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potential attainable prediction skills are also estimated 
and discussed. The result illustrates advantage of PMA in 
predicting rainfall over dry land areas and large room for 
dynamical model improvement. However, secular changes 
of predictors need to be detected continuously in order to 
make practical useful prediction.
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1  Introduction

Northwest China (NWC), which occupies 30 % of the total 
Chinese territory, is located in the innermost Eurasia conti-
nent. Because NWC is thousands of kilometers away from 
the ocean, this region includes an agro-pastoral transition 
zone (Gong et al. 2004) and vast desert areas. Affected by 
the arrival of summer monsoon, NWC receives most of its 
annual rainfall (more than 60 %) in boreal summer (June–
July–August, JJA) (Samel et al. 1999). The climatological 
rainfall rate over NWC in JJA is normally less than 3 mm 
d−1, the least among the entire China (Fig.  1). Hence, 
NWC is considered as an arid and semi-arid region com-
pared with monsoonal southeast China.

The environment of arid and semi-arid regions is sensi-
tive to the regional climate variability, particularly to the 
precipitation (Ye and Chen 1992). Even a small rainfall 
deficit would possibly exert heavy drought pressure on the 
plants and agriculture, especially during summer when veg-
etation growth reaches most active season. Besides, due to 
the increasing anthropogenic activities and significant rain-
fall variability, NWC is also vulnerable to desertification, 
which is one of the most serious problems in the current 

Abstract  Northwest China (NWC) is an arid and semi-arid 
region where climate variability and environmental changes 
are sensitive to precipitation. The present study explores 
sources and limits of predictability of summer precipitation 
over NWC using the predictable mode analysis (PMA) of 
percentage of rainfall anomaly data. Two major modes of 
NWC summer rainfall variability are identified which are 
tied to Eurasian continental scale precipitation variations. 
The first mode features wet northern China corresponding 
to dry central Siberia and wet Mongolia, which is mainly 
driven by tropical Pacific sea surface temperature anoma-
lies (SSTA). The second mode features wet western China 
reflecting wet Central Asia and dry Ural–western Siberia, 
which strongly links to Indian Ocean SSTA. Anomalous 
land warming over Eurasia also provides important pre-
cursors for the two modes. The cross-validated hindcast 
results demonstrate these modes can be predicted with 
significant correlation skills, suggesting that they may be 
considered as predictable modes. The domain averaged 
temporal correlation coefficient (TCC) skill during 1979 
to 2015 using 0-month (1-month) lead models is 0.39 
(0.35), which is considerably higher than dynamical mod-
els’ multi-model ensemble mean skill (−0.02). Maximum 
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global environment (FAO, Unesco, WMO 1977). Investi-
gating and predicting the precipitation variability of NWC 
is helpful for developing agriculture and animal husbandry, 
and for assessing the rapidly growing environmental prob-
lems such as desertification.

Precipitation over NWC is considered to be affected by 
both monsoon circulation and mid-latitude westerly distur-
bance. The interannual variability of NWC summer rain-
fall exhibits pronounced regionality (Guo and Wang 1988; 
Chen et al. 1992; Kripalani and Singh 1993). Precipitation 
anomalies in northern China are well positively correlated 
with anomalous Indian summer rainfall (Yatagai and Yasu-
nari 1995). The east-westward expansion of the Tibetan 
High combined with the westward shift of the Pacific Sub-
tropical High is responsible for the wet years in northern 
China. Rainfall anomaly over northern China also seems to 
be closely related to El Niño/Southern Oscillation (ENSO) 
(Wang and Li 1990) and atmosphere–ocean interaction in 
the equatorial Pacific (Yasunari 1990; Shen and Lau 1995). 
Meanwhile, precipitation in Xinjiang Province locating 
over northwestern China shows a negative relationship 
with all-Indian summer rainfall, which is caused by a rather 
local circulation change over Central Asia. The interan-
nual variation of summer precipitation in this region is also 
related to the windward mid-latitude circulation and east-
ward (westward) shift of the Tibetan High in a wet (dry) 
year (Yatagai and Yasunari 1995).

Considering the poor prediction skill of dynamical mod-
els, a series of studies have been performed on Asian sum-
mer rainfall prediction using physical-empirical combined 
models (Wu et  al. 2009; Yim et  al. 2014; Li and Wang 
2015; Wu and Yu 2016; Xing et al. 2016a). The long-lead 
seasonal prediction of summer rainfall anomaly pattern 
over the whole China was also examined by Xing et  al. 

(2016b). However, these studies focused on a broad section 
of East Asia or the entire China, and paid little attention 
to the arid and semi-arid China. This may be due to lack 
of drought and flood events in this region compared with 
southeastern China (Lv et  al. 2015). Besides, the signifi-
cant regionality of NWC rainfall variation make it difficult 
to predict the rainfall pattern (Yatagai and Yasunari 1995; 
Zhao and Li 2013). Lv et  al. (2015) predicted the area-
mean summer rainfall index averaged over eastern NWC. 
However, there is still little work that focuses on the predic-
tion of rainfall pattern over the whole arid and semi-arid 
regions which remains a great challenge.

The present study is devoted to understanding the pre-
dictability and improving prediction of summer precipita-
tion variations in the arid/semi-arid NWC. The analysis 
season is from June to August, the local wet season. These 
months are of great importance for agriculture and human 
activity. Section 2 briefly describes the datasets and meth-
odology employed in this study. Section 3 explores physi-
cal processes governing the most important modes of sum-
mer precipitation variability. The physical–empirical (P–E) 
prediction models for each principal mode are also estab-
lished in this section. In Sect. 4 we estimate the extent to 
which we can predict NWC summer rainfall using P–E 
models. Section 5 provides a summary.

2 � Data and method

2.1 � Data

The data used in this analysis comprise monthly mean 
precipitation from Global Precipitation Climatology Pro-
ject (GPCP, v2.2) datasets (Huffman et al. 2011), monthly 
mean sea surface temperature (SST) from NOAA Extended 
Reconstructed SST (ERSST v4, Huang et  al. 2014; Liu 
2014), and the monthly mean circulation data from ERA-
interim (Dee et  al. 2011). The data period chosen in this 
study is from 1979 to 2015.

2.2 � Method

In this study, the predictable mode analysis (PMA) method, 
which was first proposed by Wang et al. (2007), is applied 
to estimate the potential predictability and establish pre-
diction model for NWC summer rainfall. This method has 
been applied to assess the predictability of Asia summer 
rainfall (Yim et  al. 2014; Li and Wang 2015; Xing et  al. 
2016a) and other climate variability (e.g. Lee et  al. 2011, 
2013; Wang et al. 2013, 2014).

The PMA includes three elements: empirical analysis, 
physical interpretation and retrospective predictions. The 
empirical analysis detects frequently observed patterns of 

Fig. 1   Climatological mean precipitation rate (in unit of mm day−1) 
averaged for June–July–August (JJA) from 1979 to 2015. The blue 
contour indicates the precipitation rate of 3 mm day−1
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variability which are often derived from empirical orthogo-
nal function (EOF) analysis. The physical interpretation 
provides dynamical basis for prediction of each empirical 
pattern and thus establishes physical–empirical (P–E) pre-
diction models for the principle component (PC) of each 
mode. The retrospective predictions (hindcast) with P–E 
models and/or dynamical models are used to identify the 
potential “predictable” modes. In the present study, since 
the dynamical models have limited capability in reproduc-
ing observed EOF modes, we use P–E prediction models to 
examine the reproducibility of these EOF modes.

To objectively select physically consequential predic-
tors, we focus on surface temperature field, i.e., SST over 
ocean and 2  m air temperature (T2m) over land which 
reflect ocean and land surface thermal conditions. Two 
types of surface temperature anomalies are searched for the 
predictors: (a) persistent signals from late winter (February 
and March, FM) to spring (April and May, AM) (FMAM) 
and (b) tendency signals from FM to AM (AM-minus-FM). 
The persistent signals sometimes reflect positive feedback 
processes associated with the local atmosphere–ocean or 
atmosphere–land interaction, which may help maintain the 
lower boundary anomalies. The tendency predictors denote 
changes from late winter to spring and frequently tip-off 
the direction of subsequent evolution. Note that different 
from statistical method that fishes predictors from variety 
of fields and variables, the P–E approach seeks for large-
scale statistically significant signals only in these two cor-
relation maps (persistent and tendency). In the selection of 
predictors, we emphasize understanding the processes that 
explain the lead–lag relationships between the predictors 
and the NWC summer rainfall.

Stepwise multi-linear regression is used to establish the 
P–E model for each PC. The stepwise procedure identifies 

statistically important predictors at each step. The signifi-
cance of each predictor selected is based on significance 
in increasing the regressed variance by a standard F-test 
(Panofsky and Brier 1968). A 95 % statistical significance 
level is used as a criterion to select new predictor at each 
step. Once selected into the model, a predictor can only be 
removed if its significance level falls below 90  % by the 
addition/removal of another variable. In this way those 
predictors that are relatively independent in their physical 
meanings can be selected and those that are well correlated 
predictors are avoided. To circumvent over-fitting, the num-
ber of predictors is required to be less or equal to three (i.e., 
less than 10 % of the sample size 37).

3 � Major modes of NWC summer rainfall: origin 
and predictors

Since the climatological and anomalous rainfall amounts 
over NWC are much smaller than southern and eastern 
China (Fig.  1), the primary EOF modes may only reflect 
the rainfall variability over coastal regions if anomalous 
rainfall data over the whole China is used for EOF analy-
sis (Xing et al. 2016b). In order to better depict the rainfall 
variability over NWC, the JJA mean percentage of precipi-
tation anomaly (anomalous rainfall/climatology rainfall) 
from 1979 to 2015 is used for EOF analysis.

The first two modes, which are statistically separable 
from other modes based on the North’s rule (North et  al. 
1982), represent the rainfall variability over northern and 
western China, respectively (Fig. 2a, c). The higher modes 
show irregularly weak signals and are not separable from 
each other. Because this study focuses on the rainfall pre-
diction over arid/semi-arid NWC, another EOF analysis is 

(a) (b)

(c) (d)

Fig. 2   a, c Spatial distribution of the first two leading EOF modes of percentage of rainfall anomaly during June to August over whole China 
from 1979 to 2015 and b, d the associated PC of each mode. The two modes account for 16.2 and 11.9 % of the total variance, respectively
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applied to the JJA mean percentage of precipitation anom-
aly over the region of NWC only, where the summer daily 
mean rainfall is less than 3 mm day−1 (Fig. 1). The spatial 
patterns and principal components of the first two modes 
are given in Figs. 3 and 5 respectively. These two modes are 
consistent with and resemble the first two modes derived 
from the whole China domain (Fig. 2). The correlation coef-
ficients between the two PCs for the first and second mode 
are both 0.97. Thus the first two modes can be considered as 
the most important arid/semi-arid modes in NWC.

Out of the reasons above, we focus on the two leading 
modes over NWC, which account for 22.8 and 16.2 % of the 
total variance, respectively. In this section, we first discuss 
characteristics of the precipitation and low-level circulation 

patterns associated with each mode, then examine their lead-
ing relationship with surface temperature anomalies in Feb-
ruary-to-May persistent and AM-minus-FM tendency fields, 
followed by selection of physically meaningful predictors for 
each mode. In order to understand the physical links between 
each predictor and rainfall for each mode, the leading and 
simultaneous correlation maps of lower boundary conditions 
or atmosphere circulations with reference to each predictor 
for PC1 and PC2 are shown in Figs. 4 and 6, respectively.

3.1 � EOF1: Mongolia mode

The spatial pattern of the first leading mode (EOF1) is 
characterized by an elongated positive rainfall located 

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 3   a The spatial pattern and b corresponding PC (PC1) of the 
first EOF mode (EOF1) derived from percentage of JJA precipita-
tion anomaly over northwestern China where the climatology rainfall 
rate is less than 3 mm day−1 for the period of 1979–2015. c The rela-
tionships between EOF1 and equatorial Indian-Pacific (40˚E–80˚W) 
SSTA averaged between 10˚S and 10˚N. The relationships are shown 
by the lead–lag correlation coefficients of monthly mean SSTA with 
reference of PC1. The gray lines show period of JJA. d The simulta-
neous correlation map (with reference to the PC1) of the anomalous 
JJA mean ST (SST over ocean and T2m over land) and SLP anoma-

lies. The red/blue contours mean positive/negative correlation coeffi-
cient between SLP and PC1 starting from ±0.1 with an interval of 
0.2. e The same as in Fig.  3d but for anomalous JJA mean precipi-
tation (color shading) and 850 hPa wind anomalies (vectors). f The 
correlation map of FMAM mean ST with reference to the PC1. g The 
same as in Fig. 3f but for AM-minus-FM. The contour represents the 
correlation coefficient significant at the 90  % confidence level. The 
color contours in c, f, g and the white contours in (d–e) represent the 
correlation coefficient significant at the 90  % confidence level. The 
rectangular regions outline the area used to define the predictors
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along the northern border of China (Fig.  3a). This mode 
is part of a southeast-northwest oriented sandwich pat-
tern of T2  m and precipitation anomalies, which is asso-
ciated with a wave train pattern from Europe to East Asia 
(Fig. 3d, e). There is an anomalous anticyclone over Philip-
pine Sea, expanding to South China Sea and eastern China, 
with higher SLP and suppressed rainfall in  situ (Fig.  3e). 
The southwesterly anomalies associated with this anticy-
clone are also the southern branch of an anomalous cyclone 
located over northern China and Mongolia, inducing 
above-normal rainfall there. Thus, the anomalous south-
west winds over southern and central China play a vital 
role in the enhanced rainfall in EOF1 mode. The T2m in 
northern China and Mongolia is also relatively low, con-
sistent with the enhanced rainfall-induced greater cloudi-
ness. To the north of Mongolia, a large-scale anticyclone 
and higher SLP appear, concurrent with suppressed rainfall 
in situ (Fig. 3d, e).

The lead–lag relationship of PC1 with equatorial SST 
anomalies (SSTA) over Indian Ocean to Pacific is illus-
trated in Fig.  3c. In tropical western Pacific, pronounced 
SST cooling lasts from previous winter to early summer, 

while positive SSTA appears over tropical eastern Pacific 
during previous winter and decays rapidly. These two fea-
tures are also reflected in Fig. 3f, g. Thus, the SSTA from 
February to May averaged over tropical western Pacific 
(145oE–165oE, 20oS–15oN) is selected as one predictor for 
this mode, called WPSST (P). The cooling tendency from 
late winter (FM) to late spring (AM) averaged over central 
to eastern Pacific (160oE–90oW, 0–15oN) is selected as the 
second predictor which is called CEPSST (T). The physical 
processes that these two predictors make contributions to 
the formation of the southwesterly anomalies over central 
China and enhanced rainfall over Mongolia are discussed 
below.

The tropical WP cooling weakens local convective 
activities. The suppressed precipitation can generate low-
level anomalous anticyclones to its west on both sides of 
the equator (Fig.  4a, b). The easterly components associ-
ated with the two anticyclones may enhance the total wind 
speed over tropical WP. Thus the cooling may maintain 
from the previous late winter to spring (Fig. 3f).

The second predictor represents the rapid decay of EP 
warming. The correlation map between this predictor and 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4   a, b The correlation map of a FM mean and b AM mean SLP 
(color shading)/850 hPa wind anomalies (vectors) with reference to 
0-month lead predictor WPSST (P) of PC1. c The correlation map of 
JJA mean precipitation (color shading)/850 hPa wind anomalies (vec-
tors) with reference to 0-month lead predictor WPSST (P) of PC1. d, 
e The correlation map of d FM mean and e AM mean ST (color shad-

ing)/850  hPa wind anomalies (vectors) with reference to 0-month 
lead predictor CEPSST (T) of PC1. f The same as in (c) but for the 
0-month lead predictor CEPSST (T). g–i The same as in a–c respec-
tively but for the 0-month lead predictor EUAT2m (P). The white 
contours in each figure represent the correlation coefficient significant 
at the 90 % confidence level
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850 hPa wind anomaly from February to August shows that 
an anomalous anticyclone with a ridge line along 20oN, 
extending from WP (Philippine Sea) to southeast China, 
persists from early spring through the ensuring summer 
(Fig. 4d–f). This is consistent with the finding of Wang and 
Zhang (2002). Wang et al. (2000) attributed the persistence 
of the Philippine Sea anticyclone from previous winter to 
summer to a positive thermodynamic feedback. As can be 
seen from Fig. 4d–f, the feedback occurs between atmos-
pheric descending Rossby waves/suppressed convection 
and the underlying cold SST anomaly to the southeast of 
the anticyclone center. This air–sea interaction is also rec-
ognized as responsible for the origins of the second EOF 
mode of the Asian summer monsoon rainfall (Wang et al. 
2014), and the first EOF mode of EA summer rainfall 
(Wang et al. 2009a; Xing et al. 2016a).

Therefore, both WPSST (P) and CEPSST (T) are impor-
tant predictors for the maintenance of strengthened western 
Pacific subtropical high (WPSH), which induce suppressed 
precipitation over the Philippine Sea and enhanced rainfall 
over northern China and Mongolia.

The third predictor for PC1 is the persistent dipole dif-
ferential T2m anomalies between southwestern (50oE–
80oE, 20oN–50oN) and northeastern Eurasia (100oE–140oE, 
45oN–60oN), which is called EUAT2m (P) (Fig.  3f). This 

predictor is associated with an anomalous low pressure 
trough over northwestern Eurasia (Fig. 4g). To the east of 
the low pressure trough, there is a northeast-southwest ori-
ented high anomaly along the border of Eurasia continent. 
The anomalous high is centered over northeastern China. 
During summer, the anomalous anticyclone circulation 
over northeastern China may induce a local rainfall deficit. 
However, the southern flank of the anticyclone transports 
moisture from northern Pacific to northern China, inducing 
more rainfall there (Fig. 4h, i).

3.2 � EOF2: the central Eurasia mode

EOF2 features a contrast between a prominently enhanced 
rainfall center over the far western China and a relatively 
weak rainfall suppression center to its east in the central 
northern China (Fig. 5a).

The large-scale low-level circulation and rainfall anom-
alies associated with PC2 are characterized by a dipole 
pattern: a suppressed rainfall center accompanied by an 
anomalous anticyclone and land warming is centered over 
Ural mountain (60oN, 60oE), whereas the enhanced rainfall 
anomalies and the associated anomalous cyclone are cen-
tered in central Asia (40oN, 80oE) (Fig.  5d, e). Thus, this 
mode mainly reflects the rainfall pattern over the central 

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 5   The same as in Fig. 3 but for EOF2
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Eurasia. For this reason, it is named as Central Eurasian 
mode. To the south of Tibetan Plateau, the extended posi-
tive SLP anomalies over northern Indian Ocean and west-
ern North Pacific weaken the tropical monsoon trough 
(Fig.  5d). The associated anomalous anticyclone in turn 
generates drying anomalies over the eastern India and Indo-
China Peninsula (Fig. 5e).

The relationship of EOF 2 with equatorial SSTA is 
illustrated in Fig. 5c, f. This mode has a persistent positive 
relationship with tropical Indian Ocean and WNP SSTA 
(Fig. 5c, f). The warming SST over Indian Ocean may be 
regarded as a response to the weakened monsoon trough. 
This is because the southern branch of strengthened WPSH 
expands westward into tropical Indian Ocean, inducing 
warmed SST there since the total wind speed is reduced. 
In addition, eastern India and Indo-China Peninsula expe-
rience anomalous easterlies and suppressed rainfall asso-
ciated with the weakened monsoon trough. As shown in 
Fig. 6a, an anomalous cyclone to the east of Caspian Sea 
(65oE, 40oN) is generated to the northwest of the sup-
pressed rainfall area in the upper troposphere as a Rossby 
wave response (Ding and Wang 2005). This anomalous 

cyclone also exists in the middle and lower troposphere 
(Fig.  6b, c). Therefore, the anomalous cyclone is mani-
fested as a quasi-barotropic structure and induces plenty of 
rainfall over western China and the vicinity (Fig. 6c). Thus, 
the western China rainfall has a negative relation with the 
strength of Indian summer monsoon, consistent with previ-
ous studies (Yatagai and Yasunari 1995). The spring persis-
tent SSTA (FMAM mean) over Indian Ocean (40oE–120oE, 
30oS–20oN), which can signal a weak South Asia sum-
mer monsoon, is selected as one predictor for this mode 
(Fig. 5f). This predictor is named as IOSST (P).

Another salient persistent precursor is the land warming 
over the central Siberia (Fig. 5f). The land warming occurs 
in the front of an anomalous Ural (mountain) trough during 
February and March (Fig. 6d). Warm and wet air is trans-
ported to northern Eurasia along the southwesterlies associ-
ated with the anomalous Ural trough, inducing anomalous 
land warming there. From FM to summer (JJA), it seems 
that the anomalous Ural low moves southward and arrives 
at central Asia in summer, inducing positive rainfall anom-
alies (Fig. 6e, f). For this reason, the persistent T2m anom-
aly over the central Siberia (80oE–120oE, 50oN–75oN), 

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 6   a, b The correlation map of JJA mean (a) 200  hPa and b 
500 hPa geopotential height (color shading)/wind anomalies (vectors) 
with reference to 0-month lead predictor IOSST (P) of PC2. c The 
same as in Fig. 4c but for the predictor IOSST (P) of PC2. d–f The 

same as in Fig. 4a–c but for the predictor EUAT2 m (P) of PC2. g–i 
The same as in Fig. 4d–f but for the predictor TPT2 m (T) of PC2. 
The white contours in each figure represent the correlation coefficient 
significant at the 90 % confidence level
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which is called EUAT2  M (P), is selected as the second 
predictor (Fig. 5f).

A notable T2  m cooling tendency is noted over the 
Tibetan Plateau and vicinity. The cooling tendency is 
associated with more snow during AM, inducing weak 
south Asia summer monsoon (Fig. 6i). This signal can be 
regarded as an indirect precursor of more rainfall over cen-
tral Asia. Thus, the third predictor named TPT2m (T) is 
defined as the AM-minus-FM 2 m air temperature anoma-
lies averaged over (80oE–110oE, 20oN–40oN).

4 � Predictability and prediction with P–E models

In the previous section, we have shown that the first two 
EOF modes have different origins and predictors. The 
potential maximum predictability and prediction of NWC 
summer rainfall are introduced in this section. Prediction of 
anomalous rainfall patterns over NWC includes two steps. 
First, each PC is predicted. Second, the rainfall prediction 
field is reconstructed using the sum of the two observed 
spatial EOF patterns multiplied by their corresponding 
predicted PCs. It should be pointed out that if the predic-
tors used for prediction are 0-month ahead of June (i.e. the 
predictors include the information in May), the prediction 
is named as 0-month lead prediction. Similar definition 
applies to 1-month lead prediction.

4.1 � Prediction of each PC with P–E models

In order to predict PC1, a P–E prediction model is estab-
lished through stepwise multi-linear regression method 
using the three predictors shown in Fig. 3f, g. All predictors 
are selected by stepwise regression given the F-test at 95 % 
confidence level. The prediction (simulation) equation is

The P–E prediction model can reproduce the rainfall vari-
ability of the first mode with a temporary correlation coef-
ficient (TCC) skill of 0.75 for all 37 years.

In order to test the predictive capability of the empiri-
cal model, the cross-validation method (Michaelsen 1987) 
is performed to make a retrospective forecast (hindcast) 
for PC1. To lessen over-fitting problem, we leave 3 years 
of data out progressively centered on a forecast target year 
for the period 1979–2015, then train the model using the 
data in remaining years and finally apply the model to fore-
cast the three target years. The hindcast PC1 using the P–E 
model in the cross-validated mode is shown by the red line 
in Fig. 7a compared with the corresponding observed PC1 
(black line).The TCC skill of the 37-year cross-validated 
hindcast is 0.70. To further confirm whether the P–E model 

(1)
PC1

′
= −0.28×WPSST(P)− 0.35× CEPSST(T)

− 0.44× EUAT2m (P)

is actually useful, we use 1979–2003 as training period and 
derive prediction equation using the data during this train-
ing period. Then independent forecasts are made for the 
period 2004–2015. The independent forecast TCC skill is 
0.71 (The green line in Fig. 7a).

Similarly, the P–E prediction model for PC2 is devel-
oped using the three predictors identified in Sect. 3.2. All 
predictors are relatively independent from each other. The 
prediction (simulation) equation is

The simulation and cross validated hindcast skill during 
1979–2015 are 0.72 and 0.67, respectively. The independ-
ent forecast TCC during the last 12 years is 0.60 (Fig. 7b).

The hindcast TCC skill in the cross-validation mode is 
significant at 99 % confidence level in both modes, which 
suggests that the two leading modes may be considered as 
predictable modes to a large extent. The high skills of inde-
pendent forecast in the two modes also show that this set of 
P–E models can be used to make real time forecast.

4.2 � Potential predictability

By far, we have shown that the first two EOF modes 
can be potentially predicted by the P–E models. In this 
subsection, we try to estimate the potentially maximum 
attainable prediction skill for the percentage of precipita-
tion anomaly during summer over NWC. The observed 
predictable part of the predictand is reconstructed by the 
sum of the first two modes. Assuming that these modes 
can be predicted perfectly, the potentially maximum 
attainable prediction skill can be estimated from the cor-
relation between the observed total field and the recon-
structed predictable part of the rainfall using the two pre-
dictable modes.

The maximum attainable temporal correlation coeffi-
cient (TCC) skill at each grid point is shown in Fig. 8a. The 
domain-averaged correlation skill is 0.60. High predictabil-
ity regions are found over the western Inner Mongolia and 
Xinjiang Province, which are consistent with the rainfall 
anomaly centers in the two modes.

The maximum attainable pattern correlation coefficient 
(PCC) skill for each year is shown by the black line in 
Fig.  9. The 37-year averaged PCC is 0.48. There is large 
year-to-year variation in the maximum attainable skill. 
There are 10 years during which the maximum attainable 
PCC skill is above 0.6 (1979, 1980, 1984, 1985, 1993, 
1994, 2001, 2002, 2005 and 2010). 1988 and 1991 have 
relatively lower predictability. This may be due to the fact 
that the percentage rainfall fields of the 2 years have low 
projection onto the first two EOFs for the entire period of 
1979–2015.

(2)
PC2

′
= 0.42× IOSST(P)+ 0.37× EUAT2m(P)

− 0.35× TPT2m(T)
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Fig. 7   a The correspond-
ing PC of the first EOF mode 
in observation (OBS, black 
line), cross-validated 0-month 
lead prediction model (0 M, 
red line) and cross-validated 
1-month lead prediction model 
(1 M, blue line) from 1979 to 
2015. 0/1-month lead predic-
tion model means the model 
is established using predictors 
which are 0/1-month ahead 
of June. The cross-validation 
was done by taking 3-year out 
around the predicted year. The 
2004–2015 values shown by 
the green line are independent 
test predictions when the model 
is built using the data in the 
training period of 1979–2003. 
b The same as in Fig. 7a but for 
the second mode. The numbers 
within the parenthesis in the 
figure legend indicate the cor-
relation coefficient between the 
observed and predicted PC

(a)

(b)

(a) (b)

(c) (d)

Fig. 8   The temporal correlation coefficient (TCC) skill for JJA pre-
cipitation prediction over NWC by using the a observed first two 
modes, b nine dynamical models’ multi-model ensemble mean, c 
0-month lead cross-validated P–E Models and d 1-month lead cross-

validated P–E Models. The dashed contour is the TCC skill of 0.28 
which is statistically significant at 90 % confidence level. The num-
bers within the parenthesis in the title of each figure indicate the 
domain-averaged TCC skill
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4.3 � The 0‑month lead prediction of NWC summer 
rainfall

Given the fact that the first two EOF modes can be potentially 
predicted by the P–E models, we may reconstruct the predic-
tion field of NWC summer rainfall by using linear combina-
tion of the first two observed spatial EOF patterns multiplied 
by their corresponding predicted PCs. Note that all predictors 
in Sect. 3 are 0-month ahead of June, so the prediction here is 
a 0-month lead prediction. But in practice, the forecast can be 
made 5 days before June 1st because the last 5 days’ values 
for the predictors can be estimated by weather forecast.

We use the TCC and PCC between the observed rainfall 
field and predicted patterns as a measure of prediction skill. 
The spatial distribution of the hindcast TCC skill in the 
cross-validated mode is given in Fig. 8c. The domain-aver-
aged TCC skill is 0.39. The whole domain shows similar 
hindcast skill except the most western part of China. The 
red line in Fig. 9 shows the time series of PCC skill for each 
year between observed precipitation and hindcast field. The 
37-year averaged PCC skill is 0.30. The green line in Fig. 9 
indicates the independent forecast skill during 2004–2015. 
The forecast pattern is derived from the forecast PCs shown 
by the green line in Fig. 7 and the corresponding EOF pat-
terns derived from 1979 to 2003. This independent test can 
rigorously reflect the ability of the P–E prediction model in 
NWC summer rainfall forecast. Actually, the forecast skill 
is similar to the hindcast skill during the latest 12  years. 
The 12-year mean PCC value is 0.41.

4.4 � The 1‑month lead prediction of NWC summer 
rainfall

In order to make timely management decisions, a longer 
lead time is appreciated. In this case we also try to make 

a 1-month lead prediction. The corresponding predictors 
of each PC are searched based on leading correlation maps 
with February-to-April persistent anomalies and April-
minus-FM tendency anomalies. The selected predictors 
are almost the same as those in 0-month lead prediction 
(Table 1), which suggests that these predictors are basically 
stable with the lead time.

The blue lines in Fig. 7a, b give the cross-validated pre-
dicted PC in each mode. The hindcast TCC for the two 
modes are 0.65 and 0.63, respectively. The skills are sys-
tematically lower than the 0-monthlead hindcast skills. The 
corresponding domain-averaged TCC and 37-year mean 
PCC skill are 0.35 and 0.28, respectively (Figs. 8d and 9).

To compare the 1-month lead hindcast skills using 
P–E models with the current status of the dynamical sea-
sonal prediction, we examine the hindcast skills of nine 
state-of-the-art atmosphere–ocean–land coupled models, 
including (1) NCEP (National Center for Environmental 
Prediction) CFS version 2 (Saha et  al. 2014), (2) GFDL 
(Geophysical Fluid Dynamics Laboratory) CM version 
2.1 (Delworth et al. 2006), (3) FRCGC (Frontier Research 
Center for Global Change) SINTEX-F model (Luo et  al. 
2005), (4) ECMWF (European Center for Medium Range 
Weather Forecasting) model (Gregory et al. 2000; Molteni 
et  al. 2011), (5) INGV (Instituto Nazionale de Geofisica 
e Vulcanologia in Italy) model (Madec et  al. 1998), (6) 
IFM-GEOMAR (Leibniz Institute of Marine Sciences at 
Kiel University) IFM model (Jungclaus el al. 2006), (7) 
POAMA (Predictive Ocean Atmosphere Model for Aus-
tralia) P24A model (Zhong et al. 2005), (8) UKMO (United 
Kingdom met office) model (Roeckner 1996; Marsland 
et  al. 2003), and (9) MF (Centre National de Recherches 
Meteorologiques in France) model (Madec et  al. 1997; 
Deque 2004). These models are collected in the APCC/Cli-
PAS project (Wang et al. 2009b). A multi-model ensemble 

Fig. 9   The pattern correlation coefficient (PCC) skill for JJA pre-
cipitation prediction over NWC as a function of forecast year using 
the 3-year out cross-validated 0-month lead P–E model prediction 
(red line), and 1-month lead P–E model prediction (blue line). The 
potential attainable forecast skill obtained by using observed two 
PCs (OBS, black line) is also compared. The orange line shows the 

PCC skill by using the nine dynamical models’ multi-model ensemble 
mean. The 2004–2015 values shown by the green line are independ-
ent forecast PCC skill when the model is built using the data in the 
training period of 1979–2003. The numbers within the parenthesis in 
the figure legend indicate the averaged PCC skill
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(MME) hindcast from 1979 to 2010 with May 1st initial 
conditions was made by simply averaging the nine coupled 
models’ ensemble mean anomalies after removing their 
own climatology.

Figure 8b and the orange line in Fig.  9 show the TCC 
and PCC skill by using the nine climate models’ MME. 
As can be seen, the TCC skill barely exceeds 90  % con-
fidence level (Fig. 8b). The averaged skill of the dynamic 
MME hindcast is not distinguishable from zero dur-
ing 1979–2010. The prediction is notoriously poor in the 
NWC. Therefore, compared with the 1-month lead MME 
hindcast, the P–E prediction model shows higher skills, 
suggesting the advantage of PMA in terms of predicting 
rainfall over mid-latitude land areas.

5 � Summary

Northwest China (NWC) consists of an agro-pastoral tran-
sition zone and desert regions. It receives least rainfall in 
China and is regarded as the arid and semi-arid regions. 
The present study investigates the predictability and pre-
diction of the percentage (fractional) rainfall anomaly (i.e., 
rainfall anomaly normalized by the local mean climato-
logical rainfall) during June to August over NWC for the 
37-year period of 1979–2015. These months are of great 
importance for plants and agriculture.

The first two EOF modes, which explain about 40  % 
of the total variance, are identified as the most important 
modes. The first mode reflects the rainfall variability over 
northeastern Eurasia including Inner Mongolia, Mongolia 
and central Siberia. This mode is mainly driven by spring 
persistent SST cooling over the tropical western Pacific 
and cooling tendency across spring over central and eastern 
Pacific. The second mode is associated with the meridional 

dipole distribution over the central Eurasia. It has a close 
relationship with tropical Indian Ocean SSTA which is 
a response to anomalous south Asian summer monsoon. 
Besides tropical SSTA, anomalous land warming over Eur-
asia continent also contributes to the two modes.

These findings provide dynamical insights into the 
physical processes that control the precipitation variabil-
ity over NWC, and may have important implications for 
better prediction. To better understand the source of the 
potential predictability and to improve prediction skill, a 
set of 0-month lead physical–empirical (P–E) models is 
established for prediction of the first two leading PCs. The 
physically meaningful and statistically robust predictors 
are selected based on either persistent surface tempera-
ture anomalies (SSTA over ocean and 2  m air tempera-
ture anomalies over continent) during late winter to spring 
(February to May) or the tendency from late winter (Feb-
ruary–March) to spring (April–May). Emphasis is put on 
discussion of the physical linkage between the predictors 
and predictand. Only three predictors are used for each 
PC. The cross-validated TCC skill for prediction of each 
PC is 0.70 and 0.67, respectively, which are both signifi-
cant at 99 % level. The 10-year independent forecast skill 
is comparable to the cross-validated skills. The high TCC 
skills of independent forecast of the period 2004–2015 
indicate the usefulness of the P–E models in the practical 
prediction. Thus, to a large extent, the first two modes can 
be regarded as predictable mode, at least in terms of the 
P–E model estimation. Besides, a set of 1-month lead P–E 
models is also developed accordingly for the purpose of 
making timely arrangement.

The predictable part of summer rainfall over NWC can 
be reconstructed by the two predictable modes. The area-
averaged potentially maximum attainable skill over the 
entire domain is 0.60. The potential maximum attainable 

Table 1   Definition of each 
predictor selected for the 1-
month lead prediction model of 
each PC and the corresponding 
simulation equation

MODE Name Definition Prediction equation

EOF1 WPSST(P) FMA SST
145oE–165oE,20oS–15oN

−0.24 × WPSST(P)
−0.41 × CEPSST (T)
−0.39 × EUAT2 m (P)

CEPSST(T) April-minus-FM SST
160oE–90oW, 0–15oN

EUAT2 m(P) FMA T2 m
(50oE–80oE, 20oN–50oN) minus (90oE–

120oE, 50oN–70oN)

EOF2 IOSST(P) FMA IO SST
40oE–120oE, 30oS–20oN

0.49 × IOSST (P)
+0.40 × EUAT2 m(P)
−0.37 × TPT2 m(T)

EUAT2 m(P) FMA T2 m
80oE–120oE, 50oN–75oN

TPT2 m(T) April-minus-FM T2 m
(80oE–110oE, 20oN–40oN)
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pattern correlation coefficient (PCC) skill may fluctuate 
from year to year with an averaged PCC skill about 0.48.

Similarly, the 0-month and 1-month lead prediction field 
can be derived using the corresponding predicted PCs. We 
find that the 0-month lead models have slightly higher skills 
than 1-month lead models. That means that the signals dur-
ing May are useful for summer rainfall prediction over 
NWC. Therefore, it is suggested that by late May, a more 
reliable forecast of JJA rainfall should be implemented in 
the operational centers. Even so, the 1-month prediction 
skill using P–E models shows higher skill than dynami-
cal models’ multi-model ensemble mean, suggesting that 
the P–E prediction model may be a useful approach for 
seasonal prediction compared with the current dynamical 
models over midlatitude continents and the current predic-
tion models may have large room to improve.

In this study, we mainly focus on the impact of lower 
boundary forcing on the rainfall variability over NWC. The 
physically meaningful and statistically robust predictors are 
selected based on atmospheric lower boundary anomalies. 
A recent study demonstrated that the summer precipita-
tion variability over most western part of China was also 
closely associated with the meridional teleconnection pat-
tern around 50oE–80oE and the zonal teleconnection pat-
tern along the Asian westerly jet in summer (Huang et al. 
2015). In the future, the related predictors will be added in 
the pool of predictors to see whether this kind of predictors 
can improve the prediction skill of NWC summer rainfall.

It should be noted that the predictable modes identified 
in this study are confined for the recent 37 years. We expect 
that these modes are still valid for the next few years, so 
useful prediction can be made. However, both the rainfall 
variability and the source of the predictability (predictors) 
may be generally involved with decadal change. Thus, con-
tinuous detection of long term changes and modifications 
of the predictors/prediction equations are required.
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