating

characteristics of the phases. The phase propagation of

the intraseasonal phases has been shown in several

studies. Lee et al. (2013) showed the life cycle of

the northward-propagating BSISO by constructing a

composite in a similar fashion to what was done for

MJO by Wheeler and Hendon (2004). Joseph et al.

(2011) depicted the propagation characteristics of the

ISM intraseasonal phases by calculating probability of

the propagation of each SOM phase. The BSISO, in a

broad scale, is a continuum of the northward propa-

gation which fluctuates between positive and negative

convective anomalies with a 30–60-day period. How-

ever, the northward propagation exhibits large in-

homogeneity in both space and time. For instance,

during the ASM premonsoon and monsoon rainy

FIG. 4. The nine patterns of OLR (shading) and 850-hPawind (vector) anomalies identified by the ESOM. The patterns are obtained by

compositing anomalies corresponding to the days clustered at the respective modes. Since each pattern represents the individual BSISO

mode and they together describe a phase evolution of BSISO following a clockwise direction, each pattern is named phase 1, phase 2,

through phase8 following a clockwise direction starting from the top left-hand corner. The percentages in the top right of each phase refer

to the frequency of occurrence of the pattern for the 1981–2010 period. Red boxes in phases 3 and 5 indicate the equatorial western Indian

Ocean, western Pacific Ocean, and western North Pacific Ocean selected for Fig. 9.
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season, BSISO tends to stay in a particular pattern.

These distinguished stationary characteristics of four

dominant phases are an important feature of BSISO

that is distinguished from MJO (Zhu and Wang 1993).

Therefore, it is meaningful to examine irregular sta-

tionary and propagating features of BSISO by non-

linear ESOM analysis.

Figure 7 depicts the transition probability of propa-

gation from one phase to the other based on the clus-

tered days in each phase. The size of the arrow varies

according to its transition probability to the direction

of the each arrow. Arrows that represent less than a 5%

transition probability are removed. The percentage in

the top right corner indicates the probability to stay at

the same phase. For example, when a particular day of

summer is clustered in phase 1, 78.6% of the next day

is clustered in the same phase and 9.5% of the day is

moved to phase 2. It is shown that the probability to

remain in one of the four phases at the corner have

high percentages with more than 70%. In contrast, the

probability to remain in a phase in the middle has

percentages less than 50%. This indicates that the

convective activities related to the phases in the cor-

ners (i.e., phases 1, 3, 5, and 7) are more stationary than

those in the middle (i.e., phases 2, 4, 6, and 8), which

tend to have faster transitions. The eight phases of

ESOM pattern further provide structural evolution of

BSISO cycle. The arrows in eight phases in Fig. 7 tend

to have maximum transition probability with clockwise

direction following the path phase 1—phase 2—phase

3—. . .—phase 8. As will be mentioned later, the

structural evolution of the eight phases explains the

northward-propagating characteristics of BSISO.

Figure 8 shows the combination of the ESOM

phases following a clockwise direction starting from

phase 1 through phase 8 for particular longitudes over

the Indian Ocean, the Maritime Continent, and the

western Pacific. The direction of the phase from phase

1 through phase 8 can be simply interpreted as time

evolution. It is identified that the positive and nega-

tive convection anomalies over the Indian Ocean

show a strong northward propagation from 158S to

258N. In the Indian Ocean, the maximum convection

appears between the latitudes of 58 and 108N and gets

FIG. 5. Occurrence time series for each of the nine ESOM phases for MJJASO based on 30 years from 1981 to 2010. An 11-day running

mean was applied.
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weaker as it moves northward. In addition, a slightly

southward movement and a structural northward

propagation are also found over the southern equa-

torial Indian Ocean and western Pacific region, re-

spectively. The convection anomalies in the western

Pacific also propagate northward and maintain their

amplitude from the equator to 308N. Northward

propagation of convection and wind anomaly is more

prominent over the western Pacific than the Indian

Ocean. In contrast to the Indian Ocean and the

western Pacific, convective activity over the Maritime

Continent shows a sudden phase shift in phases 2 and

6. A pair of positive and negative convections is lo-

cated symmetrically based on the 58N latitudinal band

from phase 2 through phase 6. From phase 6 through

phase 2, however, a negative OLR is dominant near

108N, while a weak positive convection is over the

southern region.

c. Asymmetric evolution in the equatorial eastern
Indian Ocean convection

In the previous section, we examined the performance

of ESOM analysis in detecting the dominant charac-

teristics of the BSISO represented in two-dimensional

space, which consists of nine different phases. We also

identified considerable asymmetries between phase 3

and phase 7, especially over the equatorial eastern In-

dian Ocean. These conspicuous asymmetric convection

anomalies over the eastern Indian Ocean raise a ques-

tion regarding whether this feature is an intrinsic

asymmetry in Indian Ocean or not. If this is an intrinsic

nonlinearity, why does this asymmetry emerge in the

Indian Ocean and what does it physically tell us?

To examine the asymmetric characteristics in convec-

tive activities, we perform a composite analysis of the

OLR anomaly over three convective zones, including

FIG. 6. Composite spatial structure of OLR (shading) and 850-hPa wind (vector) anomalies

averaged during peak period of phase 7 and phase 3 in Fig. 4. The peak period for phase 7 is

from 25 May to 5 June, while that for phase 3 is from 10 to 20 June. Shaded area denotes the

90% confidence interval for the standard normal distribution.

15 MAY 2017 CHU ET AL . 3523



the equatorial eastern Indian Ocean (108S–58N, 708–
1008E), the western Pacific (08–108N, 1208–1508E), and
the western North Pacific (108–208N, 1208–1508E). The
positive OLR (dry) and negative OLR (wet) events are

selectedwhen theOLRanomalies are greater than 1 (less

than 21). Figure 9 shows the composite temporal evo-

lution of the daily OLR anomaly for dry and wet events

from the day before (225) to the day after (125) for the

maximum events over the eastern Indian Ocean, western

Pacific, and western North Pacific, respectively. The wet

events are multiplied by 21 for convenience. Prominent

differences between the wet and dry events can be found

over the eastern Indian Ocean (Fig. 9a). Over the eastern

Indian Ocean, there is a slow development of wet events

from approximately day 220 and a fast decay after the

convection peak relative to dry events. In contrast, the

dry events grow quickly and slowly decay relative to

the wet events. The wet events over the eastern Indian

Ocean likely recharge the convective energy slowly and

discharge the potential energy in a short time and turn

over to dry events. On the contrary, there are weak phase

differences between the wet and dry events over the

western Pacific and the western North Pacific region. It

should be also noted that convective events over the

eastern Indian Ocean show an oscillating characteristic,

which turns the signal from negative (positive) to positive

(negative) with time. This characteristic of convective

activity over the Indian Ocean shows about a 30-day

period standing oscillation of tropical convection, pos-

sessing a nonlinear feature between the dry and wet

events. In addition, the characteristics of the eastern In-

dian Ocean convective activities are not dependent on El

Niño and La Niña events (figure not shown). Therefore,

we argue that the asymmetry found by the ESOM anal-

ysis in the equatorial eastern Indian Ocean is an intrinsic

property of the convective activities with relatively slow

growth and fast decay.

d. Interannual relationship between four major
phases and ENSO

On the interannual time scale, it has been reported that

large-scale SST forcing such as El Niño event play a sig-

nificant role in ISO activities over the Indian Ocean

and western Pacific. Generally, the largest amplitude of

FIG. 7. Transition probability of one phase to adjacent phase

based on clustered days. The size of the arrow varies according to

its probability. Arrows that represent less than 5% are removed.

The percentage in the top right corner indicates the probability

to stay.

FIG. 8. Phase–latitude diagram over the (a) Indian Ocean

(608–908E), (b) Maritime Continent (908–1208E), and (c) western

Pacific (1208–1508E). Shading represents the OLR anomalies,

while the contour indicates theU850 anomalies. The phase number

corresponds to mode number in Fig. 4.
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the ISO intensity is located along 158Nover the Philippine

Sea, the South China Sea, the Bay of Bengal, and the

eastern Arabian Sea, whereas the most pronounced year-

to-year variation in summermean state is located over the

equatorial region (Teng and Wang 2003). In other words,

the difference in sensitive location between intraseasonal

and interannual variabilities over Asia–Pacific region

provides a possibility that particular phases can be more

favorable for interannual variability such as ENSO. For

this reason, we further examine the relationship between

the annual occurrences of four major phases identified by

ESOM analysis and preceding ENSO variability.

Figure 10 shows correlation coefficient between pre-

ceding wintertime SST (Figs. 10a–d) and springtime ge-

opotential height at 850hPa (Figs. 10e–h) and the annual

number of clustered days in four major phases. The most

significant correlations are seen in phases 3 and 7. Espe-

cially, phase 3 is positively (negatively) correlated to the

preceding wintertime SSTover the eastern IndianOcean,

Philippine Sea, and eastern Pacific (off-equatorial central

Pacific) (Fig. 10b). The springtime geopotential height

field at 850hPa shows positive correlation tilted from

northwest to southeast (Fig. 10f). The axis of the maxi-

mum positive correlation coincides with the negative

OLR region in phase 3 in Fig. 4. Another positive cor-

relation is found over southern Japan along 308N. On

the contrary, phase 7 shows negative correlation with

preceding wintertime SST centered at the southeastern

IndianOcean (Fig. 10d). In addition, negative correlation

with springtime geopotential height is located over the

subtropical western Pacific along 108N.

We further examined the changes in annual occur-

rence of each phase based on different phases of ENSO.

We found that the annual occurrence of phase 3 is in-

creased (decreased) by 20% (16%) and that of phase 4 is

decreased (increased) by 14% (6%) during El Niño
decaying (La Niña decaying) summer. The other two

phases (i.e., phases 1 and 5) do not display significant

changes in annual occurrence during El Niño decaying

summer. It is also identified that the annual occur-

rences of phases 3 and 7 are positive related to the El

Niño developing summer, whereas those of phases 1 and

5 are negatively related (figure not shown). In summary,

El Niño–related SSTwarming (cooling) over the eastern

Pacific and eastern Indian Ocean provides favorable

condition for phase 3 (phase 7) to happen more (less)

frequently after El Niño decaying. Although the asym-

metry in the eastern Indian Ocean convection between

phases 3 and 7 mentioned in section 4c is independent

from ENSO, we further found that the two phases are

related to the asymmetric large-scale forcing.

5. Summary and discussion

The boreal BSISO is a dominant mode of intra-

seasonal variability in the tropics during the boreal

summer (May to October). The BSISO exhibits more

complex features than wintertime MJO because it in-

volves northward propagation and interactions with

ISM and EASM, which makes it difficult to understand

irregular spatiotemporal characteristics of BSISO. In

this study, we applied the EOF-based nonlinear SOM

FIG. 9. Composite temporal evolution of the daily OLR anomaly

for wet events (red) and dry events (blue) from the day before

(225) to the day after (125) the maximum events over the

(a) eastern Indian Ocean (108S–58N, 708–1008E), (b) western Pa-

cific (08–108N, 1208–1508E), and (c) westernNorth Pacific (108–208N,

1208–1508E). The wet events are multiplied by21 for convenience.

The wet (dry) events are selected when the OLR anomalies are

greater than 1 (less than 21) for wet (dry) events. The averaged

areas are marked as red boxes in Fig. 4.
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technique (ESOM) using a synthetic PC time series of

OLR and U850 over ASM region. The ESOM analy-

sis has advantages in filtering out uncertainties from

high-frequency noise and being free from mathematical

restrictions, such as orthogonality and linearity. More

importantly, the ESOM analysis can offer addi-

tional information that the EOF analysis cannot offer,

such as nonlinear preferred seasonal occurrence and

phase locking, stationary and transitional character-

istics, nonlinear evolution of convective activities, and

asymmetric response to large-scale SST forcing. The

ESOM analysis projects BSISO phases projected to the

33 3 lattice, with similar patterns nearby and dissimilar

patterns farther apart.

Lee et al. (2013) have demonstrated the existence of a

dipole between the eastern Indian Ocean and the Phil-

ippine Sea, and a northwest–southeast-tilted rain belt

structure using MV-EOF analysis. We confirmed that

two pairs of ESOM patterns are similar to the first

two leading MV-EOF modes, and they explain alter-

native oscillation throughout the entire summer with

an approximate 30–60-day period. The ESOM en-

ables to detect the 30–60-day cycle of northward-

propagating BSISO.

We have also demonstrated the new features of

BSISO revealed by ESOM analysis in terms of four

dominant phases. The horizontal patterns of individual

phases are described in Fig. 4.

FIG. 10. The correlation coefficients of interannual variability of four major phases with (a)–(d) preceding

wintertime (DJF) SST anomalies and (e)–(h) springtime (MAM) geopotential anomalies at 850 hPa. The in-

terannual variability of the four phases are defined as the annual number of clustered days at each mode. Contour

indicates the correlation coefficients with an interval of 0.1. Shading indicates statistically significant areas.
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1) Phase 1 and phase 5 have similar horizontal struc-

tures with the first MV-EOF mode and show alter-

nating oscillations throughout the entire summer

with an approximate 30–60-day period supporting

the existence of a climatological intraseasonal oscil-

lation. On the contrary, phase 3 and phase 7 have

distinct preference in occurrence during a certain

time period. Phase 3 peaks in mid-June denoting the

significant rainy season of the ASM, while phase 7

peaks on 1 June, denoting the local premonsoon

states in the ISM and EASM. The results suggest

that phase locking of the ASM is contingent on the

occurrence of these northwest–southeast-tilted rain

belt phases (i.e., phase 3 and phase 7).

2) The ESOM enables the depiction of different sta-

tionary and propagating characteristics of the indi-

vidual phases. We found that the phases related to a

dipole pattern (phase 1 and phase 5) happen more

frequently and last longer than the phases with

quadrupole patterns (phase 3 and phase 7), whereas

MV-EOF analysis fails to describe the nonlinear

occurrences.

3) There is apparent asymmetry between phase 3 and

phase 7 over the eastern Indian Ocean. Composite

analysis of positive and negative convective events

revealed that the asymmetry is related to the slow-

growing and fast-decaying convective activity, and

this feature is the intrinsic property of the tropical

Indian Ocean independent of ENSO events.

4) El Niño–related SST warming (cooling) over the

eastern Pacific and eastern Indian Ocean provides

favorable conditions for phase 3 (phase 7) to happen

more (less) frequently after El Niño decaying sum-

mer. In addition, the annual occurrences of phase 3

and phase 7 are positive related to the El Niño de-

veloping summer, whereas those of phase 1 and

phase 5 are negatively related.

This paper suggests that ESOM is a useful mathe-

matical tool for extracting BSISO signals and providing

new features detected by nonlinear ESOM analysis over

other linear analysis. We believe that the application of

nonlinear ESOM phases on intraseasonal forecast will

be useful for real-time monitoring and forecast. For

example, the time series of four BSISO phases can be

calculated by projecting ESOM patterns on the daily

OLR anomaly, which enables monitoring real-time ISO

behavior. The optimal method for applying ESOM pha-

ses on intraseasonal forecast should be carefully de-

veloped and further investigated.
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