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respectively. These equatorial Pacific sea surface tem-
perature anomalies, while located in different longitudes, 
can all set up a specific teleconnection pattern that affects 
Indian monsoon and results in different rainfall EOF pat-
terns. Furthermore, the dynamical models’ skill for predict-
ing ISMR distribution primarily comes primarily from these 
three modes. Therefore, these modes can be regarded as 
potentially predictable modes. If these modes are perfectly 
predicted, about 51  % of the total observed variability is 
potentially predictable. Based on understanding the lead–
lag relationships between the lower boundary anomalies and 
the predictable modes, a set of P–E models is established to 
predict the principal component of each predictable mode, 
so that the ISMR anomaly pattern can be predicted by using 
the sum of the predictable modes. Three validation schemes 
are used to assess the performance of the P–E models’ hind-
cast and independent forecast. The validated TCC skills of 
the P–E model here are more than doubled that of dynami-
cal models’ MME hindcast, suggesting a large room for 
improvement of the current dynamical prediction. The 
methodology proposed here can be applied to a wide range 
of climate prediction and predictability studies. The limita-
tion and future improvement are also discussed.

Keywords  Predictability · Predictable mode analysis 
(PMA) · Indian summer monsoon rainfall · Seasonal 
prediction · Physics-based empirical prediction model

1  Introduction

The Indian summer monsoon rainfall (ISMR) has a crucial 
impact on Indian agricultural production, water resource 
and disaster managements. With growing population, India 
is strongly depending on the rain-fed agriculture (Gadgil 

Abstract  Century-long efforts have been devoted to sea-
sonal forecast of Indian summer monsoon rainfall (ISMR). 
Most studies of seasonal forecast so far have focused on 
predicting the total amount of summer rainfall averaged 
over the entire India (i.e., all Indian rainfall index-AIRI). 
However, it is practically more useful to forecast anoma-
lous seasonal rainfall distribution (anomaly pattern) across 
India. The unknown science question is to what extent 
the anomalous rainfall pattern is predictable. This study 
attempted to address this question. Assessment of the 
46-year (1960–2005) hindcast made by the five state-of-
the-art ENSEMBLE coupled dynamic models’ multi-model 
ensemble (MME) prediction reveals that the temporal cor-
relation coefficient (TCC) skill for prediction of AIRI is 
0.43, while the area averaged TCC skill for prediction of 
anomalous rainfall pattern is only 0.16. The present study 
aims to estimate the predictability of ISMR on regional 
scales by using Predictable Mode Analysis method and to 
develop a set of physics-based empirical (P–E) models for 
prediction of ISMR anomaly pattern. We show that the 
first three observed empirical orthogonal function (EOF) 
patterns of the ISMR have their distinct dynamical ori-
gins rooted in an  eastern Pacific-type La Nina, a central  
Pacific-type La Nina, and a cooling center near dateline, 
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and Gadgil 2006). Due to considerable spatial and tempo-
ral variability of ISMR, the seasonal prediction of monsoon 
rainfall over India became one of the challenging tasks in 
climate scientific field (Rajeevan 2001; Gadgil et al. 2005; 
Webster and Hoyos 2010). Making correct seasonal fore-
cast of ISMR distribution is of significance for scientific 
values and social needs. However, so far very limited stud-
ies have focused on prediction of ISMR anomaly pattern.

Tremendous efforts have been made by Indian Mete-
orological Department (IMD) to predict the total amount 
of ISMR, i.e., the all Indian rainfall index (AIRI) (Shukla 
and Mooley 1987; Gowariker et  al. 1991; Kumar et  al. 
1995; Guhathakurta et  al. 1999; Rajeevan 2001). Despite 
advancement in physical understanding and development 
of advanced statistical models (Rajeevan et  al. 2007), the 
forecast fails in recent years (Rajeevan et  al. 2012; Wang 
et al. 2015b). Dynamical model is an effective and ultimate 
tool for seasonal forecast, but a number of previous stud-
ies found that most of the present dynamic models have 
limited skills in predicting summer monsoon rainfall over 
India (Gadgil and Sajani 1998; Kang et  al. 2002; Wang 
et al. 2005; Gadgil and Srinivasan 2011).

In this study, we will show that multi-model ensemble 
(MME) hindcast made by five state-of-the-arts ENSEM-
BLE project models (details are introduced in Sect. 2.1) for 
ISMR pattern prediction has limited skill: the temporal cor-
relation coefficient (TCC) skill averaged over entire India 
is only 0.16 during the period of 1960–2005. This skill is 
considerably lower than the TCC skill for MME’s predic-
tion of AIRI, which is 0.43, indicating that prediction of 
the spatial distribution of the ISMR is much more difficult 
than prediction of the AIRI. An improvement in skill of 
the downscale prediction of ISMR from a global spectral 
model is only noticed over some parts of India (Sinha et al. 
2013).

Outstanding problems remain: To what extent the ISMR 
distribution is predictable and what the effective way is for 
forecasting the ISMR anomaly pattern. The present work 
attempts to address these critical issues. The key to address 
these questions is to fully understand the physical processes 
linking major modes of ISMR and the simultaneous and 
precursory large-scale lower-boundary anomalies. This is a 
major effort will be made in this work. It is only with the 
guidance of this understanding that development of a Phys-
ics-based Empirical (P–E) prediction model for ISMR dis-
tribution is possible. An additional effort that will be made 
is to estimate the predictability of ISMR anomaly pattern. 
A better knowledge of the predictability would facilitate 
improvement of prediction skills (Lee et al. 2011, 2013).

Section 2 describes the observational data and coupled 
climate models’ hindcast data. The methodology used in 
the present study are also described in detail, especially 
the idea of Predictable Mode Analysis, the principles and 

methodology for selection of physically consequential pre-
dictors and for establishment of the P–E models, as well 
as three ways of validation of the model performance. In 
Sect. 3, we describe characteristics of the major modes of 
ISMR variability, explore their origins, and examine the 
dynamical model’s capability in capturing these modes, so 
that the predictable modes can be identified and the poten-
tial predictability of the ISMR distribution can be esti-
mated. Section 4 presents the lead–lag relationship between 
physical predictors and predictands, and the prediction 
skills made by the P–E models. Finally, conclusion and dis-
cussion are presented in Sect. 5.

2 � Data and methodology

2.1 � Data

IMD established a large network of rain gauge stations and 
developed high resolution (1° × 1°) gridded rainfall dataset 
(Rajeevan et al. 2006, 2008) for the Indian region to ana-
lyze the space–time structure of the monsoon rainfall. In 
this study, the summer monsoon rainfall from June to Sep-
tember (JJAS) is calculated for the period of 1960–2012. 
Five grids are equally weighted averaged for each  lati-
tude and longitude in order to remove small-scale perturba-
tion of ISMR.

The hindcasts of five state-of-the-art coupled dynami-
cal models are derived from the ENSEMBLES project 
(Weisheimer et al. 2009), including models from the Euro-
Mediterranean Center for Climate Change (CMCC-INGV), 
European Centre for Medium-Range Weather Forecasts 
(ECMWF), the Leibniz Institute of Marine Sciences at 
Kiel University (IFM-GEOMAR), Météo France (MF), and 
UK Met Office (UKMO). The hindcasts used in this study 
were initiated from May 1st that yield 1-month-lead JJAS 
forecast for the period of 1960–2005. MME prediction is 
made by simply average of the five models’ ensemble mean 
anomalies after removing their own climatology.

Sea surface temperature (SST) and sea level pressure 
(SLP) field are used to select predictors. The SST data-
set used in this study is Extended Reconstructed Sea Sur-
face Temperature (ERSST, v3b) from National Oceanic 
and Atmospheric Administration with 2° spatial resolu-
tion for the period 1960–2012 (Smith et  al. 2008). The 
gridded 2.5° ×  2.5° global monthly SLP data are derived 
from NCEP/NCAR reanalysis dataset (Kalnay et al. 1996) 
for the same period. We also used wind at 850  hPa from 
NCEP/NCAR reanalysis dataset to detect the circula-
tion pattern. The twentieth century (20C) merged statisti-
cal analyses of historical monthly precipitation anomalies 
reconstructed data at 2.5° spatial resolution for the period 
from 1960 to 2005 are used to analyze global precipitation 
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(Smith et al. 2010). This dataset shows great similarity with 
IMD precipitation data over India.

2.2 � Predictable mode analysis approach

A Predictable Mode Analysis (PMA) method is used to  
estimate potential predictability of climate variability  
(Wang et  al. 2007; Lee et  al. 2011, 2013; Wang et  al. 
2015a; Xing et al. 2014). The predictable modes are deter-
mined by the following criteria: (a) they represents major 
patterns of climate variability in the predictand field and 
ideally they are statistically separable from other higher 
modes; (b) the dynamical origins of these modes can be 
reasonably well understood, and (c) the dynamic models 
or/and P–E models are capable of predicting these modes 
with significant skills. Assuming that the predictable modes 
can be predicted perfectly, the potential predictability can 
then be estimated by the fractional variance accounted for 
by the predictable modes.

2.3 � Selection of physical predictors in the P–E models

In the P–E models, predictors are selected primarily based 
on understanding of the physical linkages between the pre-
dictors and predictand. Correlation maps between each 
PC and the lower boundary variables (SST and SLP only) 
before June are used to identify potential predictors. Rather 
than “fishing” predictors as done in statistical models, we 
search only two types of precursory conditions. One is 
persistent signal defined as April–May mean. Normally 
the persistent predictors represent the “current” conditions 
right before the prediction period. It is hoped that the slow 
variation at the lower boundary will “persist” into next sea-
son similar to the persistent forecast. The persistent signal 
often signify the maintenance of the lower boundary anom-
alies that may be caused by local atmospheric-ocean inter-
action. This late spring (April–May) precursory condition 
would help to overcome the “spring barrier” of seasonal 
forecast (Wang et  al. 2015b). Another is tendency signal 
from December–January to April–May (long-term ten-
dency) or from March/April to May (short-term tendency). 
The tendency signal may reflect the direction of subsequent 
evolution. The selected predictors should reflect the physi-
cal processes that can explain the lead–lag relationship 
between the predictors and predictand, which will be illus-
trated in detail in Sect. 4. Domains of the selected predic-
tors only maximize the correlation on the areas where they 
have clear physical meaning. Step-wise regression is used 
as an auxiliary tool to confirm the statistical significance 
of the predators-predictand correlation and to ascertain the 
mutual independence of the predictors. All predictors were 
selected with Fisher’s F-test at the significance level of 
0.05.

2.4 � Three validation methods

2.4.1 � Cross‑validated reforecast

Leave-five-out cross validation (Geisser 1975; Blockeel 
and Struyf 2003) is used to validate the reforecast skill. 
Five years (validated sample) are withheld from the train-
ing sample and the regression coefficients are computed 
without them. These regression coefficients are used to 
forecast all 5  years. Then the process is repeated for all 
the other years to get the cross-validated reforecast for the 
period of 1960–2005.

2.4.2 � Independent forecast

For independent forecast, the step-wise regression model 
is built using the data from a training period, no “future” 
information beyond the training period are utilized. Here 
we use regression model built for the period of 1960–2005 
to make independent forecast for ISMR variability in 
2006–2012.

2.4.3 � Rolling‑retrospective forecast

Progressional prediction models are built for rolling-ret-
rospective forecast. Each progressional regression model 
is built by selecting 2 or 3 predictors from the predictor 
pool with stepwise regression and only 20-year training 
data. For example, the first prediction model is built for 
the training period of 1960–1979 to forecast ISMR in the 
next 10 years (1980–1989), and then the second prediction 
model is built using the 1970–1989 data to forecast the next 
10 years (1990–1999). Totally, 4 segments of 10-year pre-
diction are made for the 33-year retrospective forecast from 
1980 to 2012 (the last prediction equation predicts only 
3 years). The progressive retrospective forecast is consid-
ered as “independent forecast” in the sense that no “future” 
data were used in building the prediction equations. Note 
that the predictors and prediction equations for each pro-
gression prediction model are different because the train-
ing periods are different. However, the prediction skills 
for 1980–2005 may be inflated (Delsole and Shukla 2009) 
because the initial pool of predictors was first determined 
using the data of 1960–2005.

3 � Predictable mode analysis and predictability 
of ISMR

3.1 � Major patterns of the interannual variability

To investigate the patterns of ISMR variability, we performed 
an EOF analysis of the June–July–August-September 
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(JJAS) mean rainfall field over India for the period of 1960–
2005, during which we have dynamical models’ hindcast.

Figure  1a shows that the first EOF (accounting for 
31.7 % of the total year-to-year variance) covers a large 
part of India with a uniform sign of anomalies. The 

second EOF (contributing 10.7  % of total variance) fea-
tures a north–south dipole pattern. The negative loading 
is observed over Gangetic Plain while the positive load-
ing is over Peninsular India. The third EOF accounts for 
8.8  % of the total variance with heavy positive loading 

Fig. 1   a Spatial pattern and b corresponding time series of PC of three EOF modes of ISMR during the period of 1960–2005. Obtained from 
observation and hindcast from five coupled model’s multi-model ensemble (MME) initiated from May 1st
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located along the north of Gangetic Plain and northeastern 
India and light negative loading to the western and central 
India.

3.2 � Physical interpretation of the major patterns

Are these empirical patterns physically meaningful? Let 
us explore the dynamical origins of the first three modes, 
i.e., understand the processes governing the variability of 
each mode by examining simultaneous large-scale lower 
boundary anomalies. Associated with EOF1, suppressed 
rainfall is mainly over the western Pacific and enhanced 
rainfall occuring over northern Africa and most part of 
India (Fig. 2a). The SST anomalies associated with EOF1 
features significant cooling over the central and eastern 
Pacific, indicating a developing La Nina (Fig.  2b). The 
lead–lag correlation of equatorial SST anomalies with ref-
erence to PC1 shows that the La Nina event starts from the 
eastern Pacific (EP, or Nino-3 region; Figure not shown), 
thus it is originated from a developing EP type of La Nina. 

Fig. 2   Simultaneous (JJAS) correlation fields between PC1 and a precipitation (shading), 850 hPa wind, b SST (shading) and SLP (contours) 
for the period of 1960–2005. c, d are same as (a) and (b), respectively, but for PC2. e, f are same as (a) and (b), respectively, but for PC3

Fig. 3   Percentage variance (%) explained by the observed first six 
EOF modes (ordinate) and the combined forecast skill score for 
eigenvector (EV) and PC for each mode (abscissa). The skill score is 
defined by the square root of product of PCC score for EV and TCC 
score for PC time series for each mode. The error bars represent one 
standard deviation of the sampling error
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The EP-La Nina induces east–west SLP seesaw with rising 
SLP over the Pacific subtropical highs in both hemisphere, 
and decreasing SLP over the eastern Hemisphere centered 
on the western Indian Ocean and Maritime Continent 
accompanied by strong cross-equatorial flows and intensi-
fied southwesterly monsoon over Arabian Sea, leading to 
an increase of ISMR over the entire India (Fig. 2a, b).

The precipitation anomalies associated with EOF2 
(Fig. 2c) are similar to the first EOF pattern of Asian sum-
mer monsoon rainfall (Wang et al. 2015a) with suppressed 
rainfall over the Philippine Sea-equatorial western Pacific 
and enhanced rainfall over the maritime continent, south 
of India as well as two branches of tropical northern and 
southern Indian Ocean. The simultaneous SST anomalies 
related to EOF2 are characterized by a moderate cooling in 
the equatorial central Pacific (Nino3.4 region), which may 
be considered as a developing weak central Pacific (CP) 
type of La Nina; meanwhile, a strong warming occurs over 

the Western Pacific and northern Bay of Bengal and Ara-
bian Sea as a result of the enhanced western Pacific sub-
tropical High (Fig.  2d). This SST pattern is also similar 
to that associated with EOF1 of Asian summer monsoon 
rainfall (Wang et  al. 2015a). The high SLP anomalies are 
located over the central Pacific, which extend northwest-
ward into Philippine Sea and south Asia, causing sup-
pressed rainfall over northern India (Mishra et  al. 2012). 
Meanwhile, the enhanced convection over the southern 
Maritime Continent induces a cyclonic circulation anom-
aly extending from the Maritime Continent to southern 
India, which enhances the precipitation over southern India 
(Wang et al. 2003, 2015a).

The EOF3 is related to the enhanced rainfall over the 
Maritime Continent and southeast tropical Indian Ocean 
and suppressed rainfall over western tropical Indian Ocean 
(Fig.  2e). The precipitation anomaly and associated wind 
anomalies are consistent with equatorial Indian Ocean 

Fig. 4   The MME’s temporal 
correlation coefficient (TCC) 
skills for ISMR prediction 
obtained by using, a all EOF 
modes, b three predictable 
modes and c all the rest modes 
for 1960–2005, d The maxi-
mum attainable TCC skills from 
the first three predictable EOF 
modes. The maximum attain-
able TCCs are measured by the 
TCC between the observed total 
field and the observed predict-
able components of the field. 
The number in the right upper 
corners indicates averaged cor-
relation skills over India
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Oscillation (EQUINOO) in precipitation (Gadgil et  al. 
2004). The SST anomalies with reference to EOF3 show a 
weak cooling near the dateline, which enhances convection 
over the northern Maritime Continent. The enhanced con-
vective heating then induces a cyclonic anomaly over the 
northern Bay of Bengal and northern India (Fig.  2f), sug-
gesting a favorable condition for the convection over north 
of Gangetic Plain and northeastern India. Therefore, the 
dynamical origins of these three modes can be well distin-
guished and their teleconnection patterns can be reasonably 
understood.

3.3 � Identification of the predictable modes

Are these three modes predictable? One way to address this 
question is to examine whether the coupled climate mod-
els can simulate or predict them. We took five ENSEM-
BLE models’ MME hindcast results from 1960 to 2005 
and made an analysis parallel to the observed data analysis. 
Figure 1 compares the observed and model predicted major 
modes of variability. We find that the first three observed 
modes correspond, respectively, to the first, fourth and third 
MME-predicted EOF modes in terms of their similarities 
in spatial patterns and correlations with principle compo-
nents. The MME tends to underestimate the variance of 
the second observed mode. The pattern correlation coeffi-
cient (PCC) skills of spatial patterns and the TCC skill of 
the principal component (PC) of the MME are presented 
for each mode in Fig.  1. Note that the MME can capture 
the spatial distribution of the first two observed modes but 
has remarkable spatial errors for the third mode over east-
ern India. The number of grids over the whole India is 357. 
Taking account of spatial correlations, assuming the degree 
of freedom is reduced to 35 (about 10  % of total sample 
size), the PCC skill of 0.34 is significant at 95  % confi-
dence level. Overall, however, the MME offers significant 
skills (Fig.  1)  in predicting the first three observed EOF 
patterns with PCC skills higher than 0.34 and TCC skills 
exceed 0.29 (95  % confidence level). Those are criteria 
used to determine predictability of the modes.

To see whether these three modes are separable from 
other higher modes, we examine their fractional vari-
ance contributions and the skills of the MME in capturing 
these modes. The results are presented in Fig. 3. Here the 
ordinates denotes the fractional variance explained by the 
observed EOFs along with the range of the uncertainty due 
to sample errors (North et al. 1982). The abscissa represents 
the MME’s skill score in predicting each observed EOF 
mode. The skill score (Lee et al. 2011, 2013) is defined by 
the PCC score for eigenvector and TCC score for PC time 
series, which is calculated by

(1)Skill Score =
√
PCC × TCC

 
Note that the first EOF mode is clearly distinct from 

the other EOF modes; the second and third EOFs are, to a 
certain extent, separated from other higher modes. Due to 
short record, the observed EOF2 and EOF3 are not statisti-
cally separable due to sample error (Fig. 3). In this case, it 
is possible that the order of model predicted EOFs is dif-
ferent with observed EOFs (Lee et  al. 2011), because the 
dynamical model may capture these EOF modes with dif-
ferent fractions of explained variance. Moreover, the first 
three observed EOF modes are reasonably predicted by 
the MME with higher fidelity (skill scores) than the other 
modes. The PCC skills of first three predicted EOF patterns 
and TCC skills of corresponding PC are significant at 95 % 

Table 1   The definitions of predictors

We use the grids in the defined region which correlation coefficients 
with corresponding PC are significant at 95 % confidence level

Predictor Definition

PC1a May minus April N–S SST dipole: SST (10°S–50°S, 
175°E–150°W) minus SST (0°N–25°N, 180°–140°W)

PC1b April–May minus December–January SST (40°S–40°N, 
145°E–80°W) averaged over the western Pacific 
K-shape area minus eastern Pacific triangle

PC1c May minus March SST averaged over (10°S–30°S, 
60°E–125°E)

PC2a April–May mean SLP averaged over (40°S–15°N, 
155°E–130°W)

PC2b April–May minus December–January SST averaged over 
(20°S–5°S, 100°E–160°E)

PC3a April–May mean SLP averaged over (10°N–40°N, 
175°–140°W) and (30°S–55°S, 160°E–150°W)

PC3b April–May mean SLP averaged over (30°N–45°N, 
25°W–10°E) minus (50°N–70°N, 10°W–20°E)

Table 2   The correlation coefficients between each PC and corre-
sponding predictors and among each other during the period of 1960–
2005

The bold (italic) numbers denote statistically significant at 99  % 
(95 %) confidence level

PC1 PC1a PC1b PC1c

PC1a 0.59 0.27 −0.32

PC1b 0.54 0.27 −0.51

PC1c −0.58 −0.32 −0.51

PC2 PC2a PC2b

PC2a 0.49 0.34

PC2b 0.49 0.34

PC3 PC3a PC3b

PC3a 0.57 0.35

PC3b 0.57 0.35
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confidence level (PCC  >  0.34, TCC  >  0.29), so here the 
skill score of 0.32 is considered as having significant skill. 
Thus, the first three observed modes are distinctive from 
the rest higher modes that are likely unpredictable.

The above analysis suggests that the first three observed 
modes of ISMR variability may be potentially predictable 
while the other modes seem to have little predictability. To 
further test this assertion, we compare the TCC skills made 
by the MME prediction using the identified three predict-
able modes and using all modes (i.e., the original predicted 
field). For the 3-mode MME prediction, the predicted field 
is reconstructed by using the spatial structures of three pre-
dicted modes multiplied by their correspondingly predicted 
PCs. The area-averaged TCC skill averaged over the entire 
India by using all modes and by using only the three modes 
are, respectively, 0.16 and 0.20 for the 46-year period of 

1960–2005 (Fig.  4a, b). Note that all residual modes (the 
modes other than the three) make little contribution to the 
prediction skill (Fig.  4c). Thus, the prediction skill for 
ISMR mainly lies in the skills for prediction of these three 
predictable modes. The results here suggest that the first 
three modes are source of the prediction skill in dynamical 
model MME.

3.4 � Potential predictability of the ISMR anomaly 
pattern

The predictable mode analysis suggests that the first three 
observed modes can be regarded as the predictable modes 
for ISMR. The first three EOF modes together account 
51.2 % of total variance in the observation. If we assume 
these modes can be perfectly predicted, the total fractional 

Fig. 5   The correlation maps between PC1 and a May-minus-April 
SST, c April–May minus December–January SST and e May minus 
March SST. The box regions show the locations of predictor for 
PC1a, PC1b and PC1c in (a), (c) and (e), respectively. Dotted areas 
denote regions with correlation coefficients significant at 95 % level. 

b Correlations between predictor PC1a and the JJAS SST over ocean 
(shading with blue to red), precipitation over land (shading with yel‑
low to green), SLP (contours) and 850  hPa winds (vectors) during 
1960–2005. d, f are same as (b), but for predictor PC1b and PC1c, 
respectively
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variance accounted for by the predictable modes can be 
used to estimate the upper limit of the potential predictabil-
ity. Based on this analysis, about one half of the ISMR sea-
sonal variability is predictable.

The potential predictability can also be measured 
by the TCC between the observed total field and the 
observed predictable components of the field (Lee et  al. 
2011, 2013). Figure 4d shows the spatial distribution of 
the maximum attainable TCC skill during the period of 
1960–2005. The area-averaged maximum attainable TCC 
skill over the whole India is 0.61. Relatively high skill 
appears in the central India. In general, there is still a 
large room to improve the ISMR prediction via improve-
ment of the model and better reproducing the first three 
modes.

4 � The ISMR anomaly pattern prediction by P–E 
models

As we demonstrated above, the first three EOF modes 
may be predictable and the dynamical models have 
so far limited prediction skills. Therefore, we want to 

build P–E models for predicting each PC of these three 
modes, with which we may further predict the spatial dis-
tribution of the rainfall anomalies by using the 3-mode 
reconstruction.

4.1 � Searching for physical meaningful predictors

The simultaneous large-scale anomalies (Fig. 2) associated 
with each PC also provide dynamical insight for select-
ing physically meaningful predictors. For each PC of the 
ISMR, two or three predictors are selected for construction 
of P–E prediction model. These predictors stand for dif-
ferent precursory lower boundary forcing on the monsoon 
circulation system. The principles and methods of selec-
tion predictors have been described in Sect. 2. All predic-
tors (their definitions are summarized in Table  1) have 
high TCC (significant at 0.99 confidence level) with the 
corresponding PCs (Table 2). The variance that explained 
by these predictors for corresponding PC can be reflected 
by the prediction skill of cross-validated reforecast. These 
predictors are selected because of their physical meanings 
and are relative independent from each other, which are 
explained in the next few paragraphs.

Fig. 6   The correlation maps between PC2 and a April–May mean 
SLP and c April–May minus December–January SST. The box 
regions show the locations of predictor for PC2a and PC2b in (a) and 
(c), respectively. Dotted areas denote regions with correlation coef-
ficients significant at 95  % level. b Correlations between predictor 

PC2a and the JJAS SST over ocean (shading with blue to red), pre-
cipitation over land (shading with yellow to green), SLP (contours) 
and 850 hPa winds (vectors) during 1960–2005. d is same as (b), but 
for predictor PC2b
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For PC1, all three predictors (PC1a, PC1b and PC1c) 
are derived from SST tendency fields, i.e., SST tendency 
predictors. The persistent-type SST predictors and the 
SLP predictors are also examined but not selected because 
of their dependency on the selected three. The predictor, 
PC1a, is a short-term tendency of dipole SST with cooling 
in the northern central Pacific and warming in the south-
ern central Pacific from April to May (Fig. 5a). This north–
south dipole SST tendency implies a building up meridional 
thermal gradients that can strengthen equatorial easterlies 
and westward surface currents, leading to a central-eastern 
Pacific cooling in JJAS (Fig.  5b), which enhances ISRM 
through changing Walker circulation (Kumar et  al. 2006). 
Predictor PC1b denotes an east–west contrast in the SST 
tendencies, i.e., the central-eastern Pacific triangle SST 
cooling and K-shape Pacific SST warming from win-
ter to spring (Fig.  5c). This dipole tendency foreshadows 
enhanced subtropical Highs in both the North and South 
Pacific, associated equatorial cooling in the ensuing sum-
mer and the associated trade winds cause moisture conver-
gence over the Asian monsoon region (Wang et al. 2013), 
and thus contribute to intensification of ISMR (Fig. 5d). In 
addition, the cooling SST tendency from March to May in 

the southern Indian Ocean (predictor PC1c, Fig. 5e) inten-
sifies the land-sea thermal contrast during summer and the 
associated southwest monsoon with large amount water 
vapor transporting to India (Fig. 5f).

For PC2, only two independent predictors are selected, 
one is persistent SLP and the other is SST tendency. The 
first predictor, PC2a, represents the high SLP anomalies 
located at the central and southern Pacific in April and May 
(AM) (Fig.  6a). The enhanced SLP induces CP-La Nina 
type of anomalous cooling which generates, through sup-
pressing convection, a strong anti-cyclonic anomaly over 
the western tropical Pacific. As can be seen in Fig.  6b, 
the strengthened West Pacific Subtopic High extends to 
the foothill of Himalayas, leading to reduced rainfall over 
northern India and enhanced rainfall south of the anti-
cyclonic ridge. The second predictor, PC2b, signifies a 
SST warming tendency at southern Maritime Continent 
from northern winter to spring (Fig.  6c), which leads to 
enhanced rainfall over the Maritime Continent, further gen-
erating low-pressure anomalies extending to southern India 
by Rossby wave emanation (Wang et  al. 2013; Fig.  6d), 
which intensifies the rainfall there. The predictor PC2b is 
also a precursor for a CP-type La Nina.

Fig. 7   The correlation maps between PC3 and a April–May mean 
SLP. The black and red box regions show the locations of predictor 
for PC3a and PC3b, respectively. Dotted areas denote regions with 
correlation coefficients significant at 95  % level. b Correlations 

between predictor PC3a and the JJAS SST over ocean (shading with 
blue to red), precipitation over land (shading with yellow to green), 
SLP (contours) and 850 hPa winds (vectors) during 1960–2005. c is 
same as (b), but for predictor PC3b
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For PC3, only two predictors are found in April–May 
(AM) mean SLP (persistent type); the precursory condition 
in SST field is weak. The ISMR links to summer EQUI-
NOO in precipitation. But the corresponding precursor in 
spring is weak, so that the related predictor is not able to 
be selected for EOF3. As seen in Fig. 7a, the first predic-
tor, PC3a, denotes an intensified Northern Subtropical High 
and rising pressure in the southwest Pacific in AM. This 
SLP pattern leads to enhanced easterlies and SST cooling in 
the equatorial central Pacific near the dateline in the ensu-
ing summer (Fig. 7b). The cooling SST anomalies enhance 
the precipitation over the northern Maritime Continent. The 
heating from the northern Maritime Continent can excite 
a cyclonic anomaly Rossby wave response over the north-
ern Bay of Bengal and northern India (Gill 1980). Over 
India, the 20C reconstructed precipitation does not show 
EOF3 precipitation pattern, but if we use IMD precipita-
tion data the regressed precipitation pattern does resemble 
the EOF 3 pattern, suggesting the data uncertainty in the 
EOF 3 mode. The second predictor PC3b is a SLP dipole 
in AM over Western Europe (Fig. 7a). This dipole seems to 
extend southeastward, resulting in a low pressure extending 
from Scandinavia to northwest India (Fig. 7c). Under this 
circulation background, Himalayan orographic forcing may 
also play an important role in modulating the rainfall over 
northeast of India (Sinha et al. 2014).

4.2 � The hindcast skills of the P–E prediction model

Based on the abovementioned arguments, we consider these 
selected predictors physically meaningful. A set of step-
wise regression prediction equations is established for each 
PC using the corresponding selected predictors. Table  3 
shows three types of validation skills (see Sect. 2 for details) 
for each PC in term of TCC. The cross-validated reforecast 
and rolling-retrospective forecast both show significant TCC 
skills at 99 % confidence level. For PC1, the cross-validated 
reforecast skill for 46 years (1960–2005) is 0.71. The inde-
pendent forecast for the recent 7 years (2006–2012) yields a 
TCC of 0.80. For the rolling-retrospective forecast, the skill 
is 0.66 during period of 1980–2012. The forecast skill for 
PC2 and PC3 are also reasonably well. The validated TCC 
skills suggest that the P–E models have good capacity to 
predict the first three PCs.

As shown by the red dashed line in Fig.  8, the MME 
predicts the first three PCs with significant skill (95  % 
confidence level) of 0.39, 0.29 and 0.32, respectively. The 
cross-validated predicted PCs (blue line in Fig.  8) by the 
P–E models are capable of capturing the interannual varia-
tion of observed PCs with much higher TCC skills of 0.71, 
0.56, and 0.63, respectively. The P–E model prediction skill 
using the first three PCs also achieved the acceptable level 
(0.29 for 95 % confidence level) for predictable modes.

Predicted ISMR precipitation anomaly pattern can be 
reconstructed by the sum of the first three predicted PCs 
multiplied by their corresponding observed EOF patterns. 
The TCC between predicted and observed rainfall anom-
alies are calculated for each grid and the result is shown 

Table 3   The prediction skills (correlation coefficients) from P–E 
models for each PC

The bold (italic) numbers denote statistically significant at 99  % 
(95 %) confidence level

PC1 PC2 PC3

Cross-validated reforecast (1960–2005) 0.71 0.56 0.63

Independent forecast (2006–2012) 0.80 0.82 0.47

Rolling-retrospective forecast (1980–2012) 0.66 0.59 0.53

Fig. 8   The corresponding PC of the first three EOF modes (a–c) in 
observation (OBS), P–E model (PEM) cross-validated prediction and 
Multi-Model Ensemble (MME) dynamical prediction from 1960 to 
2005. The numbers within the parenthesis in the figure legend indi-
cate the TCC between the observed and predicted PC



2858 J. Li, B. Wang

1 3

in Fig.  9. The cross-validated reforecast skills during the 
period of 1960–2005 are greater than 0.4 (exceeding 99 % 
confidence level) over most parts of India (Fig.  9a). For 
independent forecast (2006–2012), higher TCC (0.5–0.7) 
are found over Deccan Plateau, while lower TCC occurred 
in eastern Gangetic Plain (Fig.  9b). For the rolling-retro-
spective forecast (Fig.  9c), the northern, eastern and cen-
tral India have better skills with TCC greater than 0.5 dur-
ing the period of 1980–2012. The area-averaged TCC skill 
over the entire India is 0.43, 0.37 and 0.35, respectively, 
for the cross-validated reforecast, independent forecast and 
rolling-retrospective forecast. Note that the independent 
and rolling-retrospective forecast skills of PC3 are lower 
than the cross-validated reforecast skill (Table 3). The third 
EOF mode mainly stands for rainfall anomaly over north of 
Gangetic Plain and northeastern India. Thus, the TCC skills 
over north central India for rolling-retrospective forecast 
(Fig. 9b) and independent forecast (Fig. 9c) are lower than 
cross-validated reforecast (Fig. 9a).

In order to further estimate the year-to-year variation 
of the prediction skills of rainfall pattern. We compare the 
time series of the PCC skill obtained by the P–E models, 
the three-mode MME forecast and the potential attain-
able forecast skill using the perfect prediction of the 3 
predictable modes in Fig.  10. The PCC skill shows large 
year-to-year variation for the predictions made by the P–E 
models and the MME. The long-term mean PCC skills of 
P–E models and the three-mode MME are 0.35 and 0.22, 
respectively. The P–E prediction shows superior PCC skill. 
It is note that the PCC skills of the P–E model and MME 
are both close to the attainable prediction skill in some 
years such as 1961, 1964, 1972, 1975, 1982 and 2002. In 
general, both the P–E prediction and the MME prediction 
have higher skills when the attainable skill is higher. How-
ever, both predictions have no skill in some years including 
1962, 1963, 1967, 1976, 1980, 1989, 1997 and 2001.

There are a number of factors affecting PCC skills of pre-
diction by P–E model or MME. One is to what extent the 

Fig. 9   The TCC skills of a cross-validated reforecast, b independent forecast and c rolling-retrospective forecast for each grid in India obtained 
from P–E model. The number in the right upper corners indicates averaged TCC over India

Fig. 10   The PCC skill for 
ISMR prediction as a function 
of forecast year using cross-
validated P–E model prediction 
(PEM), prediction with the 
MME’s 3 modes (MME3M) 
and potential attainable forecast 
skill using observed 3 modes 
(OBS3M). The numbers within 
the parenthesis in the legend 
indicate the averaged PCC skill
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predictable EOF modes can represent the actual rainfall pat-
tern in an individual year. The PCC skills of the 3 observed 
modes (OBS3M) reflect the overall extent that predictable 
modes represent the actual rainfall pattern. However, their 
representativeness varies with years. When these predict-
able modes are not dominant in an individual year, even if 
the prediction for PCs is perfect, it contributes little to the 
prediction of actual rainfall pattern. That is the reason why 
the PCC skills of P–E model or MME tend to be low or 
even negative when PCC skills of OBS3M are low. That 
also implies that some new modes need to be discovered, 
although they might not be captured by the dynamical mod-
els at this stage. Another factor is the prediction skill for each 
PC. When the PCC skills of OBS3M are higher, the PCC 
skills of P–E model and MME are mainly affected by their 
prediction skills of each PC. So improving prediction skill of 
each predictable PC is essential. Third, our selection of pre-
dictors are based on understanding of the lead–lag relation-
ship, therefore the statistical skills are not necessarily high. It 
is pretty sure that one can get statistical predictors that have 
higher correlation skill. But such pure statistical fitting may 
inflate the prediction skill and may drop the skill in real pre-
diction. This is precisely the P–E approach tried to avoid.

5 � Conclusion and discussion

Major modes of ISMR have been extracted by conducting 
EOF analysis of the JJAS mean precipitation over India. 
The first three EOF modes account for 51.2  % of total 
interannual variance, or together they can explain over half 
of Indian summer rainfall variability. The first EOF mode 
represents a nearly uniform pattern across India. Second 
EOF mode is a north–south dipole rainfall pattern. Third 
EOF mode mainly stands for rainfall anomaly over north of 
Gangetic Plain and northeastern India.

Dynamical origins of the first three modes are explored 
by examining simultaneous large-scale lower boundary 
anomalies. The SST anomalies associated with EOF1, 
EOF2 and EOF3 are characterized by an EP-type La Nina, 
a CP-type La Nina, and a cooling center near dateline, 
respectively. These equatorial Pacific SST anomalies, while 

located in different longitudes, can all set up a specific tel-
econnection pattern that affects Indian monsoon and results 
in different rainfall EOF patterns. But are those modes 
predictable?

It is important to define criteria for considering a mode 
to be predictable. First, the criteria should be a function 
of variable because the predictability is a function of vari-
able. Dynamical models have difficulty in capturing the 
land precipitation than other variables, so the explained 
variance by prediction is much lower than JJA 200-hPa 
GPH (Lee et  al. 2011) or Asian winter temperature (Lee 
et  al. 2013). Secondly, although prediction skill of MME 
for land precipitation is much lower than other variables, 
it should capture the major EOF patterns and PCs with 
statistical significant skills (say, 95  % confidence level). 
We show that the MME of five state-of-the-art ENSEM-
BLE dynamic models’ 46-year (1960–2005) hindcast can 
reproduce the observed first three EOF of ISMR signifi-
cantly (PCC > 0.34, TCC > 0.29). Thirdly, it is important 
to demonstrate that the dynamical prediction skill of MME 
for ISMR pattern mainly comes from the skills for the pre-
diction using the predictable modes. As shown in Fig.  4, 
the MME predictions made by using all EOF modes and 
by these three modes only, yield area-averaged TCC skill 
of 0.16 and 0.20, respectively over entire India and for the 
period of 1960–2005, indicating that the MME’s predictive 
skill mainly come from the prediction skill of these three 
modes. Fourthly, assuming the EOF pattern are perfectly 
captured (PCC = 1), the variance explained by prediction 
equals to (skill score)4, i.e., (TCC)2. This assumption is rea-
sonable because the spatial pattern biases can be corrected 
by replacing the model EOF patterns by the observed EOF 
patterns as in Wang et al. (2015a) for Asian summer mon-
soon prediction. So the variance explained by prediction is 
determined by TCC skill of PCs. For this purpose, we sim-
ply assume the TCC must exceed the significance at 95 % 
confidence level.

Thus, the first three modes can be regarded as the pre-
dictable modes for ISMR. About one-half of the total 
observed variability is potentially predictable over India. 
The estimation of the predictability for ISMR patterns 
suggests that the current models still have large room for 

Table 4   Prediction skills of all Indian rainfall index (AIRI) made by P–E model and MME (derived from all modes and 3 modes) during the 
period of 1960–2005 and 1980–2005

The bold (italic) numbers denote statistically significant at 99 % (95 %) confidence level
a  Building for direct prediction of AIRI (Wang et al. 2015b)
b  Building from predictable modes

P–E modela P–E modelb MME

1960–2005 0.67 (cross-validated reforecast) 0.72 (cross-validated reforecast) 0.43 (all modes) 0.41 (3 modes)

1980–2005 0.44 (rolling-retrospective forecast) 0.65 (rolling-retrospective forecast) 0.18 (all modes) 0.14 (3 modes)
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improvement. Therefore, we developed Physics-based 
Empirical (P–E) model based on the understanding of mon-
soon dynamics and the lead–lag relationship between the 
predictors and predictand (PCs in this case). Physically 
meaningful predictors are selected for prediction of each 
PC and their linkages with ISMR are discussed. Predic-
tion of ISMR anomaly patterns based on these physical-
empirical predictors has a cross-validated reforecast skill 
with area-averaged TCC of 0.43, which is significantly bet-
ter than the current dynamical models’ MME skill (0.16) 
for the same period of 1960–2005. Even for the independ-
ent forecast during the period of 2006–2012, the skill only 
dropped slightly.

Although the present work focuses on prediction of the 
anomaly rainfall patterns, it would be interesting to see to 
what extent the P–E model can predict the AIRI compared 
with the dynamical models’ MME prediction (Table 4). The 
cross-validated reforecast (rolling-retrospective forecast) 
skill of the P–E models yields a TCC skill of 0.72 (0.65) 
for the period of 1960–2005 (1980–2005). MME pre-
diction shows lower skill of 0.43 (0.18) for the period of 
1960–2005 (1980–2005). It is also interesting to note that 
the P–E model built specifically for direct prediction of 
AIRI (Wang et al. 2015b) yields a skill of 0.67 for cross-
validated reforecast (1960–2005) and 0.44 for rolling-
retrospective forecast (1980–2005). Therefore, the skills 
of direct prediction of AIRI are lower than the skills here 
built from predictable mode analysis especially during the 
period of 1980–2005, suggesting that the P–E models built 
from predictable modes (or for the anomaly pattern) can 
improve the AIRI prediction because it takes into account 
the regional distribution signals and involves more predic-
tors. This new method also adds another independent fore-
cast tool for AIRI.

Understanding the physical linkages between predictand 
and predictors are crucial for selecting predictors and for 
improving prediction skills. The principles of searching 
for relatively independent and complimentary predictors 
should be useful for reduction of the predictive skill drop 
(Wang et al. 2015b). While the causative processes linking 
the predictors and the major modes of the ISMR have been 
speculated, they are, by no means, rigorous proofs; thus, 
further well-designed numerical experiments are needed to 
validate or refuse the articulations proposed in the present 
study.

We should note that the 46-year retrospective cross-val-
idated correlation skills shown in Fig. 8 are likely inflated 
because all the data (model development and validation) 
are used to select the predictors (Delsole and Shukla 2009). 
In addition, the predictors derived from the current 46 years 
of data for ISMR patterns may vary with time or experi-
ence secular changes. That is partially the reason why the 
predictor used for EOF1 of Asian summer monsoon rainfall 

(Wang et al. 2015a) derived from 32 years (1979–2010) are 
different from we selected for EOF2 of ISMR in this study, 
although these two EOF modes have similar characters.

The dominant EOF modes vary with the study period, 
so the total explained variance of predictable EOF modes 
may change and the predictable modes themselves may 
change accordingly. But the identified predictable modes 
must capture large part of the total variability, so that pre-
diction can be useful. The modes identified here are only 
valid for the recent 46 years period. The selected predic-
tors are by no means optimum. We anticipate that the 
established prediction equations will be useful for next 
few years, but continuous detection of secular changes and 
modifications of the predictors/prediction equations are 
imperative.
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