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ABSTRACT

Prediction of the arctic annual sea ice minimum extent and melting patterns draws interest from numerous

industries and government agencies but has been an ongoing challenge for forecasters and climate scientists

using statistical and dynamical models. Using the dominant independent modes of interannual sea ice con-

centration (SIC) variability during September–October, a new approach combining statistical analysis with

physically derived links to natural climate variability sources is used to predict each mode and the total

anomaly pattern. Sea ice patterns associated with each mode are predominantly shaped by the wind-driven

advective convergence, forced by circulation anomalies associated with local and remote forms of naturally

occurring climate variability. The impacts of the Arctic Oscillation, beginning from the preceding winter,

control the leading mode of SIC variability during the annual minimum. In the three final months of the

melting period, the broad impacts of the Indian and East Asian summer monsoons produce unique SIC

impacts along the arctic periphery, displayed as the second and third modes, respectively. El Niño–Southern
Oscillation (ENSO) largely shapes the fourth SIC mode patterns through influencing variability early in the

melting period. Using physically meaningful and statistically significant predictors, physical–empirical (P–E)

models are developed for each SIC mode. Some predictors directly account for the circulation patterns

driving anomalous sea ice, while the monsoon-related predictors convey early season sources of monsoonal

variability, which subsequently influences the Arctic. The combined SIC predictions of the P–E models ex-

hibit great skill in matching the observed magnitude and temporal variability along the arctic margins during

the annual minimum.

1. Introduction

Interannual variability accounts for a large percentage

of the variance of summer arctic sea ice on time scales

longer than the annual cycle and has been increasing in

recent years, indicating year-to-year forecasts of the

annual minimum extent could becomemore challenging

in the future (Vihma 2014). Arctic sea ice variability has

been linked to midlatitude influences on weather and

climate on many time scales by driving anomalous wave

trains, changing storm tracks, and altering the jet stream,

and thus accurate sea ice prediction could lead to im-

proved climate forecasts (Cohen et al. 2014; Hopsch

et al. 2012; Honda et al. 2009; Tang et al. 2013). Alter-

natively, recent and long-term fluctuations of arctic

circulation, temperature, and sea ice have been driven

by remote wave train patterns originating in the Pacific,

which act on decadal and longer time scales (Wettstein

and Deser 2014; Ding et al. 2014). Year-to-year pre-

diction of the annual sea ice minimum extent using a

variety of dynamical, statistical, and heuristic techniques

from the arctic research community, solicited by the
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study of environmental arctic change (SEARCH) pro-

gram (SEARCH 2015), has shown mixed results but

ultimately exhibits difficulty in matching observations

(Stroeve et al. 2014; Hawkins et al. 2016). The recent rise

of human activities and interest in arctic resources

from a number of industries has made accurate ice

forecasts a significant priority (Eicken 2013). The en-

semble of predictions analyzed by Stroeve et al. (2014)

shows recent years where the September mean extent is

matched well between ensemble models and observa-

tions while other years where the actual extent is outside

the ensemble range or where the observations and en-

semble means are close but the ensemble spread is large.

The ensemble of predictions exhibits the greatest diffi-

culty during extreme ice volume years.

The prediction errors, which use conditions in the

preceding 2–4 months, suggest summer synoptic condi-

tions, early spring sea ice conditions, andmodelmethods

could all contribute to forecasting difficulties. Therefore a

combined approach accounting for the processes shaping

early season ice conditions and prediction of summer

arctic atmospheric patterns could aid in amore successful

prediction. The long-term declining sea ice volume has

resulted in larger expanses of thin ice, which are more

sensitive to atmospheric variations in the summer

(Holland et al. 2008; Stroeve et al. 2012). A recent rise in

the ice drift speeds has been observed, confirming the

thinning ice sheet is responding more strongly to the local

wind forcing (Kwok et al. 2013; Vihma et al. 2012).

Sea ice concentration (SIC), or ice fractional area, in

many models is predicted using the same governing

equation developed by Thorndike et al. (1975). The

fundamental equation predicts an ice thickness distri-

bution function for each grid point dependent on sea ice

thermodynamic melt, sea ice divergence, and a param-

eterized redistribution function representing mechani-

cal ridging and opening processes. SIC is handled as a

discrete variable that is measured by calculating the

fractional area occupied by a set thickness range (Hunke

and Lipscomb 2010).

Movement and divergence of sea ice is strongly driven

by local winds and currents. Many studies have shown

that the geostrophic wind is the predominant driver of

sea ice motion at distances far (exceeding 400 km)

enough from coastal effects (Thorndike and Colony

1982; Zhao and Liu 2007). When relating ice motion to

low-level geostrophic winds, thick ice and the ice in close

proximity to the coast generally move more slowly than

thin ice and ice at greater distances from the coast

(Kimura andWakatsuchi 2000). Seasonally, summer sea

ice motion has a higher multiplier, which describes the

relation between the sea ice and geostrophic wind

speeds, compared to other seasons (Thorndike andColony

1982). Sea ice in the seasonal sea ice zone, the region from

the permanent ice margin to the maximum sea ice extent

boundary, accounts for the quickest ice motion in the

Arctic owing to a lower internal ice stress compared to

the central Arctic, which is specifically related to the ice

thickness (Hibler 1979; Overland and Pease 1988).

Thorndike et al. (1975) highlight the dominant processes

shaping sea ice in the following equation:

›g

›t
52= � (yg)2 ›

›h
(fg)1c , (1)

where g is a probability distribution function repre-

senting ice thicknesses within a grid, y is ice velocity, f is

the growth rate, h is ice thickness, and c is a thickness

redistribution function. Sea ice deformation, de-

termined by spatial gradients in the motion of sea ice,

plays a large role in high frequency (,1 month) vari-

ability in sea ice thickness, while transport plays a larger

role on interannual time scales (Lindsay et al. 2003;

Thorndike et al. 1975; Watanabe and Hasumi 2005;

Kauker et al. 2003). The relatively rapid motion of ice,

especially in the seasonal sea ice zone, during the sum-

mer months makes the advective convergence term in

the governing sea ice thickness equation [second term in

Eq. (1)] the primary factor for investigating summer

interannual variability. Thin ice is more likely to deform,

making the arctic margins during the summer specifically

prone to advective convergence effects (Vihma 2014).

On the annual cycle, thermodynamic melt [third term

in Eq. (1)] has the greatest influence on ice thickness

variability (Thorndike et al. 1975). Oceanic and atmo-

spheric heat fluxes acting on the bottom and top of the

ice sheet, working in combination with the thermal his-

tory of the ice, the current ice thickness, snow coverage,

and brine content, act to influence the annual sea ice

thickness. During winter, the thermodynamic growth

rate of sea ice is nonlinear with ice thicker than 3m

generally exhibiting a growth rate roughly two orders of

magnitude less than ice found in a newly refreezing re-

gion. The summer melt rate is weakly dependent on

thickness as most of the mass changes occur on the ice

sheet surface.

Previous work has separated leading modes of SIC

variability but have retained the annual and decadal

components or were too focused on a specific locale to

make interannual variability in the summer easily dis-

tinguishable (Walsh 1980; Singarayer and Bamber 2003).

Early attempts at sea ice area and edge prediction often

relied heavily on the properties of sea ice such as ice

volume, ice extent, and ice thickness in the months pre-

ceding the forecast period of interest (Chevallier and

Salas-Mélia 2012; Guemas et al. 2016; Goessling et al.
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2016). While this approach has produced favorable re-

sults, it relies heavily on accuratemeasurements of sea ice

properties that can be difficult to collect with a wide-

spread resolution. The goal of the present study is to

identify the major modes of interannual SIC variability

during the annualminimum, link them to natural forms of

climate variability, and develop a prediction tool based

on the leading modes. Emphasis is placed on the physical

processes linking natural anomalous atmospheric circu-

lations to anomalous sea ice patterns by focusing on the

major driver of interannual SIC variability, transport.

The data and methodology for determining the SIC

modes and developing the prediction models are dis-

cussed in section 2. Section 3 shows a brief validation of

current dynamical models, section 4 examines the natural

sources of interannual SIC variability during September–

October, and section 5 elaborates on the development

of a new interannual SIC prediction model. The skill of

the newly developed physical–empirical (P–E) sea ice

model for interannual variability during the annual sea

ice minimum extent is assessed in section 6. The final

section summarizes our findings, highlights un-

resolved issues, and discusses possibilities for contin-

ued improvement.

2. Data and methods

Monthly bootstrap SIC from Nimbus-7 Scanning

Multichannel Microwave Radiometer (SMMR) and

Defense Meteorological Satellite Program (DMSP)

Special Sensor Microwave Imager–Special Sensor Mi-

crowave Imager/Sounder (SSM/I-SSMIS) version 2 is

utilized for the 1979–2013 period (Comiso 2000). This

SIC dataset has a 25-km resolution on a 3043 448 SSM/I

polar stereographic grid. To remove the long-term

nonlinear declining trend in the summer (September–

October) SIC, the 3-yr running mean is subtracted out,

acting like a weighted 6-yr filter to focus on interannual

variability. For the end years, the 3-yr mean is the first or

last 3-yr sequence. Empirical orthogonal function

(EOF) analysis is conducted on the interannual SIC data

averaged over September–October of each year since

the period surrounding the annual minimum is highly

dynamic and exhibits the greatest difficulty in prediction.

Reanalysis monthly sea ice thickness (SIT), ice mo-

tion vectors, advective convergence, and thermody-

namic melt from the Pan-Arctic Ice Ocean Model and

Assimilation System (PIOMAS; Zhang and Rothrock

2003) were used to understand sea ice variations prior to

the annual melt and widespread breakup of arctic sea ice

and determine the major processes [Eq. (1)] shaping sea

ice variability (Thorndike et al. 1975). These data are

available on a 360 3 120 generalized curvilinear grid

covering latitudes north of 458N. Monthly rainfall rate

from the Climate Prediction Center Merged Analysis of

Precipitation (CMAP; Xie and Arkin 1997) and Global

Precipitation Climatology Project (GPCP) version 2.2

combined precipitation dataset (Adler et al. 2003) from

1979 to 2013 on a global 2.58 grid were averaged together
bymonth following themethodology inYim et al. (2014a).

Monthly NCEP–DOE Reanalysis-2 geopotential height,

sea level pressure (SLP), sea surface temperature (SST),

and wind are used to discern the circulations that are

associated with various teleconnection patterns. Using

regressed 200-hPa fields of geopotential heights and

winds, the wave activity flux is calculated to determine

the energy propagation along the teleconnections, which

is parallel to the group velocity of the quasi-stationary

Rossby wave trains (Plumb 1985).

Although Stroeve et al. (2012) demonstrate the diffi-

culties of various model types in representing in-

terannual sea ice area variability during the annual

minimum, we follow up using spatial SIC data, which

allow for a better understanding of specific arctic regions

where model shortcomings are greatest, rather than an

areal extent. Determining the regions where the models

are exhibiting difficulty could reveal the unique dy-

namics in different sections of the Arctic that are not

being accurately represented. Using CMIP5 historical

runs from 1979 to 2005, the best models representing the

average sea ice area, long-term trend, time span of

summer duration, and annual range of sea ice area

(Zhou 2014) are selected for further analysis. These

models include 1) CSIRO’s Australian Community Cli-

mate and Earth-System Simulator (ACCESS 1.0), 2)

NCAR’s Community Earth System Model (CESM1

BGC), 3) Geophysical Fluid Dynamics Laboratory’s

ClimateModel, version 3 (GFDLCM3), 4)HadleyCentre

Global Environment Model version 2–Atmosphere and

Ocean (HadGEM2-AO), 5) Hadley Centre Global Envi-

ronment Model version 2–Carbon Cycle (HadGEM2-

CC), and 6) Max Planck Institute Earth System Model,

low resolution (MPI-ESM-LR). Similar to the observed

SIC data, the long-term declining trend is removed by

subtracting out the 3-yr running mean to focus on the in-

terannual component.

P–E model development

The goal of the P–Emodel is to independently predict

the leading EOF modes that account for a large per-

centage of the overall variance, using physical relation-

ships with key observed variables, and then perform

hindcast experiments for verification (Wang et al.

2015a). Rather than searching for predictors in a variety

of oceanic and atmospheric fields, we examine the

persistence and tendency of SLP, SST, and 2-m air
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temperature anomalies since these variables uniquely

represent various climate forcings (Wang et al. 2015b).

Lead–lag as well as simultaneous correlations between

the leading modes and predictor variables are per-

formed to empirically detect the most important pat-

terns associated with each mode and how they relate to

natural forms of interannual climate variability.

Potential predictors are selected based on the spatial

average within the statistically significant and physically

meaningful regions of interest similar to Lee et al.

(2011). Using the lead–lag correlations between each

SIC EOF mode in September–October and the persis-

tence and tendency variables, boxes are drawn around

key regions exhibiting both high correlations and phys-

ical meaning identified in previous work. Each potential

predictor, specific to each mode, is standardized by its

standard deviation and is loaded into a stepwise re-

gression. This allows for the contribution of each pre-

dictor and major source variability to be determined by

examining the coefficients in each term of the regression

equation. The stepwise regression utilizes an F test to

reject potential predictors that are insignificant at the

95% significance level, which when considered in the

regression could act to increase/decrease the regressed

variance. To determine the robustness of the selected

predictors and ensure overfitting is minimized, a cross

validation is performed by removing 3 years of data

from each time step from 1979 to 2013 and predicting the

central missing year using remaining years and the es-

tablished predictors.

A validation of the physical–empirical method is

performed by computing the variance of the combined

EOF modes relative to the interannual observations of

SIC or fractional signal variance. The fractional signal

variance shows how much of the observed interannual

variability is represented by the four leading EOF

modes and portrays the upper limit of the P–E model as

well as cross-validated P–E model capability. Addi-

tionally, correlations of the combined EOF modes and

historical simulations of the P–E model and cross-

validated P–E prediction model with the observed in-

terannual component of SIC are computed. This reveals

the potential predictability of this method in different

locations and shows where the P–E models are per-

forming best in the Arctic.

3. Assessment of interannual variability in
historical model runs

Comparisons of the interannual component of the

CMIP5 historical simulations of SIC with satellite-

derived observations reveals the shortcomings of dy-

namical models to properly represent variability on the

year-to-year time scale. The ratio of the modeled in-

terannual variance to the observed interannual variance

(fractional signal variance) reveals that the models are

largely underrepresenting the variability along the ice

sheet margins and overestimating the variance by as

much as 20 times in the less dynamic inner core of the ice

sheet (Fig. 1). The Beaufort to eastern East Siberian

Seas, Laptev Sea, Kara Sea, and North Atlantic Arctic

are all regions where the year-to-year variance is con-

sistently disproportionately small between all models.

Even with the long-term decline removed out of the

September–October modeled SIC, very few regions in

the Arctic exhibit moderate correlations with observa-

tions (Fig. 2). In all six models, the central core region of

the arctic ice sheet exhibits poor correlations, which is

concerning since this is a region with little interannual

variability to begin with. The MPI-ESM-LR performs

best along the arctic periphery showing high correlations

in the East Siberian and coastal Laptev Seas. The in-

ability to properly match the observed interannual mag-

nitude and signal of the SIC variations from 1979 to 2005

indicates the processes governing year-to-year variability

need to be better represented in order for dynamical

models to be used as an accurate forecasting tool.

4. The leading September–October interannual
SIC predictable modes

Interannual SIC variability is mainly confined to the

seasonal sea ice zone, defined in this study as the region

from the inner 10% seasonal SIC change between the

annual maximum and minimum depicting the perma-

nent ice margin to the 0% SIC contour (Fig. 3). The

combined explained variance of the first four EOF

modes of observed interannual SIC variability in

September–October account for 59.9% of the overall

variance throughout the Arctic (Fig. 4). The leading

mode, accounting for 25.3% of the variance, represents a

zonally uniform pattern throughout the arctic seasonal

sea ice zone that contrasts the Fram Strait andGreenland

Sea region (Fig. 4a). Regressions of the EOF 1modewith

lower- (Figs. 5a,b) and upper-tropospheric (Figs. 6a,b)

features during different periods leading up and through

to the late summer reveal this mode is strongly linked to

winter North Atlantic Oscillation (NAO)/Arctic Oscil-

lation (AO)–type patterns as shown by the anomalous

SLP dipole over the NorthAtlantic and Europe (Fig. 5a).

In the early summer, the EOF 1 mode is strongly related

to the opposing AO phase exhibited in the preceding

winter as shown by the contrasting AO SLP pattern in

June–August (Fig. 5b). This is consistent with earlier

work (Rigor et al. 2002; Rigor andWallace 2004) showing

the high-phase winter AO (WAO; negative SLP
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anomalies centered over the Arctic) acts to dynamically

thin sea ice from the Eurasian Arctic to Beaufort Sea

through divergence of sea ice away from the coasts. In the

following summer, a low-phase AO (anomalously higher

arctic SLP) further acts to reduce arctic sea ice coverage

through southward transport to the NorthAtlantic where

the sea ice eventuallymelts. The regression analysis of the

EOF 1 mode in this case during the two time periods

reflects the processes that were previously identified and

will be referred to as the AO mode.

The EOF 2 mode, accounting for 14.2% of the

interannual SIC variability in September–October,

represents a tripole-like pattern with the Greenland

Sea, Beaufort Sea, and Chukchi Sea regions contrasting

the Eurasian arctic region (Fig. 4b). Regressions of the

second SIC mode in January–May (Figs. 5c and 6c)

reveal no easily discernible link of this mode with

global climate features. However, the June–August

regressions with the EOF 2 mode show an eastward-

propagating circumglobal barotropic Rossby wave

train coupled with the subtropical jet (Ding and Wang

2005; Ding et al. 2011), which links Indian summer

monsoon (ISM) rainfall with arctic circulation after a

North Atlantic/European bifurcation (Figs. 5d and 6d).

The ISM teleconnection creates an arctic barotropic

dipole structure inwhich a cyclonic circulation is centered

over the Barents and Kara Seas and an anticyclonic cir-

culation extends over the East Siberian, Chukchi, and

Beaufort Seas. These circulations are responsible for

driving sea ice out of the Laptev Sea and into the Fram

Strait leading to negative and positive SIC anomalies,

respectively. The positive SIC anomalies in the Beaufort

and Chukchi Seas are created by wind-driven advective

convergence of sea ice along the western flank of the

positive SLP circulation. Because of the strong connec-

tion with ISM rainfall and the circumglobal teleconnec-

tion, this second interannual SICmode will appropriately

be named the ISM mode.

Accounting for 11% of the interannual SIC variance,

the EOF 3 mode represents variability in the western

East Siberian Sea, Laptev Sea, and Beaufort Sea con-

trasting the North Atlantic Arctic, Kara Sea, and areas

north of the Chukchi Sea (Fig. 4c). Regression analysis

of the EOF 3 in January–May shows amarginal SLP and

wave train that represents an ENSO-type pattern

(Figs. 5e and 6e), while the June–August period

exhibits a meridional barotropic wave train extending

out of the East Asian summer monsoon (EASM) do-

main into the Arctic (Figs. 5f and 6f). These results show

the dipole-like behavior between western North Pacific

summer monsoon (WNPSM) and EASM rainfall and

strong meridional links to arctic circulation previously

FIG. 1. Fractional signal variance of the top six CMIP5 model SIC historical runs to the overall observed interannual SIC variance from

1979 to 2005 during September–October.
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discussed inNitta (1987), Lau andWeng (2000), and Lau

et al. (2004). The anomalous anticyclonic circulation

centered over the Arctic builds up sea ice in the Beau-

fort Sea while also transporting it out of the Chukchi Sea

and into the western East Siberian and Laptev Seas.

Additionally, interannual EASMmonsoon variability is

often preceded by ENSO conditions during the winter

months (Wang et al. 2000) consistent with the regression

maps for the EOF 3mode.While theEASM-related SIC

variability peaks in the early summer (June–August),

the impacts are still prevalent, albeit weaker and slightly

modified, as the third mode in September–October. The

consistency of this third mode with earlier work earns it

the aptly named EASM mode.

The fourth EOF mode, explaining 9.4% of the vari-

ance, represents variability in the North Atlantic Arctic

contrasting the inner Beaufort to East Siberian Seas

(Fig. 4d). Of all the leading modes, it begins to account

for higher magnitudes of interannual SIC variability in

the inner core of the Arctic. Regressions of the EOF 4

mode with the January–May period show this mode is

strongly related to ENSO (Figs. 5g and 6g), which

gradually decays by June–August (Figs. 5h and 6h). The

anomalous regressed fields during the early spring pe-

riod show contrasting precipitation patterns between

the eastern and western equatorial Pacific Ocean as well

as positive and negative upper-level geopotential height

anomalies corresponding to the anomalous latent heat-

ing. Anomalous Rossby wave trains extend out of the

northern tropical Pacific Ocean and influence arctic

circulation north of Alaska and Canada similar to Ding

et al. (2014). In light of the strong links with ENSO, the

EOF mode will be referred to as ENSO mode.

5. Predictor selection for the leading interannual
SIC modes

Based on early literature and the analysis from the

previous section, key regions in which observed vari-

ables exhibit meaningful links to natural forms of cli-

mate variability are chosen as potential predictors. The

potential predictors are the spatial average in the sta-

tistically significant (at 90% to maximize the spatial

area) region within each chosen box. Each selected lo-

cation has a physical meaning and specific time period

based on previous work, although the time period of the

predictor selection maximized the lead to September–

October SIC.

A total of 34 potential predictors for each of the modes

were established. Potential predictors are disregarded if

there is no discernible physical link between the highly

correlated areas and natural climate variability that

FIG. 2. As in Fig. 1, but for correlation coefficients.
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shapes sea ice. The potential predictors were loaded into a

stepwise regression where an F test rejected potential

predictors that are too correlated with others and retained

the ones with that best capture the predictands. The final

predictors that were considered were rigorously tested to

make sure they 1) induce an appropriate sea ice response

via wind-driven forcing and if remotely forced 2) induce a

wave train pattern that influences the arctic low-level cir-

culation in away that explains the appropriate sea iceEOF

pattern. The combination of these methods ensures the

predictors have physical and statistical meaning.

a. The AO mode predictors

Correlations with the persistence and tendency of a

number of climatic variables leading the annual sea ice

minimum extent were used to empirically determine the

best predictors for each mode but also the physical link

between the variable and SICmode. In the case of theAO

mode, correlation maps reveal a strong link (correlation

coefficients reaching over r 5 0.5) to January–April SLP

anomalies in the North Atlantic extending into Europe

(Fig. 7a). This dipole pattern in the anomalous pressure

field between the southeastern North Atlantic and north-

ern Europe is consistent with a WAO-type pattern high-

lighted in Deser (2000). The areal averages within regions

with significant correlations can be objectively selected

and used as a predictor for the SIC AO mode (Table 1).

The AO mode also produces a unique correlation

pattern during the June–August period in the SLP

anomaly (SLPA) field with correlations reaching over

r 5 0.6 (Fig. 7b). A meridional dipole between the

Northern Hemisphere midlatitudes and high latitudes is

consistent with a summer AO (SAO)-type pattern. The

sign change in the correlations between late winter and

early summer is consistent with previously discussed

results indicating this SIC mode is related to the com-

bined effects of a reciprocating AO occurring during the

melting season. The regions of significant correlations

with this mode are used as a predictor for the SIC AO

mode since they are robust and are linked to verified

forms of climate variability (Table 1).

To understand the connections of each predictor to

the September–October SIC variability associated with

eachmode, regressions are performed using the selected

predictors and various climate variables. The WAO

predictor regression with SLP, sea ice motion, and SIT

in January–April shows sea ice transport from the Asian

Arctic toward the Canadian archipelago, closely fol-

lowing the low-level geostrophic wind associated with

the anomalous negative SLP pattern over the North

Atlantic (Fig. 8a). The importance of the AO forced

wind field on shaping sea ice has been highlighted on a

number of different time scales (Deser and Teng 2008;

Ogi and Yamazaki 2010). Throughout the northern Si-

berian Arctic, SIT is reduced up to 0.3m, with most of

the anomalies concentrated in the East Siberian Sea,

while the Canadian region shows an increase exceeding

0.3m in thickness due to wind-driven advective con-

vergence of sea ice [second term in Eq. (1)]. Kauker

et al. (2003) demonstrate that the AO-related SIT

anomalies created during the winter months can trans-

late to concentration anomalies during the following

summer and hence the SIT anomalies, particularly in the

Siberian Arctic, could contribute to reduce concentra-

tion in the summer. The winter SIT anomalies along the

Canadian Islands and Greenland do not translate to

summer SIC anomalies since annual concentrations in

this area do not decline below 100%. The SAOpredictor

exhibits an anomalous high SLP circulation centered

over the Arctic in June–August (Fig. 8b). The sea ice

transport follows the clockwise motion of the 1000-hPa

wind field and the general transport of ice out of the

Arctic during a negative summer AO pattern (Kauker

et al. 2003; Watanabe and Hasumi 2005). The position-

ing of the anomalous high pressure favors the accumu-

lation of arctic sea ice in the North Atlantic before it

melts as it continues its southward trajectory. The SAO

predictor accounts for the general decline of SIC zonally

along the arctic margins and rise in SIC in the North

Atlantic as ice is transported into this region.

FIG. 3. SIC difference between March and September averaged

sea ice concentration. Black and white contour shows the 10% SIC

difference between the annual maximum and minimum while the

dashed contour shows the average location of the 0% SIC margin

during September. The area between the inner 10% seasonal SIC

change and the average 0% SIC September contour is defined as

the seasonal sea ice zone.
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The SAOpredictor shows amuch stronger correlation

to the SIC AO mode than the WAO predictor, in-

dicating that the conditions in immediate period leading

up to the annual sea ice minimum are more important in

this case than the late winter or early spring (Table 2).

The coefficients in the regression equation demonstrate

this further by heavily weighting the SAO predictor

over the WAO. However, the low correlation between

the two predictors for the AO mode indicated both

yield key information to successfully represent this

September–October mode. The P–E model using the

WAO and SAO predictors exhibits a temporal corre-

lation of r 5 0.76 with the AO mode indicating a close

relationship.

b. The ISM mode predictors

The ISM (EOF 2) SIC mode in September–October

exhibited significant negative correlations exceeding

r 5 20.6 with the anomalous SLP tendency between

March and May over East Asia (Fig. 7c). This

springtime pattern is consistent with Wang et al.

(2015b), who showed other than ENSO-related pre-

dictors, enhanced ISM rainfall co-occurs with a de-

clining SLP tendency centered over Lake Baikal in the

spring. While directly using the ISM rainfall as a

predictor for the EOF 2 mode would provide the

highest forecast skill, the forecast lead time if taken in

July–August is not ideal if possible earlier predictors

can be established. The Lake Baikal predictor, rep-

resenting the Asian pressure tendency (APT), which

we have aptly named the APT predictor, is selected

using correlations with the SIC EOF 2 mode but is

more related to influences on the ISM, which drives

arctic sea ice variability (Table 1). Regressions of the

APT predictor with June–August anomalous 200-hPa

geopotential height, wave activity flux, and rain rate

show, although not fully, the eastward-propagating

circumglobal Rossby wave train associated with the

FIG. 4. Leading four EOF modes in September–October interannual SIC observations from 1979 to 2013. Each

mode has been standardized and regressed to give units of anomalous sea ice concentration. Dashed contour shows

the seasonal sea ice zone.
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enhanced ISM rainfall (Fig. 9a). The wave train orig-

inates northwest of India and follows the subtropical

jet at roughly 458N into the North Atlantic, closely

following the pattern outlined in Ding and Wang

(2005). We show this pattern continues northward and

produces a barotropic dipole circulation pattern over

the Arctic after a bifurcation over Europe. The APT

predictor, reflecting ISM variability, also captures the

anomalous SIC pattern in which negative SIC anom-

alies develop in the Laptev Seas while positive

anomalies grow in the Beaufort and Chukchi Seas

from wind-driven ice advective convergence (Fig. 9c).

Sea ice is transported out of the Laptev Sea, as ob-

served by the ice motion vectors, by the pressure

gradient between the anomalous anticyclonic and cy-

clonic circulations that develop over the Arctic. Along

the southern flank of the high pressure anomaly, sea

ice is transported into the Beaufort and Chukchi Seas

by the geostrophic wind field.

The second selected predictor is related to an anom-

alous dipole SST tendency pattern between the western

and eastern Indian Ocean during Jan and May (Fig. 7d

and Table 1). This predictor reflects the conditions as-

sociated with an emerging Indian Ocean dipole (IOD)

pattern where anomalously low SST, the result to wind-

driven upwelling by southeasterlies along the Indonesian

coast, are accompanied by reduced precipitation

during the summer and early fall (Saji et al. 1999;

Webster et al. 1999). In the western Indian Ocean,

anomalous westward transport along the equator raises

SST and enhances precipitation in the followingmonths.

The IOD enhances monsoonal flow and convection by

FIG. 5. Anomalous global SST (shading; 8C), 2-m air temperature (shading; 8C), and SLP (contoured every 0.3 hPa with solid being

positive values) during (left) January–May (left) and (right) June–August regressed with (a),(b) EOF 1, (c),(d) EOF 2, (e),(f) EOF 3, and

(g),(h) EOF 4.
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strengthening the northward branch of the Rossby wave

response to the eastern Indian Ocean cooling (Wang

and Xie 1996; Wang et al. 2003, 2004; Xiang et al. 2011).

This influence of the IOD on ISM rainfall explains the

high correlations between this predictor and the second

SIC EOF 2 mode when taking into account the ISM–

Arctic link. Similar to the APT predictor, the IOD

predictor reflects most of the circumglobal teleconnec-

tion pattern associated with the ISM, the arctic baro-

tropic dipole circulation pattern, and enhanced ISM

rainfall but also the equatorial Indian Ocean rainfall

pattern typical of a positive IODevent (Fig. 9b). Eastern

equatorial Indian Ocean precipitation anomalies show a

widespread decline, while western tropical Indian

Ocean precipitation shows a subtle rise, both of which

are modulated by the anomalous zonally varying SST.

In the Arctic, the anomalous circulation and sea ice

patterns associated with the IOD predictor are consis-

tent with the APT and ISM patterns exhibiting sea ice

transport out of the Laptev Sea resulting in negative SIC

anomalies and sea ice convergence into the Fram Strait

and Beaufort and Chukchi Seas during June–August

(Fig. 9d).

The APT and IOD predictors have comparable

moderate correlations with the SIC EOF 2 mode

(Table 2). The low correlation between the two ISM

mode predictors indicates they uniquely contribute to

ISM rainfall variability and make them ideal variables

to load into the stepwise regression model. Although

the P–E model for the ISM mode is a little more

heavily weighted on the APT predictor, they are the

most analogous regression coefficients out of all the

FIG. 6.Anomalous rain rate (shading;mmday21), wave activity flux (vectors;m2 s22), and 200-hPa geopotential height (contoured every

4mwith red being positive values) during (left) January–May and (right) June–Aug regressed with (a),(b) EOF 1, (c),(d) EOF 2, (e),(f) EOF 3,

and (g),(h) EOF 4.
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developed P–E models. Using the APT and IOD

predictors in this P–E model produces a high temporal

correlation of r 5 0.74 with the ISM mode.

c. The EASM mode predictors

The interannual SIC EASM (EOF 3) mode exhibits a

unique continental pressure dipole (CPD) between East

Asia and North America in the January–March mean

SLP anomaly correlation field (Fig. 7e). We used the

difference between these two statistically significant

regions to create the CPD predictor, which resembles

ENSO-like conditions. Regressions of this predictor

with climate variables in January–April show negative

geopotential height and precipitation anomalies in the

tropical eastern North Pacific while the western North

Pacific displays positive precipitation and geopotential

height anomalies (Fig. 10a). Poleward-propagating

wave trains, with the east Pacific wave train being

FIG. 7. Predictors selected based on correlation maps of (a) EOF 1 and January–April mean SLPA, (b) EOF 1 and June–August SLPA,

(c) EOF 2 and May-minus-March SLPA, (d) May-minus-January SST anomaly (SSTA), (e) EOF 3 and January–March mean SLPA,

(f) EOF 3 and June–August mean SLPA, (g) EOF 4 and April-minus-January SLPA, and (h) EOF 4 and May-minus-January 2-m

temperature anomaly (2MTEMPA). Spatial averages are taken in the statistically significant regions (dashed contours show the 90%

significance level) within each box. When positive and negative correlations occur within the same box, each is standardized and the

difference is taken.
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stronger, position a barotropic anticyclonic circulation

over the northern Pacific extending into the Arctic,

which helps to weakly drive sea ice into the western East

Siberian and Laptev Seas (Fig. 10c). While in this case

the arctic forcing using this predictor is not strong,

ENSO conditions often precede anomalous WNPSM

and EASM rainfall intensity. Decaying El Niño condi-

tions often lead to weakened WNPSM rainfall and an

enhanced EASM by strengthening the spring–summer

westernNorth Pacific anticyclone, which helps to bolster

the mean trades along the eastern flank and cool SSTs

through evaporative and entrainment cooling (Wang

et al. 2000, 2001). Along the western edge of the

anomalous anticyclone, the mean northeasterly mon-

soonal winds are weakened allowing for a rise in SST

centered in the South China Sea and enhanced con-

vection. During a La Niña, conditions and processes

typically reverse. While not strongly related to arctic

anomalies in this case, the CPD predictor can be con-

sidered an early indicator of the dipole behavior in in-

terannual WNPSM and EASM rainfall variability,

which has been linked to the Arctic using the second

predictor for the EASM SIC mode.

The second predictor for the EASMmode uses June–

August mean SLP anomalies in northeast Asia and

captures the meridional tripole teleconnection (MTT)

associated with the EASM (Fig. 7f). The MTT pre-

dictor we have developed captures the typical con-

trasting behavior betweenWNPSM and EASM rainfall

as well as the poleward propagation of the barotropic

TABLE 1. Definitions of each predictor for the leading interannual SIC modes. DSLP, DSST, and D2MT denote the tendency of each

variable.

Mode Name Meaning Definition

AO mode WAO Jan–Apr averaged North

Atlantic SLP dipole

SLP (458–87.58N, 08–1358E)–SLP (158S–558N,

3108–357.58E)
SAO Jun–Aug averaged

N. hemisphere SLP dipole

SLP (158–87.58N, 08–357.58E) difference

ISM mode APT May-minus-Mar East

Asian SLP

DSLP (108–758N, 758–1808E)

IOD May-minus-Jan Indian Ocean

SST east–west dipole

DSST (308S–108N, 458–1208E) difference

EASM mode CPD Jan–Mar averaged Asia–North

America SLP dipole

SLP (108–608N, 908–2908E) difference

MTT Jun–Aug averaged northeast

Asia SLP

SLP (37.58–708N, 1208–1808E)

ENSO mode EPP Apr-minus-Jan eastern

equatorial Pacific SLP

DSLP (308S–358N, 1608–3008E)

IAO May-minus-Jan northwest

Asia 2-m temp

D2MT (438–808N, 458–1308E)

FIG. 8. (a)WAO index regressedwith January–April averaged SIT (shading;meters), sea icemotion (vectors; cm s21),

and SLP anomalies (contoured every 0.3 hPa). (b) SAO index regressed with May–August averaged SIC

(shading; %), sea ice motion (vectors; cm s21), and SLP anomalies (contoured every 0.3 hPa).
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Rossby wave train following the East Asian coast to the

Arctic that is excited by the anomalous EASM heating

(Fig. 10b; Nitta 1987; Lau and Weng 2000; Wang et al.

2001; Lau et al. 2004). The meridional EASM pro-

pagation centers an anticyclonic circulation over the

Arctic with sea ice motion closely following the

clockwise geostrophic wind field along the arctic margins

(Fig. 10d). Wind-driven advective convergence, the

dominant process shaping the SIC anomalies, helps to

build up SIC anomalies in the Beaufort Sea region and

contribute to a SIC reduction in theNorthAtlanticArctic

as ice is transported into the core of the Arctic in this

region. The westward transport of sea ice helps to reduce

SIC in the Chukchi Sea while strengthening SIC in the

westernEast Siberian Sea, where sea ice builds up against

the New Siberian Islands.

Correlations between the EASM mode and corre-

sponding predictors show the MTT predictor is more

closely related to the EOF 3 mode than the CPD pre-

dictor (Table 2), which is further verified by the step-

wise regression placing a heavier weight on the MTT

predictor. The low correlation between the MTT and

CPD predictors makes them ideal variables for the P–E

model and also suggests that although the EASM and

ENSO are strongly linked, the EASM variability and

arctic influences can occur independently. The P–E

model developed for the EASM mode exhibits a tem-

poral correlation of r 5 0.72 with the third EOF.

d. The ENSO mode predictors

The fourth interannual SIC EOF mode, the ENSO

mode, exhibits the largest and most widespread cor-

relations with the SLP tendency between January and

April (Fig. 7g). The strongest significant negative

correlations are in the equatorial Pacific, which we

spatially averaged to form the equatorial Pacific

pressure (EPP) predictor. Regressions with rain rate

show this predictor is strongly affiliated with anoma-

lously dry conditions along the eastern equatorial

Pacific contrasting the wetter conditions found in the

western North Pacific (Fig. 11a). A strong Rossby

wave response develops in response to the anomalous

heating in which positive and negative geopotential

height anomalies develop poleward of the wet and dry

conditions, respectively. The characteristics of the

precipitation and wave train patterns closely re-

semble the conditions found during a decaying ENSO

mode during the spring months. A strong anticyclonic

barotropic circulation develops over the northern

Pacific Ocean and helps to transport sea ice by the

low-level geostrophic wind from the East Siberian

and Chukchi Seas into the Beaufort Sea as observed

from the thickening SIT anomalies in January–April

(Fig. 11c). As the season progresses, the anticyclonic

circulation drifts to the northeast, shifting the wind-

driven ice transport away from the Chukchi Sea and

into the inner Arctic Ocean. While the EOF 4 mode ex-

hibits high correlations with the SST tendency in the

equatorial Pacific during the spring, which is strongly in-

dicative of an ENSO-type pattern, this region is strongly

connected to the EPP predictor and would be rejected in

the stepwise regression model (Fig. 7h).

A region of significantly positive correlations in

northwest Asia of January to May 2-m air temperature

tendencies is selected as the second predictor for the

EOF 4 mode. This predictor represents interseasonal

AO (IAO) variability as the positive SLP anomaly

migrates north-northeast during the spring and sum-

mer allowing for warming in northern Asia as cold air

advection ends (Fig. 11b). Unlike the EOF 1 mode,

which is related to an AO phase change during the

spring, this predictor is related to a persistent AO

phase from winter to summer and captures typical

northward seasonal presentation of the AO SLP pat-

tern. The anomalous high pressure during the spring

months transports sea ice away from the Canadian

and North Atlantic Arctic through the low-level

TABLE 2. P–E model predictor correlation coefficients.

AO mode (EOF 1) predictand correlation coefficients and re-

gression equation

AO mode WAO SAO

AO mode 1.00 0.48 0.68

WAO 1.00 0.20

SAO 1.00

AO mode 5 0.3544WAO 1 0.6078 SAO

ISM mode (EOF 2) predictand correlation coefficients and

regression equation

ISM mode APT IOD

ISM mode 1.00 0.63 0.59

APT 1.00 0.35

IOD 1.00

ISM mode 5 20.4830APT 1 0.4238 IOD

EASM mode (EOF 3) predictand correlation coefficients and

regression equation

EASM mode CPD MTT

EASM mode 1.00 0.52 0.62

CPD 1.00 0.29

MTT 1.00

EASM mode 5 0.3731CPD 1 20.5153MTT

ENSO mode (EOF 4) predictand correlation coefficients and

regression equation

ENSO mode EPP IAO

ENSO mode 1.00 0.60 0.53

EPP 1.00 0.13

IAO 1.00

ENSO mode 5 20.5443EPP 1 0.4295 IAO
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geostrophic wind creating negative SIT anomalies. The

anomalous high pressure is responsible for advective

convergence of sea ice into the western East Siberian

and Laptev Seas as the low-level circulation seasonally

shifts from the North Atlantic to the North Pole

(Fig. 11d).

The EPP predictor shares a stronger correlation (r 5
0.6) with the EOF 4 mode than the IAO predictor,

reaffirming this interannual SIC is strongly related to

decaying spring ENSO conditions (Table 2). The EPP

and IAO predictors exhibit an extremely low correlation

with one another indicating they were ideal variables to

be factored into the stepwise regression model. The P–E

model for the ENSO mode places a stronger weight on

the EPP predictor highlighting the importance of ENSO

and remote forcings on arctic variability. The P–E model

FIG. 9. June–August averaged rain rate (shading; mmday21), wave activity flux (vectors; m2 s22), and 200-hPa

geopotential height anomalies (contoured every 4m with red being positive values) regressed with the (a) APT

index and (b) IOD index. SIC (shading; %), sea ice motion (vectors; cm s21), and SLP anomalies (contoured every

0.3 hPa) regressed with the (c) APT index and (d) IOD index.
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using the EPP and IAO predictors exhibits a temporal

correlation of r 5 0.76 with the ENSO mode.

6. P–E model validation

To determine the total possible predictability of in-

terannual SIC variability in September–October, the

first four EOF modes are combined and correlated with

the observed interannual SIC data. The P–E model

consists of the eight predictors (Table 1) and four step-

wise regression equations (Table 2) that make use of the

predictors. The prediction for each year is made by in-

putting the predictor values for the year of interest into

FIG. 10. January–April averaged rain rate (shading; mmday21), wave activity flux (vectors; m2 s22), and 200-hPa

geopotential height anomalies (contoured every 4m with red being positive values) regressed with the (a) CPD

index. June–August averaged rain rate (shading; mmday21), wave activity flux (vectors; m2 s22), and 200-hPa

geopotential height anomalies (contoured every 4m with red being positive values) regressed with the (b) MTT

index. SIT (shading; m), sea ice motion (vectors; cm s21), and SLP anomalies (contoured every 0.3 hPa) regressed

with the (c) CPD index. SIC (shading; %), sea ice motion (vectors; cm s21), and SLP anomalies (contoured every

0.3-hPa) regressed with the (d) MTT index.
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the respective equations and computing a value for each

mode. The spatial pattern for eachmode is multiplied by

its specific value from the model, acting to scale the re-

spective patterns based on the climate phenomena from

earlier in the year. The scaled spatial patterns for each

mode are added to create that summer’s prediction for

the anomalous sea ice patterns during September–

October. Throughout the arctic margins, the first four

EOF modes exhibit correlations of r 5 0.8 and higher,

suggesting that these four modes account for a sub-

stantial portion of the total arctic variability along the

periphery (Fig. 12a). Except for the eastern East

FIG. 11. January–April averaged rain rate (shading; mmday21), wave activity flux (vectors; m2 s22), and 200-hPa

geopotential height anomalies (contoured every 4m with red being positive values) regressed with the (a) EPP

index. January–April 2-m air temperature over land (shading; 8C), SST (shading;shading; 8C), and SLP anomalies

(contoured every 0.3-hPa with black being positive values) regressed with the (b) IAO index. SIT (shading; m), sea

ice motion (vectors; cm s21), and SLP anomalies (contoured every 0.3 hPa) regressed with the (c) EPP index and

(d) IAO index.
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Siberian Sea, the fractional signal variance accounted

for by the first four EOF modes in many regions of the

arctic periphery is well over 80% (Fig. 12b). These

modes do not account for variability in the inner core of

the Arctic, Baffin Bay, or within the Canadian islands

since they exhibit either 100% SIC and therefore no

interannual variability or coastal influences obstruct the

circulation influences on sea ice.

The variability of the combined four P–E models ex-

hibits correlations throughout the arctic margins well

over r 5 0.5 with the highest correlations in the Laptev,

Kara, and western East Siberian Seas (Fig. 12c) and also

accounts for widespread regions of over 50% of the in-

terannual variance throughout the Arctic with the ex-

ceptions of the inner core andBaffin Bay (Fig. 12d). This

holds true, to a lesser extent, for the cross-validated P–E

models as well, indicating the interannual variability

along the arctic margins in September–October is well

represented by the established predictors (Figs. 12e,f).

Within the seasonal sea ice zone the areal-averaged skill

of the combined four leading EOF modes is r 5 0.63,

while the P–E models and cross-validated P–E models

are r5 0.49 and r5 0.44, respectively. The percentage of

the total seasonal sea ice zone area (5.113 106 km2) that

exhibits skills over r5 0.5 for the combined four leading

EOF modes is 87.6% (4.47 3 106 km2), while the P–E

models and cross-validated P–E models are 72.7%

(3.72 3 106 km2) and 57.3% (2.93 3 106 km2), re-

spectively. The favorable spatial patterns in the corre-

lation and fractional signal variance fields for the P–E

model indicates the magnitude and temporal variability

of the modeled SIC closely matches interannual SIC

observations. Although variability in the inner core is

not well represented in the P–Emodels and EOFmodes,

it represents little of the interannual variance. Sea ice

coverage along the arctic periphery will have the largest

impact on improving annual projections of minimum sea

ice extent, and thus these four modes provide the

greatest impact for advancement.

7. Discussion and concluding remarks

a. Discussion

The motivation behind this work is to develop a

practical forecasting tool for anomalous interannual SIC

variability during the annual arctic minimum using a

technique that has proven successful for prediction of

other challenging meteorological phenomena. Even

while initializing in June–August, current dynamical and

statistical models have difficulty predicting sea ice ex-

tent and replicating the historical sea ice patterns during

the annual arctic minimum. The newly developed P–E

model (Table 2) focuses on the leading modes of natural

variability that drive sea ice during the lead-up to the

annual minimum. Some of the predictors permit a long-

lead prediction since winter variability can alter SIT

anomalies, which persist into the summer and present as

concentration anomalies as the sea ice thins and melts.

While other P–E model predictors do not offer a long

lead since they rely on climate variability in June–

August, this time period corresponds to the initialization

period for other model types.With these two P–Emodel

predictor types in mind, the mechanisms and key points

are further elaborated.

1) LONG-LEAD PREDICTORS

The seasonal progression of the AO and ENSO sea

ice modes indicate that conditions and sea ice patterns

created early in the year, when both forms of variability

typically peak, carry through and manifest as summer

SIC patterns. This evidence was first discussed on an

interannual scale by Kauker et al. (2003), who found

the first May–October mode from 1978–2001 is related

to AO conditions shaping SIT anomalies in the leading

winter. Typical SIT anomalies can persist for between 6

and 20 months with the duration and spatial scales

being influenced by the initial thickness, season of

formation, and transport (Blanchard-Wrigglesworth

and Bitz 2014).

To get a better perspective of the progression and

persistence of SIT into the summer as well as justify

selection of early season predictors, we performed a

month-by-month EOF analysis from January to August

on interannual SIT. The annual progression of the

leading SIT modes from winter to late summer is

established by correlating the SIT modes from each

month with those in the immediate preceding month

since the order, pattern, and percent variance explained

of leading interannual SIT modes vary month to month

(Fig. 13). Besides matching corresponding modes, the

monthly lagged correlations also show the periods when

major changes in the SIT mode occur by exhibiting

lower correlations and also periods of little change in the

mode with high correlations.

The leading mode in the majority of the monthly pe-

riods corresponds to a SIT dipole between the Siberian

Arctic contrasting the Canadian and North Atlantic

Arctic (Fig. 14). The SIT anomalies develop from Jan-

uary to April, peak in magnitude and extent in May–

June, and continue to persist until the annual sea ice

minimum. The atmospheric and sea ice patterns closely

match the WAO predictor for the AO mode (Fig. 8a),

which contributes to the leading SIC interannual mode

in September–October. The monthly lag correlations

show this winterAOmode exhibits its lowest correlation
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FIG. 12. (left) Correlation coefficients and (right) fractional signal variance of the combined (a),(b) leading four

interannual SIC EOF modes, (c),(d) P–E models, and (e),(f) cross-validated P–E models with the observed in-

terannual SIC from 1979 to 2013 during September–October. Solid contour represents the 95% significance level

for the correlations while dashed line is the seasonal sea ice zone.
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between February and March, indicating the most sub-

stantial change in the sea ice associated with this mode

occurs during this time (Fig. 13). Anomalous low pres-

sure builds into the North Atlantic Arctic during late

winter and helps to create more consistent and wide-

spread SIT anomalies in March than what was apparent

in February (Fig. 14). After March, the monthly lag

correlations rise showing the impacts of this mode con-

sistently persist well into the summer months.

The typical second SIT month-by-month mode

corresponds to the development of a summer-AO-type

pattern closely resembling the SAO predictor (Fig. 8b).

The summer AO mode in this case exhibits the lowest

monthly lag correlation between May and June, which

indicates major SIT changes occur during this time pe-

riod (Fig. 13). Starting in June, high SLP anomalies build

into the central Arctic and strengthen negative SIT

anomalies along the arctic margins through transport

of ice into the North Atlantic (Fig. 15). As the high

strengthens throughout the summer, positive SIT

anomalies become focused in the Fram Strait region

through enhanced advective convergence along the east

coast of Greenland. This SIT mode reinforces the

combined impact of alternating AO phases between the

winter and early summer months with the winter AO

negative anomalies throughout the Siberian Arctic

corresponding to locations of possible enhancement by

the conditions of an opposing summer AO phase. The

combined impacts of the winter and summer AO SIT

modes account for 34.8%–42.7%of the total interannual

variance depending upon themonth of interest (Table 3)

and are a valuable resource for improving sea ice cov-

erage forecasting throughout the summer.

2) SHORT-LEAD PREDICTORS

While many of the predictors account for natural cli-

mate variability well in advance of the annual minimum

extent, there are two predictors that are taken in the

period immediately preceding the annual minimum.

The summer AO predictor for the AO mode is taken in

June–August, capturing the meridional SLP dipole in

the Northern Hemisphere and is opposite phase to the

late winter AO conditions. The dynamics are consistent

with previous studies and indicate that opposing AO

phases between the winter and summer seasons have

supportive influences on SIT and SIC and help to create

the September–October EOF 1 pattern. This AO tran-

sition in May is a strong signal associated with the SIC

EOF 1mode andmore work needs to be done to address

the abrupt AO phase change. If the physical process

behind this change can be explained, perhaps a predictor

earlier in the season can be established.

The second EASM mode predictor (MTT) is also

taken in June–August and directly accounts for the

northward teleconnection forced by anomalous EASM

rainfall. Establishing meaningful predictors for the

EASMmode was difficult because of the CPD predictor

link to ENSO. Many of the possible predictors in-

vestigated for this mode were overwhelmingly linked to

ENSO conditions and highly correlated to the CPD

predictor. The stepwise regression consistently rejected

many of the early season predictors because of the high

correlations with one another but consistently indicated

the CPD predictor was most skillful. Since EASMmode

accounts for 11% of the total interannual variance in

September–October, the majority of interannual vari-

ability can still be predicted prior to the EASMpeak and

modified as the EASM progresses.

b. Concluding remarks

About 60% of the total variance of observed in-

terannual SIC variability throughout the entire Arctic in

September–October, the annual minimum extent sea-

son, can be accounted for by the first four EOF modes.

Local variability driven by the AO shapes the first

leading mode while remote tropical variability forced by

the ISM, EASM, and ENSO, respectively, shape the

second, third, and fourth mode of sea ice coverage pat-

terns by the end of the melt season. The inclusion of

these higher-order modes, although representing con-

secutively smaller percentages of the overall variance,

does improve the skill of the P–E model (Figs. 16a–c).

While many of the P–E model predictors for each mode

directly capture the features shaping the sea ice in the

seasons prior to the annual minimum, the ISM and

EASM predictors uniquely capture features influencing

monsoonal variability, which impacts arctic climate

during the summer months. The combined SIC anom-

alies predicted by the P–E models for the leading four

EOF modes can realistically reproduce the historical

FIG. 13. Correlations between the typical first (black) and second

(gray) interannual SIT modes in each month with the corre-

sponding modes in the immediate preceding month. The correla-

tions are used tomatch and create themonthly progressions of each

mode since the order, pattern, and percent variance explained of

the leading modes change from winter to late summer.
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FIG. 14. TheWAOSITmode for eachmonth regressed with SIT (shading; m), sea ice motion (vectors; cm s21), and

SLP anomalies (contoured every 0.3 hPa).
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FIG. 15. As in Fig. 14, but for the SAO SIT mode.
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interannual variability in satellite-derived SIC observa-

tions. Although two P–E model predictors rely on con-

ditions immediately preceding the annual minimum sea

ice extent, their inclusion does not substantially raise the

skill of the overall modeled sea ice concentration pat-

terns (Fig. 16d). Although this indicates meaningful

predictions of the anomalous SIC pattern can be made

using climate variability predictors prior to June, these

short-lead predictors are necessary to completely un-

derstand the sea ice links with climate variability.

Historical CMIP5 comparisons with observations re-

veal the shortcomings in correctly modeling the magni-

tude of interannual SIC variability during the annual

minimum as well as matching the year-to-year signal

throughout the Arctic. The difficulty exhibited by dy-

namical and previous statistical models in replicating

historical interannual SIC observations while making

nearly simultaneous predictions evokes a compelling

case for a new approach in arctic sea iceminimum extent

prediction. Physical–empirical models have been suc-

cessfully established to predict a variety of meteoro-

logical phenomena, in which traditional models often

fail. Skillful forecasts of Indian monsoon rainfall (Wang

TABLE 3. Percent variance explained by the leading SIT EOF

modes for each month.

Jan Feb Mar Apr May Jun Jul Aug

WAO mode 14.55 15.71 19.25 24.87 25.75 25.71 18.02 17.89

SAO mode 23.54 19.50 15.49 14.64 13.58 17.01 21.05 20.76

FIG. 16. Correlation coefficients of the (a) AOmode P–E model, (b) combined AO and ISMmode P–E models,

and (c) combined AO, ISM, and EASM mode P–E models with the observed interannual SIC from 1979 to 2013

during September–October. (d) Correlation coefficients of the four leading modes only using the predictors with

timeframes prior to June with the observed interannual SIC from 1979 to 2013 during September–October. Solid

contour represents the 95% significance level while dashed line is the seasonal sea ice zone.
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et al. 2015b), summertime upper-tropospheric circula-

tion patterns (Lee et al. 2011), and early summer South

China rainfall (Yim et al. 2014b) have been developed

using this P–E model approach. The success of P–E

models globally and the skill shown for interannual SIC

variability prediction in September–October indicate

this method could be used for other times of the year,

additional arctic variables, and possibly in the Antarctic.
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