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for each principal component (PC) were selected based on 
analysis of the lead–lag correlations with the persistent and 
tendency fields of SST and sea-level pressure from March 
to June. A suite of physical–empirical (P–E) models is 
established to predict the four leading PCs. The peak sum-
mer rainfall anomaly pattern is then objectively predicted 
by using the predicted PCs and the corresponding observed 
spatial patterns. A 35-year cross-validated hindcast over the 
NEA yields a domain-averaged TCC skill of 0.36, which 
is significantly higher than the MME dynamical hindcast 
(0.13). The estimated maximum potential attainable TCC 
skill averaged over the entire domain is around 0.61, sug-
gesting that the current dynamical prediction models may 
have large rooms to improve. Limitations and future work 
are also discussed.

Keywords East Asian summer monsoon · Monsoon 
rainfall prediction · Dynamical climate prediction · 
Physical–empirical prediction · Monsoon predictability · 
Predictable mode analysis

1 Introduction

The interannual variation of East Asia summer monsoon 
(EASM) rainfall exhibits considerable differences between 
early summer (May–June, MJ) and peak summer (July–
August, JA) (Wang et al. 2009; Li and Zhou 2011). The 
early summer rainfall and its variability center are primar-
ily located south of the 30°N (Southeast Asia). The pre-
dictability and prediction of early summer rainfall over 
southeast Asia has been studied recently (Yim et al. 2014). 
During July–August, however, the rainfall belt advances 
northward covering both the Southeast and Northeast Asia. 
The climatologically averaged ridge line of the WPSH 

Abstract The part II of the present study focuses on 
northern East Asia (NEA: 26°N–50°N, 100°–140°E), 
exploring the source and limit of the predictability of the 
peak summer (July–August) rainfall. Prediction of NEA 
peak summer rainfall is extremely challenging because 
of the exposure of the NEA to midlatitude influence. By 
examining four coupled climate models’ multi-model 
ensemble (MME) hindcast during 1979–2010, we found 
that the domain-averaged MME temporal correlation coef-
ficient (TCC) skill is only 0.13. It is unclear whether the 
dynamical models’ poor skills are due to limited predict-
ability of the peak-summer NEA rainfall. In the present 
study we attempted to address this issue by applying pre-
dictable mode analysis method using 35-year observations 
(1979–2013). Four empirical orthogonal modes of variabil-
ity and associated major potential sources of variability are 
identified: (a) an equatorial western Pacific (EWP)-NEA 
teleconnection driven by EWP sea surface temperature 
(SST) anomalies, (b) a western Pacific subtropical high 
and Indo-Pacific dipole SST feedback mode, (c) a central 
Pacific-El Nino-Southern Oscillation mode, and (d) a Eura-
sian wave train pattern. Physically meaningful predictors 
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divides EASM domain into tropical (southern) EA (SEA, 
5°N–26°N) and subtropical-extratropical (northern) EA 
(NEA, 26°N–50°N) (Fig. 1a). The rainfall variability pat-
terns exhibit important differences between NEA and SEA. 
Therefore, it is meaningful to study their variability and 
predictability separately, and a comparison of them may 
lead to better understanding of the peak season EASM rain-
fall predictability. In Part I of this study the rainfall predict-
ability over SEA has been investigated (Xing et al. 2015). 
The Part II of this study focuses on NEA peak summer 
rainfall, exploring its predictability and prediction by appli-
cation of the predictable mode analysis (PMA) approach.

The life-threaten impact of droughts and floods on the 
dense population of East Asia (EA) have motivated numer-
ous scientists to investigate the causes and predictabil-
ity of EASM rainfall variations. Considerable progresses 
have been made in understanding the sources of variabil-
ity and predictability of the EASM rainfall. A review of 
relevant literature has been presented in the Part I (Xing 
et al. 2015). Here we want to briefly review the factors or 
mechanisms that affect EASM variations in order to facili-
tate searching predictors. The major processes that affect 
EASM rainfall variability include; (1) the positive atmos-
phere–ocean feedback between the western Pacific subtrop-
ical high (WPSH) and the Indo-Pacific warm pool sea sur-
face temperature (SST) prevailing in the El Nino-Southern 

Oscillation (ENSO) decaying phase (Wang et al. 2000; 
Wang and Zhang 2002; Lau et al. 2004; Chowdary et al. 
2010; note that the Indian ocean SST anomaly is a result 
of the WPSH-warm pool interaction (Wang et al. 2013a) 
(2) the ENSO teleconnection during its development phase 
(Zhang et al. 1996; Yuan and Yang 2012); (3) the circum-
global teleconnection (Ding and Wang 2005) or silk-road 
teleconnection (Enomoto et al. 2003) between Eurasia, 
Indian and EA summer monsoon; (4) the North Atlantic 
Oscillation (NAO) through Atlantic–Eurasian teleconnec-
tion (Lu et al. 2006; Wu et al. 2009a, b; Gong et al. 2011); 
(5) the northern Eurasian snow cover during the previous 
winter and spring (Ogi et al. 2004; Yim et al. 2010); (6) the 
Tibetan Plateau snow cover and anomalous thermal condi-
tions (Zhang et al. 2004; Wang et al. 2008a); (7) the spring 
arctic sea ice (Wu et al. 2009a, b); as well as (8) the anoma-
lous thermal contrast between the Asian continent and the 
WNP (Zhou and Zou 2010; Zhao et al. 2012).

Dynamical prediction of EASM remains a great chal-
lenge (Wang et al. 2005, 2008b, 2014; Wu and Li 2008), 
especially over the NEA. Figure 1b shows the temporal 
correlation coefficient (TCC) skills at each grid for JA 
precipitation prediction obtained by four state-of-the-art 
climate models’ multi-model ensemble (MME). Descrip-
tion of models is given in Sect. 2. As can be seen, during 
1979–2010 the area-averaged TCC over the EASM region 

Fig. 1  a July–August mean 
precipitation rate (color shading 
in units of mm day−1), 850-
hPa winds (arrows in units of 
m s−1), and 500-hPa geopoten-
tial height (contours in units of 
10 gpm). The red boxes indicate 
the NEA and SEA monsoon 
domain. b The temporal cor-
relation coefficient (TCC) skill 
for JA precipitation predic-
tion using the four coupled 
models’ multi-model ensemble 
(MME) initiated from the first 
day of July for the 32 years of 
1979–2010. The dashed contour 
is 0.30 with statistically signifi-
cance at 0.1 confidence level. 
The two blue boxes indicate 
the NEA and SEA monsoon 
domains and the number in the 
upper-left corner of each box is 
the averaged TCC skill over the 
that region

(a)

(b)
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(5°N–50°N, 100°E–140°E) is only 0.16 with higher skill 
over the SEA (0.19) and lower skill over the NEA (0.13). 
The prediction skill that is significant at 90 % confidence 
level only occurs over the southern South China Sea (SCS), 
a small portion of Philippine Sea and north of Japan. Con-
sidering the poor prediction skills of dynamical models, it 
is unclear to what extent the peak-summer EASM rainfall 
is predictable. This motivates the present study with a non-
dynamical prediction approach.

The Part II of this study aims to understand the control-
ling factors of the variability and to estimate the predict-
ability of the peak-summer rainfall in NEA. Section 2 
briefly describes the datasets, models and methodology 
used in this study. In Sect. 3 we present principle modes 
of JA precipitation variability over NEA and try to explore 
the physical processes governing each principal mode. In 
Sect. 4 we establish physical–empirical (P–E) models to 
estimate the extent to which we can predict these dominant 
modes. Section 5 provides a summary.

2  Data and methodology

2.1  Datasets and dynamical climate prediction models

The data used in this study comprise monthly mean pre-
cipitation from Global Precipitation Climatology Project 
(GPCP, v2.2) datasets (Huffman et al. 2009), monthly mean 
SST from NOAA (National Oceanic and Atmospheric 
Administration) Extended Reconstructed SST (ERSST, 
v3b) (Smith and Reynolds 2003), and the monthly mean 
circulation data from the newly released ERA interim (Dee 
et al. 2011). Late summer (JA) rainfall anomalies are calcu-
lated by the deviation of JA mean rainfall from the 35-year 
(1979–2013) climatology.

Four state-of-the-art atmosphere–ocean-land coupled 
models are used in this study, including (1) NCEP CFS 
version 2 (Saha et al. 2010), (2) ABOM POAMA version 
2.4 (Hudson et al. 2010), (3) GFDL CM version 2.1 (Del-
worth et al. 2006), and (4) FRCGC SINTEX-F model (Luo 
et al. 2005). The hindcast made by the four coupled mod-
els are available from 1979 to 2010; they are all initialized 
from early July. Each model performed an ensemble fore-
cast with 10–40 members. To show the current status of 
the climate models’ prediction of JA EA rainfall, we used 
the MME prediction by simply averaging the four coupled 
models’ ensemble mean anomalies after removing their 
own climatology.

2.2  Methodology

The predictable mode analysis (PMA) approach aims 
to estimate potential predictability and establish the 

physical–empirical (P–E) prediction models. The PMA 
was proposed by Wang et al. (2007) and a more detailed 
account is found in Wang et al. (2014, 2015) and Yim et al. 
(2014). The PMA consists of three steps: (a) an empiri-
cal analysis that detects important patterns of variability, 
(b) physical interpretation of the origins of the detected 
patterns and their sources of predictability, and (c) retro-
spective predictions (hindcast) with dynamical models or/
and P–E models to identify the “predictable” modes. The 
potential predictability can be estimated by the fractional 
variance accounted for by the “predictable” modes, assum-
ing that the predictable modes can be predicted perfectly.

The predictable modes represent most important pat-
terns of variability. The dynamical origins of these patterns 
should be reasonably well understood. These modes can 
also be reproduced reasonably well by dynamical mod-
els and/or P–E prediction models’ hindcast. In the present 
study, since the dynamical models have limited capability 
in reproducing observed patterns in the NEA region, we 
use P–E prediction models to examine the reproducibility 
of these patterns. The success and caveats of this method 
will be discussed in the last section.

Selection of physical meaningful predictors is at the 
heart of the P–E model. To select physically consequen-
tial predictors objectively and in a simple way, we exam-
ine only two fields, i.e., the SST/2 m temperature over land 
and sea level pressure (SLP), which reflect ocean and land 
surface anomalous thermal conditions. We also search only 
two types of lower boundary anomalies: (a) persistent sig-
nals from March to June (MAMJ mean) and (b) tendency 
signals from March–April (MA) to May–June (MJ) (MJ-
minus-MA). The persistent signals normally reflect positive 
feedback processes associated with the local atmosphere–
ocean or atmosphere-land interaction, which helps main-
taining the lower boundary anomalies. The tendency pre-
dictors often signal the direction of subsequent evolution. 
Note that only large-scale, statistically significant signals in 
these four correlation maps (two fields by two types) are 
considered. In the selection of predictors, we emphasize 
understanding of the processes that explain the lead–lag 
relationships between the predictors and each JA rainfall 
pattern. We also select those predictors that are relatively 
independent in their physical meanings and avoid those that 
are well correlated predictors. To circumvent over-fitting, 
the number of predictors is required to be less or equal to 
four (i.e., about 10 % of the sample size 35).

Stepwise multi-linear regression is used to establish the 
P–E model for each PC. Prior to the regression, all vari-
ables are normalized by removing their means and divided 
by their corresponding standard deviations. The stepwise 
regression identifies most “desirable” predictor at each 
step. Each selected predictor has significant contribution 
to increasing the regressed variance by a standard F-test 
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(Panofsky and Brier 1968). A 95 % statistical significance 
level is used as a criterion to select new predictor at each 
step. Once selected into the model, a predictor can only be 
removed if its significance level falls below 90 % by the 
addition/removal of another variable.

Cross-validation method (Michaelsen 1987) is used to 
test the hindcast experiment skill. We leave 3 target years 
of data out progressively for the period 1979–2013, then 
train the model using data of the remaining years, and 
finally apply the model to forecast the three target years.

3  Origins and predictors of the major modes 
of NEA rainfall

In this section, we focus on the first four empirical orthog-
onal function (EOF) modes because when we use two 
precipitation datasets (GPCP and CMAP), these modes 
show similar spatial patterns and principal components 
(PCs) while the higher modes are different, which means 
that the higher modes tend to be noisy and uncertain from 

observational point of view. For convenience of discus-
sion, we will refer to the first EOF mode as NEA-1. Simi-
lar abbreviations apply to NEA-2, NEA-3, and NEA-4. We 
first discuss characteristic features of the precipitation and 
low-level circulation patterns for each of the first four EOF 
modes, then articulate the possible origins of each mode 
in terms of their simultaneous correlation with the lower 
boundary forcing, and finally examine their lead–lag rela-
tionship with the March-June persistent and tendency fields 
and select physical meaningful predictors for each mode.

3.1  NEA‑1: equatorial WP (EWP)‑NEA teleconnection 
mode

The leading NEA mode accounts for 25.0 % of the total 
interannual variance. The spatial pattern is characterized by 
(a) suppressed rainfall along the normal Meiyu/Baiu front 
extending from Yangtze River to Japan with a dry center in 
the western Japan, and (b) above-normal precipitation in 
northern China (north of 35°N) including the lower reach 
of the Yellow River, northeastern China and North Korea 

(a)

(d)

(b)

(e)

(c)

Fig. 2  a The spatial pattern and b the corresponding principal com-
ponent of the first EOF mode (NEA-1) derived from JA precipitation 
over NEA for the period of 1979–2013. c The relationships between 
the NEA-1 and the equatorial Indian-Pacific (40°E–80°W) SSTA 
averaged between 10°S and 10°N. The relationships are shown by 
the lead–lag correlation coefficients of monthly mean SSTA with ref-
erence of NEA-PC1. The dashed contour represents the correlation 
coefficient significant at the 90 % confidence level (r > 0.28). d The 
simultaneous correlation map (with reference to the NEA-PC1) of the 
anomalous JA mean SST (color shading over ocean), 2 m air tem-
perature (T2m, color shading over land) and 850 hPa winds (vectors). 

The solid contour represents the correlation coefficient significant at 
the 90 % confidence level. Only vectors with absolute value larger 
than 0.28 are shown. e The same as in Fig. 2d but for anomalous 
JA mean precipitation (color shading) and SLP (contour). The red 
dashed contours mean positive correlation coefficient between SLP 
and NEA-PC1 starting from 0.1 with an interval of 0.4. The red solid 
contours mean the correlation coefficient of 0.28 (significant at the 
90 % confidence level). Similar interval applies to blue dashed line 
but for negative correlation. The dotted areas give the area that the 
correlation coefficient significant at the 90 % confidence level
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(Fig. 2a). Compared to JA mean precipitation (Fig. 1a), the 
NEA-1 pattern represents an abnormal northward advance 
of the EA rainfall belt. This anomalous precipitation pat-
tern corresponds to an anomalous anticyclone centered 
over the western Japan (Fig. 2d, e).

The corresponding principal component, PC1, has no 
significant correlation with ENSO but displays extremely 
large opposite loadings in 1993 and 1994, suggesting that 
the extreme climate conditions in 1993 and 1994 are asso-
ciated with this mode (Fig. 2b) (Yoo et al. 2004). As can be 
seen from Fig. 2c, the NEA-1 is associated with persistent 
positive SST anomalies from spring to summer in the equa-
torial eastern Pacific (EWP) between 120°E and 160°E, 
which is accompanied by a weak cooling over the Arabian 
Sea and far eastern Pacific.

Corresponding to the conspicuous EWP warming, there 
is enhanced precipitation over the Maritime continent 
(Fig. 2e), which is associated with a meridional wave train 
pattern over EA sector (Fig. 2d). This wave train consists 
of a Philippine Sea anticyclone centered at (10°N, 160°E), 
a cyclone centered at (25°N, 150°E), and an anticyclone 
centered at Korea-western Japan (35°N, 125°E) (Fig. 2d). 
This pattern is similar but not the same as the Pacific–Japan 
(P–J) pattern identified by Nitta (1987). The P–J index was 
defined by the 850 hPa geopotential difference between 

(35°N, 155°E) and (22.5°N, 125°E). Here we emphasize 
the linkage between the meridional wave train pattern and 
EWP warming and the wet conditions over the Maritime 
Continent. For this reason, we refer the NEA-1 as to a 
EWP-NEA teleconnection mode. The anomalous High cen-
tered over Korea and the low pressure to its north (Fig. 2e) 
are part of the wave train, which causes the suppressed 
rainfall along Yangtze River valley-Japan and enhanced 
rainfall in northern China (Fig. 2a, e).

The persistent and tendency precursory conditions for 
NEA-1 are shown in Fig. 3. The main persistent signals 
from March to June are (a) EWP positive SST anomalies 
(Fig. 3a), and (b) the dipole SLP anomalies over North Asia 
(decreasing SLP over western Siberia and rising SLP over 
the western Bering Sea (Fig. 3b). The North Asian dipole 
SLP anomaly implies enhanced southerly in between the 
Siberian Low and Bering Sea High, which is consistent 
with the conspicuous warming occurring in the same region 
(Fig. 3a). The persistent North Asian SLP dipole anom-
aly presages the JA SLP difference between the anoma-
lous Northeast Asian low and northwestern Pacific high 
(Fig. 2e), which may contribute to enhanced EA southerly 
monsoon and northern China rainfall.

The major tendency signals are (a) the cooling tendency 
in the western Indian Ocean (Fig. 3c) and (b) the decreased 

(a)

(c)

(b)

(d)

Fig. 3  The correlation map of March to June mean SST (color shad-
ing over ocean), T2m (color shading over land) (a) and SLP (b) with 
reference to the NEA-PC1. c, d The same as in Fig. 3a, b respectively 
but for May–June (MJ)-minus-March–April (MA). The contour rep-

resents the correlation coefficient significant at the 90 % confidence 
level. The rectangular regions outline the area used to define the pre-
dictors
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SLP over South Asia (Fig. 3d). These two tendency precur-
sors foreshadow an enhanced monsoon rainfall in north-
west India and Pakistan in July–August (Fig. 2e), because 
both the western Indian Ocean cooling and SLP decrease 
in South Asia can strengthen the land–ocean thermal con-
trast and cross-equatorial flow. The enhanced Indian mon-
soon rainfall, especially over the northwest India, may 
strengthen the upper troposphere High at Central Asia as a 
Rossby wave response (Gill 1980; Ding and Wang 2005). 
The enhanced central Asian High would perturb the west-
erly jet stream and excite circumglobal teleconnection 
(CGT) pattern (Ding and Wang 2005) or Silk-road telecon-
nection (Enomoto et al. 2003), setting anomalous circula-
tion that further influences NEA rainfall anomalies (sup-
pressed rainfall over west Japan and increased rainfall over 
northern China).

Based on the above physical consideration, four physi-
cally meaningful persistent and tendency predictors are 
selected, i.e., the EWP SST anomalies, the North Asian 
dipole SLP anomaly, the SST tendency in the western 
Indian Ocean, and the SLP tendency in South Asia (as 
shown by the boxes in Fig. 3a–d).

Note that although the persistent negative SLP anomaly 
in the Indian Ocean and positive SLP anomaly over the 
eastern Pacific are mainly precursory signals (Fig. 4b), they 
are not selected because of their high correlation with the 
EWP SST anomalies. Physically, the falling SLP over mar-
itime continent and Indian Ocean and the rising SLP over 

the eastern Pacific constitute a typical Southern Oscillation 
pattern, which is coupled with the western Pacific warming 
and eastern Pacific cooling (Fig. 3a).

3.2  NEA‑2: WPSH‑dipole SST feedback mode

Figure 4a shows the second EOF pattern, NEA-2, which 
explains about 12 % of the total variance. The precipitation 
anomaly exhibits an enhanced “Changma” rain belt extend-
ing from Chinese Huai River valley via Korea to eastern 
Japan, corresponding to an enhanced JA mean precipita-
tion belt over EA (Fig. 1a). This rainfall anomaly pattern 
is associated with a remarkable enhancement of the WPSH 
centered over Okinawa and an anomalous low stretching 
from the northern China to Japan (Fig. 4d, e). The evolu-
tion of the equatorial Indo-Pacific SST anomalies associ-
ated with the PC2 (Fig. 4c) suggests that the NEA-2 tends 
to occur on a decaying phase of a weak Eastern Pacific (EP) 
El Nino, but there are no signs of development of ENSO in 
the ensuing seasons.

Prior to JA from March to June, a notable anomalous 
high pressure persists over the Philippine Sea, South China 
Sea and northern India (Fig. 5b). Accompanying this anom-
alous WPSH is a dipole SST anomaly: the weak ocean 
cooling to its southeast in the WP and strong warming to 
its southwest over the northern Indian Ocean (Fig. 5a). The 
WPSH and the cool ocean to its southeast was strong in 
spring and maintained into early summer due to a positive 

(a)

(d)

(b)

(e)

(c)

Fig. 4  The same as in Fig. 2 except for NEA-2
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atmosphere–ocean feedback (Wang et al. 2000; Lau et al. 
2004). The northern Indian Ocean warming is a result of 
the atmospheric forcing associated with the westward 
extension of the anomalous WPSH by increased solar radi-
ation and reduced surface latent heat flux loss (Du et al. 
2009). The northern Indian Ocean warming can in turn 
enhance the WPSH (Chowdary et al. 2011) by increas-
ing precipitation heating whose equatorial component can 
generate anomalous (Kelvin wave) easterly and associated 
anticyclonic shear vorticity. Thus, an active positive feed-
back between the anomalous WPSH and the underlying 
“dipole” SST anomalies takes place over the Indo-Pacific 
warm pool, which can maintain both the WPSH and SST 
anomalies into peak summer (Fig. 4d) (Wang et al. 2013a, 
Xiang et al. 2013). For this reason, we referred it to as the 
WPSH-warm pool SST dipole feedback mode. This mode 
has been recognized as responsible for the origin of the 
second EOF mode of the Asian summer monsoon rainfall 
(Wang et al. 2014), and the first EOF mode of EA summer 
rainfall (Wang et al. 2009; Xing et al. 2015).

Figure 5 shows persistent and tendency precursory con-
ditions for NEA-2. Three relatively independent predic-
tors are identified. The first is the persistent NIO warming 
from March to June (Fig. 5a), which signifies the feedback 
between anomalous high WPSH (Fig. 5b) and underly-
ing ocean. Second, the persistent decreasing SLP is over 
the southwest Indian Ocean, which implies a weakening 
Mascarene High (Fig. 5b). The weakening of Mascarene 
High signifies a weak cross-equatorial Somalia jet and the 
southwesterly monsoon, favoring maintaining northern 
Indian Ocean warming. Third, the sea surface warming ten-
dency over the Indian Ocean and WP (Fig. 5c), which hints 

continuing WPSH-ocean interaction and maintenance of 
the anomalous WPSH into peak summer.

The locations showing quantitative measures for these 
three predictors are shown in Fig. 5. Other two precursory 
signals (the persistent high SLP over Philippine Sea and 
the decreasing SLP tendency over the Indian Ocean) could 
be potential predictors but they are not independent of the 
selected three, thus stepwise regression did not pick them 
up.

3.3  NEA‑3: developing CP‑ENSO mode

The third EOF mode over NEA (fractional variance about 
10 %) exhibits a southwest-northeast tilted sandwich pat-
tern that contains positive precipitation anomalies over the 
central and northern China-Mongolia and south of Japan, 
and negative precipitation anomalies in between the two 
positive anomalies along the EA seaboard and adjacent 
coastal area (Fig. 6a). The enhanced precipitation areas are 
associated with low SLP anomalies over southeast of Japan 
and eastern China-Mongolia, whereas the dry anomalies 
are associated with high SLP anomalies over the eastern 
Siberia and the South China Sea (Fig. 6d, e).

Figure 6c indicates that the NEA-3 occurs in a decay-
ing phase of a strong EP El Nino but more importantly it is 
associated with a developing central Pacific (CP) La Nina, 
which can affect WPSH and the EASM rainfall (Yuan and 
Yang 2012). Physically, this mode is primarily affected by 
the development of CP cooling/warming event. For this 
reason, we refer it to as a developing CP-ENSO mode.

The salient precursor for the JA tropical CP cooling is 
the rising pressure in the central Pacific that is clearly seen 

(a)

(d)

(b)

(c)

Fig. 5  The same as in Fig. 3 except for NEA-2
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in the March-to-June persistent correlation map (Fig. 7b). 
The major precursory signals in the tendency correla-
tion map are the emerging mega-ENSO like SST anom-
aly pattern (Fig. 7c, Wang et al. 2013b) coupled with the 

rising pressure tendency over the North Pacific and South 
Pacific subtropical highs (Fig. 7d). In the North Pacific, for 
instance, the rising SLP induced the warming near the sub-
tropical high center due to increased solar radiation and the 

(a)

(d)

(b)

(e)

(c)

Fig. 6  The same as in Fig. 2 except for NEA-3

(a)

(d)

(b)

(c)

Fig. 7  The same as in Fig. 3 except for NEA-3
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cooling to its east and south owing to enhanced evapora-
tion cooling on the trade wind region (Fig. 7c). In addition, 
there is a salient SST tendency associated with the intensi-
fied subtropical South Pacific High: the cooling tendency 
in the equatorial eastern Pacific and warming tendency 
over the southwest subtropical Pacific (Fig. 7c). The cou-
pling between the South Pacific Subtropical High (SPSH) 
and the underlying Ocean SST dipole anomalies implies a 
tendency of development of the CP cooling. An enhanced 
SPSH would strengthen equatorial upwelling and SST 
cooling, thus suppressing convection over the equatorial 
eastern-central Pacific. The reduced heating in the equato-
rial eastern-central Pacific in turn generates westward prop-
agating descent Rossby waves, thus enhancing the SPSH. 
This is a potentially important predictor.

To depict these precursors, a persistent CP SLP predic-
tor, a SST tendency contrasting predictor in North Pacific, 
and a SST tendency contrasting predictor between the 
southwestern Pacific and equatorial eastern Pacific are 
defined (see Table 1 and the boxed locations on Fig. 7). The 
first signifies directly an equatorial CP cooling and the lat-
ter two hints, respectively, the interplay between the North 

Pacific Subtropical High (NPSH) and underlying ocean and 
between the SPSH and the underlying Ocean SST dipole 
anomalies, both imply a tendency of development of CP 
cooling.

3.4  NEA‑4: Eurasian‑NEA wave train pattern

The fourth EOF with a fractional variance of about 7 % 
features an enhanced precipitation centered at Korea penin-
sula, the July–August mean precipitation center, (Fig. 8a). 
The associated principal component shows a decadal fluc-
tuation (Fig. 8b). The low-level circulation is characterized 
by a pronounced low pressure anomaly in the northeast 
China (Fig. 8d, e). This mode has no significant correlation 
with equatorial SST anomalies (Fig. 8c).

The northeast China Low seems is linked to an extrat-
ropical wave train emanated from North America through 
North Atlantic and Eurasian continent (figure not shown). 
Recent study by Lin and Wang (2015) found that an 
enhanced northern China Low, not only increases rain-
fall locally in the Northeast China, but also shifts the EA 
subtropical front northward. Their wave activity analysis 

Table 1  Definition of each predictor selected for the 0-month lead prediction of each PC and the corresponding simulation equation

The symbol CC means correlation coefficient between observed and simulated PC1 with the prediction equation

PC Name Definition Prediction equation

NEA-1
CC = 0.69

EWP SST(P) MAMJ SST
(120°E–160°E, 10°S–15°N)

0.07*EWP SST(P) + 0.311*
NH SLPD(P)
−0.428*
IO SST(T)
−0.322S*
EA SLP(T)

NH SLPD(P) MAMJ SLP
(155°E°170°W, 50°N–65°N) − (70°E–110°E, 50°N–70°N)

IO SST(T) MJ-minus-MA SST
(40°E–60°E, 20°S–0°) + (50°E–75°E, 0°–20°N)

SEA SLP(T) MJ-minus-MA SLP
(80°E–130°E, 10°N–30°N)

NEA-2
CC = 0.71

NIO SST(P) MAMJ SST
(50°E–100°E, 0°–20°N)

0.353*
NIO SST(P)
−0.326*
SWIO SLP(P)
+0.375*
WPIO SST(T)

SWIO SLP(P) MAMJ SLP
(30°E–75°E, 30°S–10°N)

WPIO SST(T) MJ-minus-MA SST
(50°E–90°E, 5°N–20°N) + (70°E–90°E, 10°S–5°N)  
+ (125°E–145°E, 15°S–20°N)

NEA-3
CC = 0.69

CP SLP(P) MAMJ SLP
(160°E–140°W, 40°S–30°N)

0.352*
CP SLP(P)
+0.314*
NP SSTD(T)
+0.195*
SWP SST(T)

NP SSTD(T) MJ-minus-MA SST
(180°–155°W, 30°N–40°N) − (180°–150°W, 10°N–20°N)  
− (145°W–125°W, 25°N–40°N)

SWP-CP SSTD(T) MJ-minus-MA SST
(150°E–150°W, 30°S–15°S) − (150°W–90°W, 0°–15°N)

NEA-4
CC = 0.70

NP SLPD(P) MAMJ SLP (120°E–150°W, 20°N–40°N) + (150°E–90°W, 55°N–75°N) 0.324*
NP SLPD(P)
−0.380*
NA SLP(T)
+0.392*
WEur T2 mD(T)

NA SLP(T) MJ-minus-MA SLP
(90°W–45°W, 45°N–60°N)

WEur T2 mD(T) MJ-minus-MA T2 m
(30°E–60°E, 40°N–60°N) − (10°W–10°E, 40°N–60°N)
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indicates that interannual intensity change of the northern 
China Low is modulated by the extratropical Polar Eura-
sian teleconnection in addition to the tropical WNP heating 
forcing. For this reason we call the EOF 4 as the Eurasian-
NEA wave train pattern. This is the only EOF pattern that 
links NEA JA rainfall with midlatitude anomalies.

We find three precursors for the PC4. One is the persis-
tent North Pacific SLP dipole (Fig. 9b), the second one is 
the dipole surface air temperature tendency over the Europe 
(Fig. 9c), and the third one is the SLP tendency over north-
eastern America (Fig. 9d). All three predictors reflect mid-
high latitude boundary anomalies that foreshadow the 

(a)

(d)

(b)

(e)

(c)

Fig. 8  The same as in Fig. 2 except for NEA-4

(a)

(d)

(b)

(c)

Fig. 9  The same as in Fig. 3 except for NEA-4
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occurrence of the Eurasian wave train and the northern 
China Low. However, it remains elusive concerning how 
these precursory lower boundary anomalies link to the 
anomalous northeast China Low.

4  Predictability and prediction of JA rainfall 
anomaly pattern

In order to predict peak summer NEA precipitation anom-
aly pattern and estimate its predictability, we shall first 
derive a suite of P–E models to predict the four leading 
PCs, then predict the total anomaly field by the sum of the 
first four leading modes which are reconstructed by using 
predicted PCs and the corresponding observed spatial pat-
terns. Assuming the first four modes are perfectly predict-
able, we can then compute the potential maximum obtain-
able prediction skill, estimating the predictability.

4.1  Prediction of each PC

Using the predictors introduced in Sects. 3.1, 3.2, 3.3 and 
3.4, a suite of P–E models for PC prediction is established 
through multi-linear regression method (Sect. 2.2). The 
precise definitions of the selected predictors for each PC 
and the corresponding simulation (using all data) equations 
are presented in Table 1 with the simulation skills (the cor-
relation coefficient between the simulated and observed PC 
time series) indicated. The simulation skills for all PCs are 
all around 0.70 (Table 1).

To be more rigorously estimate the predictive capabil-
ity of the P–E models, we apply cross-validation method 
(Sect. 2.2) to make a retrospective forecast for the 35 years 
from 1979 to 2013. The predicted PCs using the P–E mod-
els in the cross-validated mode are shown in Fig. 10 (red 
line) compared with the corresponding observed PCs 
(black line). The correlation coefficients are 0.62, 0.65, 
0.56, and 0.60, respectively, for the first four PCs. These 
cross-validated skills are lower than the simulation skill but 
significant enough to suggest that the first four modes, to a 
large extent, may be considered as predictable modes.

4.2  The potentially maximum attainable forecast skill

To estimate the predictability, we calculate the potential 
maximum attainable forecast skill for the JA precipitation 
over EA. If the first four modes can be perfectly predicted, 
we can use a linear combination of the predicted four PCs 
and their corresponding spatial structures to reconstruct the 
predictable portion of the JA rainfall. The potentially maxi-
mum attainable forecast skill can then be computed from 
the correlation coefficient between the observed precipita-
tion anomaly and the reconstructed predictable part.

The maximum attainable TCC skill estimated by the first 
four modes for NEA is shown in Fig. 11a. The area-aver-
aged correlation coefficient is 0.61. Figure 12 (black line) 
shows the maximum attainable spatial pattern correlation 
coefficient (PCC) skill as a function of forecast year over 
the NEA. The mean value is 0.65. The maximum attainable 
skill is between 0.5 and 0.9 except 2011 and 2004–2005.

4.3  The 0‑month lead prediction of JA precipitation 
over NEA

Using the four cross-validated, predicted PCs (red curves 
in Fig. 9), we can predict precipitation anomalies over the 
NEA monsoon domain by applying a linear combination of 
the predicted PCs multiplied by the corresponding spatial 
structures of the observed EOFs. It should be noted that 
most predictors are 0 month ahead of July, so this model is 
called a 0-month lead model. But in practice, the forecast 

(a)

(b)

(c)

(d)

Fig. 10  The corresponding PCs of the first four EOF modes in 
observation (OBS, black line), cross-validated 0-month lead predic-
tion model (L0, red line) and cross-validated 1-month lead prediction 
model (L1, blue line) from 1979 to 2013. The cross-validation was 
done by taking 3-year out around the predicted year. The numbers 
within the parenthesis in the figure legend indicate the correlation 
coefficient between the observed and predicted PC
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can be made 5 days before July 1st because the last 5 days 
values for the predictors can be estimated by weather 
forecast.

The spatial distribution of the TCC skill for L0 P–E pre-
diction over NEA is given in Fig. 11c. The area-averaged 
coefficient is 0.36. The significant high skill is found over 
the regions where the July–August mean precipitation rate 
is higher than 4 mm day−1, but the skill is not significant in 
the dry regions of the northwestern China.

Figure 12 shows the time series of PCC for each year 
between observed precipitation anomalies and the cross-
validated, predicted field. The long-term mean of the PCC 
skill is about 0.41. The PCC skill shows large year-to-year 
variation. There are about 12 years having high PCC skill 

over 0.6 and 8 years with low skill (below 0.2). Future 
studies are required to understand what causes the failure 
of prediction in these low skill years.

The current state-of-the-art coupled models’ MME 
has only significant skill over Japan. The TCC skill aver-
aged over the entire NEA domain is only 0.13 (Fig. 11b). 
The results suggest a large room for improvement of the 
dynamical prediction.

4.4  One‑month lead prediction of JA precipitation 
over NEA

The predictors for 1-month lead prediction of each PC 
are searched based on lead–lag correlation maps with 

Fig. 11  The temporal cor-
relation coefficient (TCC) skill 
for JA precipitation prediction 
over NEA obtained from: a 
maximum obtainable esti-
mate (Max Obs), b 4 dynamic 
models’ multi-model ensemble 
mean forecast (DynMME), c 
the 0-month lead P–E Models 
(L0P–E) prediction and d the 
1-month lead P–E Models 
prediction (L1P–E). The dashed 
contour is the TCC skill of 0.28 
which is statistically significant 
at 90 % confidence level. The 
numbers within the parenthesis 
in left top of each figure indicate 
the domain-averaged TCC skill

Fig. 12  The pattern correlation coefficient (PCC) skill for JA pre-
cipitation prediction over NEA as a function of forecast year using 
the 3-year out cross-validated 0-month lead P–E model prediction 
(red line), and 1-month lead P–E model prediction (blue line). The 

potential attainable forecast skill obtained by using observed four PCs 
(OBS, black line) is also compared. The numbers within the paren-
thesis in the figure legend indicate the averaged PCC skill through the 
35 years
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March-to-May persistent anomalies and April–May minus 
February–March tendency anomalies. The obtained predic-
tors are essentially the same as those for 0-month lead pre-
dictors (Table 2), suggesting that the selected predictors are 
basically stable with the lead time. However, the simulation 
and hindcast skills are systematically lower than the cor-
responding 0-month simulation and hindcast. For brevity, 
the results are shown in Table 2 and Figs. 10, 11d and 12 
without further discussions.

5  Summary

The present two-part study separately predict EASM peak 
season rainfall in the SEA and NEA, respectively, based on 
consideration of the climatological precipitation distribu-
tion and potentially different sources of the predictability 
with an anticipation that this separate prediction strategy 
may yield better prediction skills.

5.1  Conclusion

We have identified four major modes of July–August rain-
fall variability over NEA (the NEA-1 through NEA-4). The 
NEA-1 features a northward shifted JA mean rain band asso-
ciated with an anomalous anticyclone centered at western 

Japan, which is conceivably driven by SST warming in the 
equatorial western Pacific (EWP), thus named EWP-NEA 
teleconnection mode. The NEA-2 represents an enhanced 
July–August mean rain band associated with an anomalous 
anticyclone centered at Okinawa, which is likely caused by 
the positive thermodynamic feedback between the anoma-
lous WPSH and underlying dipole SST anomalies over the 
northern Indo-Pacific warm ocean, thus named as WPSH-
dipole SST feedback mode. The NEA-3 shows a southeast-
northwest oriented sandwich rainfall pattern associated with 
an anomalous cyclone centered at southeast of Japan, which 
is likely forced by equatorial central Pacific SST anomalies, 
thus called developing central Pacific-ENSO mode. The 
NEA-4 features enhanced rainfall over Korea and northeast 
China associated with an anomalous Northeast China Low 
that seems to be connected with a Eurasian wave train.

Analysis of the lead–lag correlations with persistent and 
tendency fields of SST and SLP from March to June reveals 
physically meaningful predictors for each principal compo-
nent (PC). With these predictors, physical–empirical (P–E) 
models were established to predict the four leading PCs. The 
peak summer rainfall anomaly pattern is then objectively 
predicted by using the predicted PCs and the corresponding 
observed spatial patterns. A 35-year cross-validated hind-
cast over the NEA yields a time-averaged pattern correlation 
coefficient (PCC) of 0.41 and a domain-averaged temporal 

Table 2  Same as Table 1 except for the 1-month lead prediction of each PC and the corresponding simulation equation

PC Name Definition Prediction equation

NEA-1
CC = 0.61

EWP SST(P) MAM SST (120°E–160°E, 5°S–15°N) 0.277*
NH SLPD(P)
−0.358*
IO SST(T)
−0.202*
SEA SLP(T)

NH SLPD(P) MAM SLP
(155°E–170°W, 50°N–65°N) − (70°E–110°E, 50°N–70°N)

IO SST(T) AM-minus-FM SST
(40°E–70°E, 20°S–5°N)

SEA SLP(T) AM-minus-FM SLP
(130°E–165°E, 20°N–30°N)

NEA-2
CC = 0.70

NIO SST(P) MAM SST
(50°E–100°E, 0°–20°N)

0.331*
NIO SST(P)
−0.357*
SWIO SLP(P)
+0.435*
WPIO SST(T)

SWIO
SLP(P)

MAM SLP
(30°E–70°E, 30°S–10°N)

WPIO
SST(T)

AM-minus-FM SST
(50°E–90°E, 0°–20°N) + (140°E–180, 10°N–30°N)

NEA-3
CC = 0.65

CP SLP(P) MAM SLP
(160°E–140°W, 40°S–30°N)

0.444*
CP SLP(P)
+0.223*
NP SSTD(T)
+0.117*
SWP SST(T)

NP SSTD(T) AM-minus-FM SST
(180°–155°W, 20°N–40°N) − (180°–150°W, 0°–20°N)  
− (150°W–130°W, 20°N–40°N)

SWP –CP SST(T) AM-minus-FM SST
(150°E–150°W, 30°S–20°S) − (150°W–90°W, 0°–15°N)

NEA-4
CC = 0.58

NP SLPD(P) MAM SLP
(120°E–150°W, 15°N–45°N) + (130°E–120°W, 50°N–70°N)

0.427*
NP SLPD(P)
−0.343*
NA SLP(T)

NA SLP(T) AM-minus-FM SLP
(90°W–45°W, 50°N–70°N)
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correlation coefficient (PCC) skill of 0.36. The estimated 
maximum potential attainable time-mean PCC skill is 0.65 
and the domain-averaged TCC skill is 0.61; the latter is 
much higher than the current dynamic models’ MME pre-
diction (0.13), suggesting that the current prediction models 
may have large rooms to improve.

5.2  Discussion

It is of interest to compare the results obtained for SEA 
and NEA. In part I we identified four predictable modes 
for SEA July–August rainfall variability, they are (1) 
SEA-1: WPSH-SST dipole feedback mode, (b) SEA-2: 
boreal summer CP-ENSO mode, (c) SEA-3: Maritime 
Continent coupled mode, and (d) SEA-4: developing EP-
ENSO mode (Xing et al. 2015). These four predictable 
modes account for 55.6 % of the total variance. It is seen 
that SEA and NEA July–August rainfall variability share 
two common modes, i.e., the WPSH-dipole SST feed-
back (SEA-1 and NEA-2) and boreal summer CP-ENSO 
(SEA-2 and NEA-3) modes. However, their leading 
modes are different, which account for the largest frac-
tional variance (about 25 % for each). In addition, they 
have two modes distinguished from each other. The dif-
ferent modes account for about 17 % (32 %) of the total 
variance for SEA (NEA). In short, substantial amount of 
the source of predictability for the SEA (NEA) are dif-
ferent. This justifies the separate prediction of NEA and 
SEA during peak summer.

The area-averaged potential maximum attainable TCC 
skill is 0.68 (0.61) for SEA (NEA) precipitation. The hind-
cast TCC skill is 0.42 (0.36) for the SEA (NEA) precipi-
tation. The SEA has slightly higher degree of predictabil-
ity and higher hindcast skill than the corresponding NEA 
counterparts. This is consistent with the dynamical MME 
skills of 0.19 for SEA and 0.13 for NEA (Fig. 1b).

The prediction skill increases with the decreasing forecast 
lead time. For the NEA domain which has more land cover-
age and further away from the tropics, we found that the 0- 
and 1-month lead models have much higher skills than 2- and 
3-month lead models (figures not shown). This means that it 
is difficult to predict the July–August rainfall variation before 
May and the signals during May and June are highly valuable 
for July–August rainfall prediction over NEA. Therefore, it is 
suggested that a more reliable forecast of July–August rain-
fall should be implemented by the late June.

Compared with SEA, the precipitation variability over 
NEA is thought to be more affected by continental and 
polar anomalous conditions. However, most predictors for 
NEA we have found here remain coming primarily from 
the tropical oceans. More sources of predictability from 
continental and polar regions need to be considered in the 
future work.

The results here show that the P–E prediction model 
may be a useful approach for July–August season predic-
tion compared with the current dynamical models’ MME 
prediction over EA. In order to improve the prediction 
skills, use of combined dynamical and P–E models may be 
worth trying. In addition, the dynamical-statistical method 
using the output of boundary conditions and large scale cir-
culations derived from the dynamical models as predictors 
is also a viable pathway to improve the challenging warm-
season monsoon precipitation forecast.

There are limitations and caveats in our analysis proce-
dures that deserve discussions. First, the first four modes 
explain 25, 12, 10, and 7 %, respectively, and together, 
explain about 56 % of the total variance. Note that the 
NEA-2 and NEA-3 are not statistically separable by North 
et al. (1982), which implies that they might be exchange-
able when the sample sizes changes. This caveat is due to 
limited length of the observation. Second, all interpreta-
tions should be viewed as hypotheses rather than proof. The 
explanation/articulations made for all predictors are useful 
for formulation of hypotheses and for stimulation of future 
numerical experiments that will eventually prove these 
hypotheses. Third, the 35-year retrospective cross-validated 
forecast correlation skill (Fig. 10) is likely inflated. As 
shown by Delsole and Shukla (2009), if all the data (model 
development and validation) are used to select the predic-
tors, the cross-validated skill may be inflated and this is the 
case in our cross-validation. Fourth, it is also well known 
that both the rainfall variability and the predictors (source 
of the predictability) generally involve secular changes or 
nonstationarity (e.g., Wang et al. 2015). The modes identi-
fied here are only valid for the recent 35 years period. We 
anticipate (or assume) that they will be useful for next few 
years, so skillful prediction can be made. However, contin-
uous detection of secular changes and modifications of the 
predictors/prediction equations are imperative.
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