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ABSTRACT

Considerable year-to-year variability of summer rainfall exposes China to threats of frequent droughts and

floods. Objective prediction of the summer rainfall anomaly pattern turns out to be very challenging. As

shown in the present study, the contemporary state-of-the-art dynamical models’ 1-month-lead prediction of

China summer rainfall (CSR) anomalies has insignificant skills. Thus, there is an urgent need to explore other

ways to improve CSR prediction. The present study proposes a combined empirical orthogonal function

(EOF)–partial least squares (PLS) regression method to offer a potential long-lead objective prediction of

spatial distribution of CSR anomalies. The essence of the methodology is to use PLS regression to predict the

principal component (PC) of the first five leading EOF modes of CSR. The preceding December–January

mean surface temperature field [ST; i.e., SST over ocean and 2-m air temperature (T2m) over land] is selected

as the predictor field for all five PCs because SST and snow cover, which is reflected by 2-m air temperature,

are themost important factors that affect CSR and because the correlation between eachmode and ST during

winter is higher than in spring. The 4-month-lead forecast models are established by using the data from 1979

to 2004. A 9-yr independent forward-rolling prediction is made for the latest 9 yr (2005–13) as a strict forecast

validation. The pattern correlation coefficient skill (0.32) between the observed and the 4-month-lead

predicted patterns during the independent forecast period of 2005–13 is significantly higher than the dynamic

models’ 1-month-lead hindcast skill (0.04), which indicates that the EOF–PLS regression is a useful tool for

improving the current seasonal rainfall prediction. Issues related to the EOF–PLS method are also discussed.

1. Introduction

The rainy season in China experiences a charac-

teristic northward march starting from southern

China in April–May and then retreats across China

toward the end of August except for the southern-

most part of the country. The climatological sum-

mer [June–August (JJA)] mean rainfall over China

gradually decreases from southeastern China where

the rainfall rate exceeds 8mmday21 to northwestern

China where the rainfall rate is less than 1mmday21

(Fig. 1a).
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Chinese JJA rainfall exhibits prominent interannual

variability with complex spatial structures. Eastern and

southern China are vulnerable to droughts and floods,

which frequently cause devastating agricultural and

economic losses (Tao and Chen 1987; Ding 1994; Yuan

et al. 2008a,b; Gu et al. 2009a,b). The losses arising from

climate-related disasters have notably increased in the

recent years due to the economic boom. For instance,

the total economy loss in China due to extreme climate

events in 2010 alone reached over RMB500 billion

(about USD82 billion), which is the largest since 1990

(Sun et al. 2011).

FIG. 1. (a) Climatological mean precipitation rate (mmday21) averaged for June–August (JJA) from 1979–2013.

(b) The temporal correlation coefficient (TCC) skill for JJA precipitation prediction using the nine coupledmodels’

multimodel ensemble initiated from the first day ofMay for the 32 yr of 1979–2010. The solid red contour is the TCC

skill of 0.30 with statistically significance at the 0.1 confidence level. The averaged TCC over China is 20.02.
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Sea surface temperature anomalies (SSTA) over tropi-

cal Pacific associated with ENSO are a major cause of

summer rainfall variability in East Asia (e.g., Gong and

Wang 1999; Wang et al. 2000; Wu and Wang 2002).

Besides, the interannual variability of the East and

Southeast Asian monsoon is also tied to SSTA over the

East China Sea, the Sea of Japan (East Sea), and the South

China Sea (SCS) regions (Lau et al. 2000). The anomalous

snow cover and snow depth over Eurasian land and the

Tibetan Plateau as well as the Arctic ice concentration all

exhibit, to various degrees, association with the eastern

China summer rainfall (CSR) on an interannual time scale

(e.g., Chen and Wu 2000; Qian et al. 2003; Wu and Qian

2003; Zhang et al. 2004; Zhao et al. 2007; B. Wu et al.

2009a,b; Liu and Wang 2011).

Prediction of summer rainfall is one of the most chal-

lenging tasks in climate sciences. This challenge arises

partly from its limited predictability and partly from the

coupled climate models’ deficiencies in capturing ENSO

evolution and teleconnection, as well as atmosphere–

ocean–land interaction (Wang et al. 2008, 2009a).

Although the dynamical models can capture, to a large

degree, the leading modes of interannual variability of the

Asian monsoon and the ENSO–monsoon relationship,

useful skills for rainfall prediction are largely confined to

tropical monsoon oceans (Wang et al. 2008). Over land

monsoon areas, especially in the subtropics and mid-

latitudes, the current climate models are still unable to ad-

equately predict the mean intensity and seasonal variations

(Luo et al. 2005; Shukla 2007; Wang et al. 2009b).

To see the current status of the dynamical seasonal

prediction of the rainfall over China, we have examined

hindcast skills of nine state-of-the-art atmosphere–

ocean–land coupled models, including the 1) National

Centers for Environmental Prediction (NCEP) CFS

version 2 (Saha et al. 2014), 2) Geophysical FluidDyanmics

Laboratory (GFDL) Climate Model version 2.1 (Delworth

et al. 2006), 3) FrontierResearchCenter forGlobal Change

(FRCGC)SINTEX-Fmodel (Luo et al. 2005), 4)European

Centre for Medium-Range Weather Forecasts (ECMWF)

model (Gregory et al. 2000;Molteni et al. 2011), 5) Instituto

Nazionale de Geofisica e Vulcanologia (INGV) model

(Madec et al. 1998), 6) Leibniz Institute of Marine Sciences

at Kiel University (IFM-GEOMAR) model (Jungclaus

et al. 2006), 7) Predictive Ocean Atmosphere Model for

Australia (POAMA) P24A model (Zhong et al. 2005),

8) Met Office (UKMO) model (Roeckner et al. 1996;

Marsland et al. 2003), and 9) Centre National de Re-

cherches Météorologiques (CNRM) MF model (Déqué
2001). These models are collected in the Asian-Pacific

Economic Cooperation (APEC) Climate Center (APCC)

Climate Prediction and its Application to Society

(CliPAS) project. A multimodel ensemble (MME)

hindcast from 1979 to 2010 with 1 May initial condi-

tions was made by simply averaging the nine coupled

models’ ensemble mean anomalies after removing

their own climatology.

Figure 1b shows the temporal correlation coefficient

(TCC) for JJA precipitation prediction at each grid over

China by using the nine climate models’ MME. As

can be seen, the TCC over China barely exceeds the

90% confidence level. The prediction skill is basically

insignificant over all of China. The prediction is notori-

ously poor in central northern China.

Although the causes for CSR anomalies have been

discussed, thus far only a limited number of studies have

dealt with summer rainfall prediction. Li and Zeng

(2008) predicted East Asia summer monsoon (EASM)

rainfall based on SST and sea ice concentration. Z. Wu

et al. (2009) established an empirical model to predict

the EASM strength through a combination of ENSO

and spring North Atlantic Oscillation (NAO) data. Fan

et al. (2012) developed two statistical prediction

schemes including the interannual increment approach

to improve the seasonal prediction of the EASM’s

strength. Recently, a method called predictable mode

analysis (PMA) was proposed by Wang et al. (2007).

This method integrates empirical analysis, physical in-

terpretation, and hindcast experiments. The hindcasts (ret-

rospective predictions) are made by using physical–

empirical models or coupled dynamical models. A series

ofworks have beenperformed to predictEastAsian rainfall

anomalies during early (May–June) and peak summer

(July–August) respectively by using thismethod (Xing et al.

2014; Yim et al. 2014). All the results of these studies have

shown that statistical models are more skillful than dy-

namical models in terms of predicting East Asian summer

rainfall. In this study, we focus only onChina rainfall during

conventional summer season (JJA) in line with traditional

seasonal prediction practice.

In the present study, we explore a new statistical

forecast method called partial least squares (PLS) re-

gression to predict each principal component (PC). PLS

regression was first applied in the field of econometrics

byWold (1966). In recent decades, it has been improved

and used in many fields such as computational biology

(Tan et al. 2004) and neuro-imaging (McIntosh and

Lobaugh 2004). For climatepurposes, thismethodhas been

applied in paleoclimate reconstruction (Kalela-Brundin

1999), analysis of plant growth days (McIntosh et al.

2005), diagnosis of the factors that contribute to the

variability of geophysical time series (Smoliak et al.

2010, 2015), exploration of the climate background of

anomalous wet and cold winter in southern China

(Zhang et al. 2011), and seasonal prediction of killing-

frost frequency in south-central Canada (Wu et al. 2013).
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Our study aims to identify the principal modes of

CSR variations and then predict each mode with PLS

regression, so it is called the combinedEOF–PLSmethod

(section 2). The characteristics of the major modes of

CSR variability are discussed in section 3. Section 4

presents the prediction of CSR. Section 5 provides con-

clusions and discussion.

2. Methodology: The combined EOF–PLS
regression method

The PLS is normally used to predict a single index

(predictand) using a concurrent or precursory field. To

predict the rainfall anomaly patterns, we propose an

EOF–PLS method, that is, using observed EOF spatial

patterns and PLS-predicted PCs to reconstruct the to-

tal anomaly rainfall distribution. EOF analysis of JJA

mean precipitation anomalies over China from 1979

to 2013 is first performed to extract the first few princi-

pal modes of rainfall variability. The PC of each mode

is then predicted by using PLS regression method.

Finally, the anomaly prediction field is reconstructed

through a linear combination of these orthogonal

modes. We call it the combined EOF–PLS regression

method.

The mathematical procedure of PLS regression is

briefly introduced here. Assume we have a predictand

time series of n years (the PC time series of n5 35 yr for

each mode in the present study), which is denoted by a

column vector yi (i 5 1, . . . , n). A proper predictor field

is then selected based on physical considerations. As-

sume that the selected predictor field has J grids with

a time series of n years, which can be represented by an

n 3 J matrix Xij(i 5 1, . . . , n and j = 1, . . . , J). Both the

predictor matrix and predictand vector are standardized

prior to the analysis.

First, a correlation map rj can be derived by calcu-

lating correlation coefficients between the predictand yi
and the predictor field Xij at each grid. The correlation

map rj shows how predictor anomalies in different re-

gions are related to the predictand. In this way, the

usefulness of predictor at each grid can be readily as-

sessed and significant correlation patterns (regions) can

be identified.

Next, the standardized predictor anomalies at each

time are weighted by cosine latitude to account for area

and projected onto the correlation map rj to form a

time series. This represents a weighted average of

predictor anomalies, which is referred to as the first

predictor z1 (Smoliak et al. 2010). To be specific,

the predictor z1 is calculated by multiplying each grid

value of the predictor anomalies by the correlation

coefficient at the same grid point. The results of the

product at each grid are then summed, forming a

weighted average of the predictor anomalies. There-

fore, the predictor anomalies from the regions that are

highly correlated (positive or negative) with the PCs

get the most weight.

Finally, using conventional least squares fitting pro-

cedures, z1 is regressed out of the predictand and the

original predictor field, so that one obtains an approxi-

mation to yi (represented by yi
0) and Xij (represented by

X0
ij), respectively. A residual predictand–predictor field

can be derived from the difference between the original

predictand–predictor field and the corresponding ap-

proximation (i.e., yi 2 yi
0 and Xij2 X0

ij).The aforemen-

tioned procedure is repeated on the residual matrices

to obtain a second predictor time series z2, and so on.

The optimal number of predictor component is de-

termined by cross validation (Smoliak et al. 2010). To

prevent overfitting, only two PLS predictors are re-

tained, as determined through cross validation. A de-

tailed explanation can be found in Smoliak et al. (2015).

The predictorsZ are mutually orthogonal and maximize

the variance explained in yi and the correlation between

Xij and yi.

Note that this is related to, but differs from, other

statistical methods such as least squares, multiple linear

regression, and principal component analysis (Martens

and Naes 1989; De Jong and Phatak 1997; Phatak and

De Jong 1997).

The data used in observational analyses comprise

monthly mean precipitation from Global Precipitation

Climatology Project (GPCP) version 2.2 (v2.2) datasets

and the 160 stations provided by the Chinese Meteoro-

logical Data Center, monthly mean SST from NOAA

Extended Reconstructed SST (ERSST.v3b; Smith et al.

2008), and monthly mean circulation data and 2-m air

temperature from National Centers for Environmen-

tal Prediction–U.S. Department of Energy (NCEP–

DOE) AMIP-II reanalysis products (Reanalysis-2;

Kanamitsu et al. 2002). The data period chosen in this

study is from 1979 to 2013.

3. The major modes of CSR

EOF analysis of JJA mean precipitation anomalies

over China from 1979 to 2013 is performed to extract the

principal modes of rainfall variability. We focus on the

first five EOF modes for two reasons. First, these modes

that are derived from two different precipitation data-

sets (GPCP and China station data) show very similar

spatial patterns and PCs (Fig. 2; see also Fig. S1 in the

supplemental material), while the higher modes have dif-

ferent patterns and PCs, suggesting that those higher

modes cannot be distinguished from noise due to the
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uncertainty of the observation. Second, the simulta-

neous correlation maps of the lower boundary anom-

alies with reference to the higher modes (starting from

the sixth mode) show more ‘‘noisy’’ patterns and

irregular local signals compared with the first five

modes. These facts suggest that the first five modes may

represent the signals of China rainfall variability and

are potentially predictable, but the higher modes,

FIG. 2. (a)–(e) Spatial distribution of the first five EOFmodes of JJA precipitation over China. The GPCP data from 1979 to 2013 were

used for the EOF analysis. (f)–(j) The simultaneous correlation map (with reference to PC1 through PC5, respectively) of the anomalous

sea surface pressure (color shading) and 850-hPa winds (vectors, m s21). The red (blue) contour is the correlation coefficient of1(2)0.33

with statistical significance at the 95% confidence level.
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which are much more noisy and uncertain, may be

unpredictable.

The five leading EOF modes account for 18.8%,

13.2%, 10.1%, 7.4%, and 5.5% of the total precipitation

variance respectively. Together they account for 55% of

the total variance, which may be viewed as the upper

limit of the predictability estimated by the PC-based

prediction method. These five modes are not statisti-

cally separable from each other by the North test (North

et al. 1982) due to limited ensemble size (short length of

available record), but they are orthogonal and thus

suitable for reconstruction of the total anomaly field.

The first five EOF patterns are shown in Figs. 2a–e

and the corresponding PCs are shown in Figs. 3a–e. To

see the circulation anomalies associated with each

mode, the simultaneous correlation map between each

PC and the sea level pressure (SLP) and 850-hPa wind

anomalies is given in Figs. 2f–j. To understand the

linkage between the first five modes and equatorial

SST averaged between 108S and 108N, the lead–lag

FIG. 3. (a)–(e) Principal components (PCs) of the first five EOF modes of JJA precipitation over China. (f)–

(j) The evolution of equatorial Indo–Pacific (408E–808W) SST anomalies averaged between 108S and 108N that is

associated with PC1–PC5, respectively, which is represented by the lead–lag correlation coefficients between the

PCs and themonthlymean SSTA. The solid (dashed) contours are the correlation coefficient of60.28 (60.33) with

statistical significance at the 90% (95%) confidence level.

1788 JOURNAL OF CL IMATE VOLUME 29



correlation maps between monthly mean tropical

SSTA and each PC are plotted in Figs. 3f–j. Significant

rainfall anomalies of EOF spatial patterns are found

over southern and eastern China where the climato-

logical mean precipitation is relatively high (Fig. 1a).

The rainfall anomalies of the first EOF mode (EOF1)

show a meridional distribution of zonal rainfall bands

(Fig. 2a). Prominent suppressed rainfall shows up over

southern China while the Yangtze River valley receives

more rainfall. The anomaly signals over northern China

are much weaker than over the southern part. The

anomalous western Pacific subtropical high (WPSH)

located in Southeast Asia (centered at the South China

Sea) suppresses rainfall over the southern coast of

China and induces above-normal rainfall to its north

along the Yangtze River valley where SLP is relatively

low (Fig. 2f). Except for the interannual fluctuation, the

corresponding PC exhibits a downward trend or an in-

terdecadal change from a positive value before 1993 to

a negative value after 1994 (Fig. 3a). The results here

are consistent with the decadal shift of summer rainfall

in EASM previously documented by Kwon et al. (2007).

The monthly lead–lag correlation map with the equa-

torial Indo–Pacific (408E–808W) SSTA averaged be-

tween 108S and 108N (Fig. 3f) shows that a prominent

eastern Pacific (EP) warming appears during the pre-

vious winter and then rapidly decays from January to

May followed by an onset of a subsequent cold event

in the central Pacific (CP). So this mode occurs in the

transition from the decaying phase of the EP type of

El Niño to the development phase of the CP type of

La Niña (Ashok et al. 2007).

The spatial pattern of EOF2 features increased pre-

cipitation over southern China, which represents an

enhanced subtropical frontal rainfall associated with

the anomalous WPSH over the SCS and Philippine

Sea (Figs. 2b,g). The corresponding PC2 experiences

both interannual and decadal change with a period of

about 20 years (Fig. 3b). Similarly to EOF1, this mode

is associated with slowly decaying of EP warming, but

the development of CP cooling is not as significant as

in the first mode (Fig. 3g).

EOF3 is characterized by a sharp contrast between

eastern-northern China and southern China (Fig. 2c).

The 850-hPa wind anomalies show anomalous anticy-

clones that are centered over western Japan and the

Philippine Sea respectively. Abundant rainfall appears

over northern China, which is associated with an

anomalous cyclone centered over northern China and

Mongolia (Fig. 2h). Over southeastern China, the

anomalous high over the Philippine Sea that extends

to the northern SCS induces deficient rainfall. The corre-

sponding PC3 shows an irregular year-to-year fluctuation.

The SSTA over eastern Pacific during the preceding

winter is insignificant, which means that this mode is a

non-ENSO-related mode.

The rainfall anomalies of EOF4 are largely negative

over almost the entire country except for Fujian prov-

ince. This large-scale deficient monsoon is dominated

by an anomalous SLP meridional dipole pattern over

East Asia (Figs. 2d,i), with weakening of the western

Pacific subtropical high and the northeast continental

low. The northerly anomalies on the eastern edge of

the anticyclone over northern Asia reduce the local

rainfall in northern China. The corresponding PC4 has

no significant correlation with tropical SSTA during

the whole year (Fig. 3i).

The fifth EOF mode (EOF5) exhibits an abundant

rainfall band over eastern-central China between Yel-

low River and Yangtze River (Fig. 2e). Affected by the

two anomalous anticyclones over northwestern China

and the East China Sea, there is a weak anomalous low

SLP band over central China, which induces positive

rainfall there (Fig. 2j). This mode also has little to do with

equatorial SST anomalies from spring to summer

(Fig. 3j).

These modes have also been identified in other stud-

ies using rotated EOF analysis (Zhang et al. 2009) or

160 stations’ rainfall data (Nitta and Hu 1996). In sum-

mary, the five rainfall anomaly patterns are closely as-

sociated with different WPSH anomalies and Asian

low anomalies. The first two modes are related to fast

and slow decay of ENSO, respectively, whereas the

other three are not related to ENSO.

4. Prediction of CSR anomaly pattern

The total rainfall anomalies can be predicted by using

the sum of the observed five spatial EOF patterns

multiplied by their corresponding predicted PCs as in

the PMA analysis (Wang et al. 2015a). In our study,

the PLS regression is applied to predict the five PCs.

A key element of PLS regression is to choose a pre-

dictor field. The CSR is strongly influenced by the

slowly varying components of the climate system, such

as SST and snow cover. The anomalous winter snow-

pack over Eurasia and the Tibetan Plateau may affect

the springtime continental heating, which will influence

the strength of Asian summer monsoon and rainfall

(Yang and Xu 1994; Douville and Royer 1996; Chen

and Wu 2000). Therefore, we take global surface tem-

perature [ST; i.e., SST over oceans and 2-m air tem-

perature (T2m) over continents] field as the predictor

variable with a resolution of 28 3 28 since snow cover

variation, to a large extent, can be reflected by T2m

(Namias 1962, 1985; Vavrus 2007).
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To select the lead period of the predictor field, a

comparison is made between the correlation maps of

ST with reference of each PC during two seasons re-

spectively: Winter [from December in last year to Jan-

uary (DJ) mean; Figs. 4a–e] and spring (April–May

mean; Figs. 4f–j). Consistent with the discussion in sec-

tion 3, the first twomodes aremainly driven by the decay

of EP-type ENSO (Figs. 4a,b,f,g). The significant posi-

tive correlation between T2m and PC1 over northeast-

ern Eurasia indicates that anomalous heating over land

FIG. 4. (a)–(e) The correlation map (for PC1–PC5, respectively) of the anomalous December–January mean SSTA (color shading).

(f)–(j) As in (a)–(e), but for April–May mean SSTA. The solid contours (dotted regions) are the correlation coefficient of60.28 (60.33)

with statistically significance at the 90% (95%) confidence level.
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may play an important role for EOF1. EOF3, EOF4,

and EOF5, which are non-ENSO-related modes, also

have significant correlation with anomalous T2m over

central and western Eurasia (Figs. 4c–e,h–j). In addition,

the rainfall variability of EOF2 and EOF3 is tied to

surface temperature anomalies over the Sea of Japan

and the seaboard cities along East Asia (Lau et al. 2000).

Compared to the correlation maps during spring, we

can see that all EOF modes have higher correlations

with SST and T2m in the preceding winter. Besides, in

order to make timely management decisions, a sufficient

lead time is appreciated. For these reasons, we take the

previous winter (DJ) mean for the predictor field. This

long-lead-time forecast helps farmers to make decisions

about cultivation in early spring. As mentioned in sec-

tion 2, the first two PLS components (z1 and z2) are

retained. For the average of the first five modes, the first

PLS component z1 explains about 51% of the variance

in the PCs, and the second PLS component z2 explains

about 29% of the variance in the PCs.

In this study, we take the first 26 yr (1979–2004) as the

first training period, which is reasonably long to get a

sufficiently reliable predictor field. PLS regression is

used to forecast the PC of each mode for the target year:

the 27th year (2005). We predict rainfall anomalies of

the target year by using the sum of the observed five

spatial patterns derived from the training period multi-

plied by the forecasted PCs in the target year. It should

be noted that the spatial patterns are derived using

the data from 1979 to 2004 without information for

2005, so the forecast is independent of training data.

Similarly, the anomalous rainfall pattern of the 28th year

(2006) can be predicted by using the data from an ex-

tended 27-yr training period (1979–2005). The same

procedures are repeated 9 times until the 35th year’s

rainfall is predicted with the data of the previous 34 yr.

This independent test can rigorously reflect the ability

of the statistical model to forecast CSR.

We use the correlation coefficient between the ob-

served rainfall anomalies and the simulated rainfall

pattern as a measure of fitting skill and that between

the observation and the forecast patterns as a measure

of forecast skill. The red solid line in Fig. 5 exhibits

the pattern correlation coefficient (PCC) between the

observation and the simulated rainfall pattern by using

the first training period during 1979–2004. The average

fitting skill is 0.66.

The PCC between the observation and the forecast

pattern during 2005–13 is given by the red dashed line in

Fig. 5. The average forecast skill is 0.32, which is much

lower than the fitting skill. The reason is that the in-

dependent forecast skill is derived only from the past

information while the fitting skill contains previous,

present, and future information. Given the large number

of the grid points (or independent sample size), the av-

erage forecast skills are statistically significant from

zero skill. Among the nine years, the forecast skill of

2009–11 is relatively low. The low prediction skill of

these three years may be due to the fact that the first

three major modes during these three years project

FIG. 5. The pattern correlation coefficient (PCC) skill for JJA precipitation prediction over

China as a function of forecast year. The solid red line is the PCC between the observation and the

fitted rainfall pattern using the first training period during 1979–2004. The mean value is 0.66.

The dashed red line is the PCC between the observation and the forecast pattern during 2005–13.

The mean value is 0.32. The green line shows the PCC between the observation and the hindcast

result derived from a nine coupled models’ ensemble mean with 1 May initial conditions. The

mean value is only 0.04.
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weakly onto the observed precipitation pattern (Figs. 3a–c).

The 9-yr averaged PCC between the rainfall anomalies

reconstructed based on the first five EOF leading modes

and the observational rainfall anomalies during 2005–

13 is 0.47. This can be regarded as the potentially at-

tainable prediction skill. The PCC skill predicted with

the EOF–PLS combined model during this period ac-

counts for about 66% of the potentially attainable

prediction skill, suggesting the limitations of this

predictive model.

Figure 6 shows the spatial variation of the mean

independent forecast skill. Southeastern China rainfall

anomalies are predicted better than those over the

northwestern part of China where summer rainfall is

scarce. High prediction skill is apparent over middle

reach of the Yangtze River and the southern area of

northeastern China. However, the prediction skill is

essentially zero over the northern area of northeast-

ern and northwestern China. More attention needs to

be paid to these regions in future studies. To further

check the spatial distribution of the forecast skill at

the target years from 2005 to 2013, a comparison is made

between the observed and forecast rainfall anomaly for

each year. These results are shown in Figs. 7a–i, re-

spectively. The authors also checked the prediction skill of

2014 after the main study (Fig. 7j). The PCC skill in this

year is 0.28, which is close to the average. Figure 7 dem-

onstrates that most regions of floods and droughts over

eastern and southern China can be predicted with modest

skill. Note that the 9-yr mean PCC value and spatial dis-

tribution ofTCC skill derived from160 stations are similar

to the results from GPCP data, showing the reliability of

forecast skills of the combinedEOF–PLS statisticalmodel

(Figs. S2 and S3 in the supplemental material).

The hindcast result represented by the green line in

Fig. 5, which is derived from the nine coupled models’

MME, is also shown for comparison. The nine coupled

models that are available during 1979–2010 are all

initialized on 1 May. The dynamic model exhibits de-

ficiency in terms of predicting rainfall over mid- to high-

latitude continental areas such as China because the

skill during 2005–10 is significantly lower than the in-

dependent statistical forecast skill. The averaged skill

of the dynamic MME forecast is not distinguishable

from zero during 1979–2010. In addition, there is no

seasonal variation in theMME’s prediction skill in terms

of East Asian summer rainfall. The prediction skill is

very low regardless of forecast lead time (Lee et al.

2011). This indicates that the established statistical model

can help to improve the current dynamic prediction.

5. Conclusions and discussion

The present study focuses on objective prediction of

China summer rainfall (CSR) anomaly patterns. The

potentially predictable part of the summer rainfall is

presumably represented by the linear combination of

the first five EOFs, which together explain about 55% of

the total observed variability.

After obtaining the first five EOF modes, we predict

the PC of each mode using partial least squares (PLS)

regression. PLS regression is expected to yield a better

FIG. 6. The spatial variation of the independent forecast skill represented by the temporal correlation

coefficient (TCC) between observed and forecast CSR anomalies during 2005–13.
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prediction than those using regional predictors because

the predictand is linked to an entire predictor field.

surface temperature (ST; SST over ocean and 2-m air

temperature over continental areas) during the previous

December–January (DJ) mean is selected as the pre-

dictor field because snow cover (which is reflected by

2-m air temperature) and SSTA are the most impor-

tant factors that affect CSR and the correlation be-

tween each mode, and ST during winter is higher than

in spring.

An independent test is applied to check the forecast

skill over the latest 9 years (2005–13) by using our

combined EOF–PLS statistical model. The indepen-

dent prediction test is carried out by utilizing only the

predictor field before the target year. The pattern cor-

relation coefficient (PCC) between the observation

and forecast pattern during 2005–13 is used as ameasure

of independent forecast skill. The mean 4-month-lead

PCC skill averaged across this 9-yr period is 0.32 which

is substantially higher than the dynamicmodels’ 1-month-

lead hindcast skill (0.04).

We also tested using themean ST during other periods

(e.g., April–May) as a predictor field. The forecast skill

is lower than using the DJ ST. This is likely due to the

fact that the CSR has, in general, a lower correlation

with SST and 2-m air temperature in the preceding

spring (as spring is often the SST transition period) than

in the preceding winter with reference to each PC

(Fig. 4). Therefore, the forecast skill using ST in winter

yields better results.

Note that both the spatial patterns and the temporal

evolutions of the EOF modes may also be subject to

secular changes (Wang et al. 2015b). Therefore, the

models derived here should be continuously tested and

special attention should be given to detection of sud-

den changes in the predictor–predictand relationship.

There are also some issues when applying PLS re-

gression including whether the results are sensitive to

FIG. 7. The observed (contours) and forecast (color shading) rainfall anomalies during (a)–(j) 2005–14, respectively (mmday21). The

blue (red) contour starts at1(2)0.4 with an interval of 0.8. The numbers within the parentheses in the figure legend indicate the PCC skill

for each year.
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the predictor domain and the number of PLS compo-

nents retained in predicting the predictand. These con-

siderations need to be addressed carefully in conjunction

with the implementation of PLS regression in climate

prediction.
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