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Abstract The possible change in the characteristics of

weather in the future should be considered as important as

the mean climate change because the increasing risk of

extremes is related to the variability on daily time scales.

The weather characteristics can be represented by the cli-

matological mean interdiurnal (day-to-day) variability

(MIDV). This paper first assessed the phase five of the

Coupled Model Intercomparison Project coupled climate

models’ capability to represent MIDV for the surface

maximum and minimum temperature, surface wind speed

and precipitation under the present climate condition.

Based on the assessment, we selected three best models for

projecting future change. We found that the future changes

in MIDV are characterized by: (a) a marked reduction in

surface maximum and minimum temperature over high

latitudes during the cold season; (b) a stronger reduction in

the surface minimum temperature than in the maximum

temperature; (c) a reduction in surface wind speed over

large parts of lands in Northern Hemisphere (NH) during

NH spring; (d) a noticeable increase in precipitation in NH

mid-high latitudes in NH spring and winter, and in par-

ticular over East Asia throughout most of the year.

Keywords Mean interdiurnal variability �Extreme events �
Climate change �Weather characteristics � CMIP5

1 Introduction

Climate models have long been subjected to various tests to

evaluate their performances in simulating and improving

our understanding of climate variability and change. In

particular, a series of phases of the Coupled Modeling

Intercomparison Project (CMIP) have been designed to

support climate model diagnosis, validation and inter-

comparison in a systematic way. Since the framework of

the first phase of CMIP (CMIP1) was established in 1995,

various systematic and comprehensive efforts have been

made to understand and attribute climate change (e.g.,

IPCC 2007).

Accurate simulation of one climate facet does not nec-

essarily mean an accurate representation of other facets,

and it is therefore crucial to evaluate a broad spectrum of

climate processes and phenomena in climate models

(Gleckler et al. 2008; Pincus et al. 2008; Taylor 2001). In

this study we focus on the interdiurnal (day-to-day) vari-

ability as an aspect of climate because: (1) There is a good

representation of second-order moments (variability) on

various time scales (e.g., interdiurnal, intraseasonal or

interannual), which is as critical as the first-order moments

(climatological means) in climate model assessment

(Scherrer 2011); (2) there have been few studies on inter-

diurnal atmospheric variability in comparison with those

focused on longer (e.g., intraseasonal or interannual) time

scales (Kitoh and Mukano 2009); and (3) this research is

expected to contribute to many climate-related application

sectors which intrinsically rely on an accurate representa-

tion of daily-scale variability (Prudhomme et al. 2002).

O.-Y. Kim (&) � S.-H. Shin

APEC Climate Center (APCC), 12 Centum 7-ro, Haeundae-gu,

Busan 612-020, Republic of Korea

e-mail: oykim@apcc21.org

S.-H. Shin

e-mail: ssh222@apcc21.org

B. Wang

Department of Meteorology, International Pacific Research

Center (IPRC), University of Hawaii, Honolulu, HI 96822, USA

e-mail: wangbin@hawaii.edu

123

Clim Dyn (2013) 41:3261–3281

DOI 10.1007/s00382-013-1795-8

Author's personal copy



Before the daily output from model simulations became

available, research was predominantly devoted to the

investigation of the interdiurnal variability of surface

temperature over a specific area using observations (e.g.,

Driscol et al. 1994; Rosenthal 1960; Williams and Parker

1997). Most of this research concentrated on the United

States and the North Atlantic Ocean, where there was an

accessible dataset incorporating a long period of records.

In terms of model simulations, few studies have been

conducted on the importance of considering the effects of

interdiurnal variability on either regional or global climate

change. In addition, the majority of studies have been

based only on the interdiurnal variability of surface-air

temperature. According to Cao et al. (1992), a single model

simulation for the present climate demonstrated that the

pattern and magnitude of simulated day-to-day variability

of surface temperature were generally similar to those of

observed. However, on the doubled CO2 level, the model

simulated a marked reduction in the day-to-day variability

of surface temperature (Cao et al. 1992). Changes in daily

surface temperature variability were also investigated by

using multiple global (Kitoh and Mukano 2009), or

regional (Fischer and Schär 2009) climate model scenarios

and future daily surface temperature variability was pro-

jected to increase over land in the Northern Hemisphere

summer and in the tropics (Kitoh and Mukano 2009). On a

regional scale, daily summer temperature variability was

also projected to increase over France (Fischer and Schär

2009).

Recently, extensive daily dataset from multiple global

model simulation scenarios have been made available

through CMIP5 (cf. Taylor et al. 2012). This abundant

dataset makes it possible to evaluate the daily variability

for not only surface temperature but also many other sur-

face variables such as wind speed and precipitation. It also

enables the investigation of future changes in their daily

variability by using multi-model ensemble projections.

Our objective in this study was to investigate whether

the future global climate would get better or worse. Surface

maximum and minimum temperature, surface wind speed

and precipitation are susceptible variables in our lives and

can affect, among other factors, the wind-chill temperature.

An increase in the interdiurnal variability of the surface

climate would be detrimental to our comfort, and con-

versely, a projected decrease in the interdiurnal variability

of the surface climate; would be beneficial. To accomplish

our purpose, we first examined; (1) how the observed in-

terdiurnal variability of surface maximum and minimum

temperature, surface wind speed and precipitation is rep-

resented in a reanalysis dataset, (2) how efficiently the

CMIP5 multi-models resolve observed interdiurnal vari-

ability in the present climate: which models showed a

greater capability to represent interdiurnal variability, and

thus which models would be preferred for use in projecting

future changes; and (3) the projected changes in interdi-

urnal variability in the future climate by the most reliable

CMIP5 models. Through this study, we expected to gain

knowledge of the possible features of future weather con-

ditions under a warming climate induced by the new

developed emission scenarios of the CMIP5 projects.

The outline of the paper is as follows. First, we descri-

bed reanalysis and model dataset used in this study (Sect.

2) followed by methods used for the analysis (Sect. 3).

Section 4 presented the results of our analysis: interdiurnal

variability from reanalysis (Sect. 4.1) and multi global

climate models (Sect. 4.2–4.3). In Sect. 4.2, we assessed

models’ performance in simulating interdiurnal variability

in the present climate, and in Sect. 4.3 we discussed future

interdiurnal variability from models’ projection. The paper

was concluded by a summary in Sect. 5.

2 Reanalysis and models

2.1 Reanalysis

We considered two reanalysis datasets: National Centers

for Environmental Prediction (NCEP)–National Center for

Atmospheric Research (NCAR) Reanalysis II (Kanamitsu

et al. 2002; hereinafter NCEP-R2) and European Center for

Medium range Weather Forecasting (ECMWF) ERA-

Interim reanalysis (Dee et al. 2011; hereinafter ERA-

Interim). We also used one global precipitation dataset

named Global Precipitation Climatology Project dataset

(Yin et al. 2004; Huffman et al. 2001; Bolvin et al. 2009;

hereinafter GPCP). Using the datasets, we focused on four

daily life-sensitive surface variables; i.e., daily maximum

and minimum near surface (2-m) air temperature, daily

near surface (10-m) wind speed and daily precipitation.

NCEP-R2 is the only dataset that provides daily maxi-

mum and minimum temperature: ERA-Interm provides

only daily mean temperature. Since both NCEP-R2 and

ERA-Interim showed similar interdiurnal variability in

daily surface mean temperature (not shown), we decided to

use NCEP-R2 dataset for surface maximum and minimum

temperature extending from 1979 to 2005 (27 years). The

results obtained can infer interdiurnal variability in daily

mean temperature.

We also compared MIDV from 1979 to 2005 in surface

wind speed computed from NCEP-R2 and Era-Interim. In

general, NCEP-R2 presented higher interdiurnal variability

over the land and ocean compared to that in Era-Interim

(not shown); however, Szczypta et al. (2011) found that

ERA-Interim reasonably reproduced the observed surface

wind speed. Therefore, we selected ERA-Interim dataset

for surface wind speed.
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A comparison of interdiurnal variability from 1979 to

2005 in precipitation calculated from NCEP-R2 and ERA-

Interim revealed large disagreement among the magnitude

of interdiurnal variability. Because of the large difference,

we also computed interdiurnal variability from 1997 to

2005 (9 years) in precipitation using GPCP and the

reanalysis. Again, the magnitude of interdiurnal variability

in precipitation calculated from GPCP appeared different

from those computed from other reanalysis. Therefore, we

decided to use GPCP dataset for daily precipitation ranging

from 1997 to 2005. For a fare comparison, we selected the

length of coverage of the CMIP5 models to match the

corresponding time-periods of observations. Gebremichael

et al. (2005) found that (1) GPCP daily product captured

well the variability of precipitation, and (2) the GPCP daily

dataset can realistically detect rainy days at a large range of

thresholds. Bolvin et al. (2009) also concluded that GPCP

dataset captured fairly well the day-to-day occurrence of

precipitation and the GPCP daily fields are useful for

meteorological and hydrological studies to some extent.

Note that daily variables from two reanalysis datasets

and the global precipitation dataset are interpolated onto

1.875� (longitude) by 1.875� (latitude) in order to compare

the daily variables with those from multi-models.

2.2 Models

We used the daily output from 15 CMIP5 models. Daily

outputs of the models used in this study were analyzed for

three time slices: historical simulations of contemporary

Table 1 Summary of CMIP5 models used in this study

Index Organization/countries Model identification Atmosphere resolution Ocean resolution Number of ensembles

Present RCP4.5

A CSIRO, BOM/Australia ACCESS1-0 1.875 9 1.25 9 38 1.0 9 1.0L50 1 1

B BCC/China bcc-csm1-1 T42L26 1.0 9 (1–1/3)L40 3 1

C CCCma/Canada CanESM2 T63L35 256 9 192L40 5 3

D CSIRO –QCCCE/Australia CSIRO-Mk3-6-0 T63L18 1.875 9 0.9375L31 10 10

E NOAA, GFDL/USA GFDL-ESM2G M45L24 360 9 210L63 2 1

F MOHC/UK HadGEM2-CC N96L60 (1.0–0.3) 9 1.0L40 1 1

G MOHC/UK HadGEM2-ES N96L38 (1.0-0.3) 9 1.0L40 1 1

H INM/Russia INM-CM4 2.0 9 1.5 9 21 1.0 9 0.5 9 40 1 1

I IPSL/France IPSL-CM5A-LR 96 9 95 9 39 2 9 2L31 1 2

J IPSL/France IPSL-CM5A-MR 144 9 143 9 39 2 9 2L31 1 1

K AORI, NIES, JAMSTEC/Japan MIROC5 T85L40 256 9 224L5 4 3

L AORI, NIES, JAMSTEC/Japan MIROC-ESM T42L80 256 9 192L44 3 1

M AORI, NIES, JAMSTEC/Japan MIROC-ESM-CHEM T42L80 256 9 192L44 1 1

N MPI-M/Germany MPI-ESM-LR T63L47 GR15L40 3 3

O MRI/Japan MRI-CGCM3 TL159L48 1 9 0.5L51 5 1

Fig. 1 Global land weighted averaged MIDV as a function of the

number of ensembles using CSIRO-Mk3-6-0 model: a averaging with

different number of ensembles for precipitation, then calculating

MIDV and b calculating MIDV in precipitation from individual

ensembles, then averaging with different number of ensembles
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climate (1979–2005; hereinafter ‘‘Present’’); one of the

RCP (Representative Concentration Pathways) scenario

simulations of future climate (2030–2056 and 2073–2099;

hereinafter ‘‘RCP4.5’’). The latter two experiments are

long-term (century time-scale) simulations, initialized from

the end of freely evolving simulations of the historical

period under the CMIP5 strategy (Hibbard et al. 2007;

Meehl and Hibbard 2007). For the historical simulations,

changing conditions consistent with observation were

additionally imposed by including atmospheric composi-

tion (including CO2), solar forcing, emissions or concen-

trations of short-lived species and natural and

anthropogenic aerosols and land use (Taylor et al. 2012).

The RCP4.5 scenario used in this study is a stabilization

scenario in which radiative forcing is stabilized at

4.5 Wm-2 in 2100 and radiative forcing and CO2 con-

centrations are held constant after 2100 (Clarke et al. 2007;

Smith and Wigley 2006; Wise et al. 2009).

The 15 CMIP5 models evaluated in this study come

from nearly all the major climate modeling groups and are

detailed in Table 1. As in the case of the reanalysis data-

sets, we employed daily variables including maximum and

minimum near surface (2-m) air temperature, near surface

(10-m) wind speed and precipitation from the 15 models.

Because all models have different spatial resolutions, each

variable from each ensemble, model and experiment was

interpolated onto the 1.875� (latitude) by 1.875� (longi-

tude) as performed with the reanalysis and global precipi-

tation datasets.

Since each model has a different number of ensembles

for each experiment, the treatment of the ensembles in a

specific model is an issue. Given that the interdiurnal (day-

to-day) variability that we addressed in this study is largely

an expression of ‘internal variability’ and, therefore, it will

not be in phase across ensemble, the ensemble averaging

before the interdiurnal variability is calculated will greatly

reduce the computed interdiurnal variability. Figure 1

supported this hypothesis: we compared global land-only

areal weighted averaging of interdiurnal variability (the

definition will be given in Sect. 3.1) as a function of the

number of ensembles using CSIRO-Mk3-6-0 model which

has the most number of ensembles. Figure 1a showed the

result of averaging with different number of ensembles for

precipitation in July, and then calculating interdiurnal

variability, and Fig. 1b displayed the result of calculating

interdiurnal variability in precipitation in July from each of

individual ensembles, and then averaging with different

number of ensembles. Averaging with more ensemble

members for precipitation in a specific model significantly

reduced the calculated interdiurnal variability in precipi-

tation (Fig. 1a). On the other hand, averaging with more

ensemble members’ interdiurnal variability in precipitation

was insensitive to the number of ensemble members

(Fig. 1b). The magnitude of interdiurnal variability was

even larger than that in Fig. 1a. Therefore, an appropriate

approach to deal with different number of ensembles in

calculation of interdiurnal variability would be to first

calculate interdiurnal variability from each individual

ensemble member and then calculate the ensemble average

in a specific model.

3 Methods

3.1 Definition of mean interdiurnal variability (MIDV)

The interdiurnal variability (day-to-day variation) of a

variable denotes the magnitude of the difference in the

daily variable between two consecutive days and is

abbreviated to ‘‘IDV’’. By averaging the IDV over the

entire period for a particular month, we obtained the

mean interdiurnal variability (abbreviated as ‘‘MIDV’’).

The interdiurnal variability was calculated by subtracting

the value of one day from that of the following day. Those

daily differences were then converted to absolute values,

which express the magnitude of daily change, regardless of

the sign of the change. Williams and Parker (1997) stated

that the absolute value of IDV captures the chronological

sequence of variable change throughout a month, but the

use of standard deviations or similar measures of vari-

ability, does not. Finally, by averaging the absolute value

of IDV over all the years for a particular month, we found

MIDV. Mathematically, the IDV and MIDV are defined by

the following (1) and (2) respectively:

IDV
i;j
X ðm; yÞ ¼

1

N � 1

XN�1

d¼1

abs X
i;j
dþ1ðm; yÞ � X

i;j
d ðm; yÞ

� �

ð1Þ

where X indicates each variable considered; i and j denote

each grid point; and d, m, y and N represent day, month,

year and the number of days of a month, respectively.

MIDV
i;j
X ðmÞ ¼

1

n

Xn

y¼1

IDV
i;j
X ðm; yÞ ð2Þ

where n means the number of years. As a result, we

attained two-dimensional fields of MIDV for each variable

for a particular month. The same terms and their definitions

Fig. 2 Observed MIDV in the reanalysis dataset: a, b surface

maximum temperature (K) from NCEP–NCAR reanalysis 2, c,

d surface minimum temperature (K) from NCEP-NCAR reanalysis 2,

e, f surface wind speed (m/s) from ERA-Interim reanalysis and g,

h precipitation (mm/day) from GPCP. Note that the dataset for daily

precipitation from GPCP ranges from 1997 to 2005 (9 years), and the

datasets for other variables extends from 1979 to 2005 (27 years)

b
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Fig. 3 Simulated MIDV in surface maximum temperature (K) in January for 27 years from 1979 to 2005 calculated from 15 CMIP5 models and

MMM15
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are used in literature (Driscol et al. 1994; Rosenthal 1960;

Williams and Parker 1997).

3.2 Metrics for assessing MIDV

In this study, metrics are constructed to justify the models’

performances in representing observed MIDV for the

maximum and minimum surface air temperature, near

surface wind speed and precipitation. In developing the

metrics for evaluating the MIDV from the models’ simu-

lations against those from reanalysis datasets, we computed

two statistical summaries: the pattern correlation

coefficient (PCC) and the root mean square error (RMSE).

We also introduced a statistical measure called the vari-

ability index (VI) for each model, variable and grid-point:

VI
i;j
X mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MIDV

i;j
X ðmÞ

MIDV
i;j
X;refðmÞ

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MIDV

i;j
X;refðmÞ

MIDV
i;j
X ðmÞ

vuut
0

@

1

A
2

ð3Þ

where MIDV
i;j
X ðmÞ and MIDV

i;j
X;refðmÞ are the two-dimen-

sional MIDV of the model and reference for each variable,

X, for a particular month, m. Based on the definition of VI,

the value of VI is always positive and unbounded above.

Smaller values of VI indicate a better agreement with the

Fig. 4 Annual cycle of area-

averaged MIDV for a surface

maximum temperature (K),

b surface minimum temperature

(K), c surface wind speed (m/s)

for 27 years from 1979 to 2005

and d precipitation (mm/day)

for 9 years from 1997 to 2005

calculated from reanalysis

(asterisks), 15 CMIP5 models

(colored lines with symbols) and

MMM15 (black dots). Note that

the MIDV over land only is

considered for calculation of the

area-averaged mean
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reference dataset; a perfect agreement between model and

reference dataset would result in 0 of VI. The basic concept

of this measure is closely related to that of the quantity

used by Gleckler et al. (2008) and Scherrer (2011), in

which they used the standard deviation of the seasonal

value instead of the MIDV of the daily value. The VI is a

good measure in assessing the differences in MIDV

between the model and the reference dataset; enabling us to

identify consistent biases in the MIDV of a single model.

Using the metrics (consisting of PCC, RMSE and VI)

calculated for each model, we examined how well the

CMIP5 models can resolve the MIDV in the present cli-

mate. In addition, based on the metrics, we determined

which models among the 15 CMIP5 models could be

selected for projecting future changes in MIDV in the

future climate. Note that the metrics presented in this study

to compare the model and reanalysis results involve the

area-weighted average of a quantity. The area represented

Fig. 5 VI for surface maximum temperature (K) in January calculated for 27 years from 1979 to 2005 using 15 CMIP5 models and reference

datasets (reanalysis). Note that areas in dark red indicate a large departure from the reference datasets and vice versa
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by each grid point is a function of latitude (i.e., cosine of

latitude).

3.3 Signal-to-noise (SN) ratio of MIDV

It is well known that uncertainty about how the future

climate will change stems mainly from results presented by

the internal variability of models, and the models’

responses to increased radiative forcing and to forcing

itself (Deser et al. 2012; IPCC 2007). These uncertainties

play a significant role in determining a signal-to-noise (SN)

ratio of climate change, which is considered a critical

factor for climate impact studies (e.g., Santer et al. 2011).

The SN ratio is defined as the multi-model mean changes

Fig. 6 Scatter diagrams

showing VI versus PCC from

each CMIP5 model averaged

over lands only: a, b surface

maximum temperature, c,

d surface minimum temperature

and e, f surface wind speed

ranging from 1979 to 2005

(27 years) and g, h precipitation

extending from 1997 to 2005

(9 years). Dashed lines indicate

the median value of a models’

VI or PCC, and solid lines are

diagonals. Note that the scale is

logarithmic on the y-axis
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for the RCP4.5 simulation for the future period (2030–2056

and 2073–2099) relative to historical simulation for the

base period (1979–2005) divided by inter-model standard

deviation of the changes. The quantity we examined is

climatological mean interdiurnal variability (MIDV). This

quantity is relatively stable among different models

because they are large sample mean values. Even with

three best models (see Sect. 4.2.2) the model spreads (inter-

model standard deviations) at each grid points are rela-

tively steady and spatially consistent. Thus, absolute values

of ratios higher than 1 indicates a dominance of signal over

noise and those lower than 1 indicates a dominance of

noise over signal. Calculating the SN ratio, we assessed

how CMIP5 models are able to project the changes in

Fig. 7 Same as Fig. 6 except

for scatter diagram showing VI

versus RMSE
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MIDV in the future climate and identified how much

confidence we would expect in our future projections for

MIDV. That is, the SN ratio is used here to quantify cli-

mate change uncertainty for a prescribed RCP scenario

(e.g., Lobell et al. 2007).

4 Results

4.1 Observed MIDV

In examining the observed MIDV for maximum and min-

imum temperature calculated from NCEP-R2, we found a

larger MIDV over the extratropical winter hemisphere

(Fig. 2a–d). In January, the MIDV is about 3–4 K (higher

than 4 K over the northeast North America) for maximum

temperature and 4–6 K (higher than 6 K over the North

America, Canada, Alaska and Greenland) for minimum

temperature over land higher than 50� N. In July, the

MIDV for maximum temperature is high in the Antarctic

and that for minimum temperature is high in the Antarctic

and Alaska. This result is in good agreement with previous

studies. The MIDV for temperature should be the largest in

the cold season when advective temperature changes are

most intense and smallest in the warm season when

advective temperature changes are least intense (Rosenthal

1960). In addition, the MIDV for minimum temperature is

larger than that of maximum temperature.

In analyzing MIDV for surface wind speed (Fig. 1e, f),

we found that the MIDV is the smallest over the tropics and

largest over the ocean in the extratropics. In particular, the

maximum value of MIDV is found over the North Pacific

and North Atlantic Ocean in NH winter. In addition, the

MIDV is much stronger in the cold season than in the warm

season. We also explored MIDV for precipitation (Fig. 1g–

h). A larger value of MIDV for precipitation is found along

the Intertropical Convergence Zone (ITCZ) and winter

storm tracks. The MIDV in NH summer is also larger in the

monsoon regions including Southern Asia, South-east Asia

and East Asia, and in NH winter, it is larger around

Northern Australia, South Africa and South America.

4.2 Simulated MIDV: model evaluation

4.2.1 General features of simulated MIDV

A comparison of MIDV for near surface maximum tem-

perature between the NCEP-R2 and CMIP5 model revealed

that most models simulate a similar magnitude and pattern

as the observed (Fig. 3), only a few models exhibit a

similar pattern, but with weaker or stronger magnitude. To

be more specific, the models showing a similar magnitude

include ACCESS1-0, GFDL-ESM2G, HadGEM2-CC,

HadGEM2-ES, and MIROC5. However, the mean of all 15

multi-model (hereinafter ‘‘MMM15’’) MIDV shows a

similar magnitude and pattern of MIDV compared to that

of the observed MIDV, regardless of the month. Kitoh and

Mukano (2009) found that the CMIP3 global model

ensemble underestimated mean daily temperature vari-

ability realized in the reanalysis datasets (including ERA-

40, JRA-25 and NCEP–NCAR). They also stated that this

was probably related to the less developed synoptic dis-

turbances within the models than in the reanalysis datasets.

From an annual cycle of land-only areal weighted

averaging of MIDV for all variables (Fig. 4), we found that

models’ performance in representing observed MIDV over

land is consistent across all months, but the performance

varies depending on the variables considered. In addition,

the multi-model mean MIDV for surface maximum and

minimum temperature consistently shows lower amplitude

than the observed (Fig. 4a, b). The multi-model mean

MIDV for surface wind speed is in good agreement with

the observed MIDV (Fig. 4c). That is, the multi-model

mean for MIDV for surface maximum and minimum

temperature, and wind speed represents the observed

MIDV (Fig. 4a–c). For precipitation, however, the

observed MIDV exceeds the largest modeled MIDV as

well as the multi-model mean for MIDV (Fig. 4d), which is

related to the fact that precipitation is more directly tied

with convection schemes and that convection parameter-

izations in models are far from perfect at present (e.g.,

Martin and Schumacher 2012; Tost et al. 2006). Adequate

treatment of convection in the models is crucial for

resolving the temporal variability and the intensity of total

precipitation because the mean and variability of convec-

tion precipitation depend on key closure parameters of

convection schemes (Lin et al. 2000; Scinocca and

McFarlane 2004) and strong interaction between convec-

tive and large-scale precipitation (Scinocca and McFarlane

2004). Although considerable efforts have been made to

improve convective parameterizations over the past dec-

ades, a variety of convection schemes are used in different

models and each of them still has weakness (Tost et al.

2006). Also, that the MIDV for precipitation is so small

may also be related to the well-known result that precipi-

tation events in GCMs occur too often and the intensities

are too light. This can make it difficult for climate models

to resolve day-to-day variations in precipitation in space

and time, which is expected as precipitation has a greater

variability in space and time than the other variables, and

thus climate models are less skillful at simulating precip-

itation (Alexander and Arblaster 2009). Nevertheless,

several studies have suggested that it is still meaningful to

utilize climate models when projecting the climate-change

signal for precipitation in a future climate (e.g., Hagemann

and Jacob 2007; Sushama et al. 2006). As a result, general
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features of the simulated MIDV (as in Fig. 3 and Fig. 4)

suggest that for different variables it would be possible to

select certain models which performed well in resolving

observed MIDV.

4.2.2 Selection of the best models

In consideration of the observed MIDV from reanalysis and

GPCP datasets as reference data, we evaluated the CMIP5

multi-models’ ability to resolve the MIDV in the current

climatic conditions (i.e., 1997–2005 for precipitation and

1979–2005 for other variables). In judging the models’

performance based on metrics consisting of VI, PCC and

RMSE, we selected the top three best models for each

variable, regardless of the month.

We first examined the spatial pattern and magnitude of

the variability index (VI) as one of the factors used in this

study. In analyzing the spatial pattern and magnitude of the

VI for maximum temperature in January we found that

most models, with the exception of bcc-csm1-1 and

CanESM2 exhibit a relatively small VI (Fig. 5). The bcc-

csm1-1 exhibits a large VI over almost the entire ocean and

CanESM2 represents a large VI mainly over the tropical

ocean. We also found that within each model, the amount

of VI shown depends on the variable considered.

We then assessed each factor within the metrics in order

to assess the models’ performance with respect to MIDV.

Based on this assessment, it is expected that models

showing a smaller VI, a larger PCC and a smaller RMSE

would justify being labeled as performing well.

In analyzing the models’ performance of the VI and

PCC (Fig. 6) and VI and RMSE (Fig. 7) for MIDV, we

selected the top three models which show the best ability to

resolve observed MIDV for each variable. We found that

for maximum temperature in January(July), MRI-CGCM3,

CanESM2 and MPI-ESM-LR (MRI-CGCM3, CanESM2

and MIROC5) show a smaller VI, a larger PCC and a

smaller RMSE compared to the other models, suggesting

that the models demonstrate as better ability to resolve the

observed MIDV (Figs. 6, 7a, b). Similarly, we also selected

models showing a better ability for the other variables:

CanESM2, inmcm4 and bcc-csm1-1 in January

(CanESM2, HadGEM2-ES and HadGEM2-CC in July) for

minimum temperature (Figs. 6, 7c, d), MIROC-ESM, bcc-

csm1-1 and MPI-ESM-LR in January (HadGEM2-CC,

HadGEM2-ES and MIROC-ESM-CHEM in July) for wind

speed (Figs. 6, 7e–f) and MPI-ESM-LR, CSIRO-Mk3-6-0

and IPSL-CM5A-MR in January (MPI-ESM-LR, CSIRO-

Mk3-6-0 and inmcm4 in July) for precipitation (Figs. 6,

7g–h), respectively.

A comparison of simulated MIDV calculated from all 15

models (MMM15) with that from top three best models

(BEST3) revealed that BEST3 is in good agreement with

observed MIDV (Fig. 2a) for maximum temperature in

January (Fig. 8a, b). For minimum temperature, BEST3

and MMM15 show less variability in the extratropical

continents of the Northern Hemisphere in January (Fig. 8c,

d) compared with that of the observed variability (Fig. 2c).

However, the variability of BEST3 is relatively large

compared with that of MMM15 which is closer to that of

the observation. In addition, MMM15 and BEST3 shows

similar variability of wind speed in the North Pacific and

North Atlantic Ocean in January (Fig. 8e, f) Again, the

variability of BEST3 as well as MMM15 agrees fairly well

with that of the observed MIDV (Fig. 2e). Unlike other

variables, simulated MIDV for precipitation exhibits much

less variability compared with that of observed MIDV

(Fig. 2g), regardless of whether the MIDV is calculated

from MMM15 or BEST3 (Fig. 8g, h). This is because of

the difficulties inherent in the ability of climate models to

resolve the spatio-temporal variability of precipitation

(e.g., Cook and Vizy 2006; Johns et al. 2006; Lambert and

Boer 2001). Nonetheless, BEST3 displayed a slightly

higher variability than MMM15, especially over the central

and western North Pacific Ocean, central parts of South

America and some parts of Southeast Asia. To conclude,

using the metrics (including VI, PCC, and RMSE), we

assessed the models’ performance in resolving observed

MIDV for each variable. In general, the simulated MIDV

calculated from the top three best models (BEST3) shows

better performance compared to that of all the 15 models’

means (MMM15). This indicates that (1) the metrics used

in this study can be useful in assessing the models’ per-

formance; (2) based on the metrics, we can reasonably well

select the best models for resolving observed MIDV; and

thus (3) we can expect that the best models selected can be

used to project future changes in MIDV.

4.3 Future projection

4.3.1 Near surface maximum and minimum temperature

Using the top three best models chosen for each variable,

we calculated the signal-to-noise ratio of simulated MIDV

in near surface maximum and minimum temperature in a

future climate. It is important to consider projections for

maximum and minimum temperature separately when

assessing the impact of climate change, because the impact

on certain societies and ecosystems will be directly related

to changes in daily minimum or maximum temperature

Fig. 8 Simulated MIDV in a, b surface maximum temperature (K), c,

d surface minimum temperature (K), e, f surface wind speed (m/s) in

January for 27 years from 1979 to 2005 and g, h precipitation (mm/

day) in January for 9 years from 1997 to 2005. Left panel is for the

MIDV estimated from MMM15 and right panel is for MIDV from

BEST3

b
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rather than to changes in daily mean temperature (Lobell

et al. 2007).

In a future climate, in the middle to high latitudes of the

Northern Hemisphere in NH winter, for example over

North America and the northern part of Eurasia (Figs. 9a,

b, 10a, b), there is a signal of noticeable reduction in the

MIDV for surface maximum and minimum temperature.

The magnitude of the reduction in the MIDV for surface

maximum temperature is quite similar to that of minimum

temperature over these regions; indicating that the day-to-

day temperature variability is projected to decrease at a

similar rate during both the day and night in NH winter

over those areas. Under warmer climate conditions, forced

by a doubling of CO2, the reduction of the meridional

gradient of temperature in the winter high latitudes leads to

a reduction in the frequency or intensity of baroclinic

disturbances, and thus a reduction in the day-to-day vari-

ability of near surface temperature in the winter high lati-

tudes where sea ice is replaced by open water (Cao et al.

1992). Unlike regions such as North America and the

northern part of Eurasia, a general disparity between the

surface maximum and minimum temperature uncertainty is

observed in NH winter. For example, there is a generally

increased signal in the MIDV for maximum temperature

over the Southeast Asia and the southern part of Africa,

whereas there is decreased signal in the MIDV for mini-

mum temperature over there regions.

There is a signal of reduction of the MIDV for both

maximum and minimum temperature in the high latitudes

in NH spring (Figs. 9c, d, 10c, d). For maximum temper-

ature, there is a signal of increase in the MIDV over

regions such as the southern part of North America, the

southern part of South America, the Southeast Asia and the

southern part of Africa, whereas for minimum temperature

there is decreasing change in the MIDV over those regions.

Spatial patterns of changes of the MIDV for maximum

and minimum temperature in NH summer are different

from those in other seasons (Figs. 9e, f, 10e, f). The models

project decreasing (increasing) signal of changes in MIDV

in Greenland and the southern part of North America (the

northern part of India and West and East Africa. The

models also show decrease in MIDV for minimum tem-

perature over the eastern parts of Eurasia, the northern

parts of Australia and the southern part of North America.

In NH autumn, there is again a signal of significant

reduction in MIDV for both maximum and minimum

temperature in the high latitudes, and the models project a

signal of increase of the MIDV for maximum temperature

over regions such as India and parts of Africa. As in other

seasons, the models project large decrease in the MIDV for

minimum temperature over most land parts (Figs. 9g, h,

10g, h).

In analyzing future projections of changes in simulated

MIDV for both maximum and minimum surface tempera-

ture, we found that there is a signal of marked reduction in

MIDV for maximum and minimum temperature over high

latitudes in cold seasons. In particular, the spatial extent of

reduction in MIDV covers broader areas in NH winter than

in any other seasons. In addition, the models also show that

there is a large increase of the MIDV for maximum tem-

perature in many areas, but there is a larger decrease in the

MIDV for minimum temperature in broad areas. Changes

in advection, having a substantial influence on day-to-day

temperature variability, could be one of the possible rea-

sons for the differences in changes in the MIDV among

regions (Cao et al. 1992). We also found that changes in

MIDV for maximum temperature are noisy in more regions

than do those for minimum temperature; suggesting the

models’ higher uncertainty in the MIDV projection for

maximum temperature than for minimum temperature.

4.3.2 Near surface wind speed

The MIDV for surface wind speed exhibits a large uncer-

tainty (noisy) over many areas (Fig. 11) and there is signal

of future weakening throughout most of the year with the

exception of NH winter. In NH winter, there is a large

increase in the MIDV over the Southeast and East Asia and

the northern part of India, but a reduction over Greenland

and the southern part of South America (Fig. 11a, b). In

NH spring, there is a significant reduction in the MIDV

over broader parts of the Eurasian continent and over North

America (Fig. 11c, d). Changes in MIDV for surface wind

speed show more regional or local differences compared to

those in surface maximum and minimum temperature.

Spatial variations in changes in MIDV reflect differences in

the frequency and intensity of periodic surface wind

changes at the various locations.

4.3.3 Precipitation

In a future climate, there is a signal of increase in the

MIDV for precipitation in the middle to high latitudes in

Fig. 9 Shading indicates future projected changes in MIDV in

surface maximum temperature (K) over land calculated from BEST3:

a, b January, c, d April, e, f July and g, h October. The changes are

given for the RCP4.5 simulation for the period 2030–2056 (mid-

twenty-first century, left panel) and for the period 2073–2099 (late-

twenty-first century, right panel) relative to historical simulation for

the period 1979-2005. Stippling shows that the magnitude of BEST3

ensemble mean changes exceeds the inter-model standard deviation

(i.e., the absolute value of SN ratio is greater than 1, which indicates

dominance of signal over noise). Note that all ensemble members of

BEST3 (see Table 1) in the RCP4.5 simulation (mid-twenty-first

century and late-twenty-first century) that are consistent with those in

the historical simulation are used in the calculation of the multi-model

mean and inter-model standard deviation

b
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Fig. 10 Same as Fig. 9 except for surface minimum temperature (K)
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Fig. 11 Same as Fig. 9 except for surface wind speed (m/s)
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the Northern Hemisphere in NH winter. This means that

the models show a similar tendency (less uncertainty) of

increase in the MIDV for precipitation (Fig. 12a, b) over

those regions. In addition, the signal of increase is ampli-

fied in NH spring compared to in NH winter (Fig. 12c, d).

In particular, there will be a strong increase in the MIDV

for precipitation over North America and the continent of

Eurasia with the exception of India. In NH summer, there is

a signal of marked increase (decrease) in the MIDV for

precipitation over East Asia, Southeast Asia, and West and

East Africa (the southern part of North America), but the

changes are insignificant over other regions due to high

signal-to-noise ratio (Fig. 12e, f). In NH autumn, the spa-

tial pattern is generally similar to that of NH spring

(Fig. 12g, h). There will be an increase in the MIDV for

precipitation over East Asia and the eastern parts of North

America.

In analyzing future projections of changes in simulated

MIDV for precipitation, we found that there is a noticeable

signal of increase in the middle to high latitudes of the

Northern Hemisphere in NH winter and spring. In partic-

ular, there is a signal of large increase in the MIDV for

precipitation over East Asia and Southeast Asia throughout

most of the year, suggesting that the models show a similar

tendency (less uncertainty) of an increase in the MIDV for

precipitation over the region. In addition, the signal of

changes in MIDV for precipitation is more obvious over

land in the Northern Hemisphere than in the Southern

Hemisphere.

5 Summary and concluding remarks

Using a recently released, comprehensive global multi-

model ensemble dataset formed by CMIP5 GCMs, we

assessed the models’ ability to represent MIDV for surface

variables: surface maximum and minimum temperature

and, surface wind speed and precipitation, under present

climatic conditions (i.e., 1997–2005 for precipitation and

1979–2005 for other variables). We found that some

models simulate a similar magnitude and pattern with the

observed counterparts, and the remaining models showed a

similar pattern but significantly weaker (or stronger)

magnitude. This feature of simulated MIDV was shown for

variables such as surface maximum and minimum tem-

perature and surface wind speed throughout most of the

year. However, the magnitude of simulated MIDV for

precipitation was much weaker than that of the observed

MIDV.

Using three different verification measures, including

the pattern correlation coefficient (PCC), root-mean square

error (RMSE) and variability index (VI), we also qualita-

tively evaluated the models’ performance in their ability to

represent the observed MIDV. The VI is a newly proposed

measure that can quantitatively reveal how well a model

can resolve the observed MIDV. Based on statistics from

these three verification measures, we selected the top three

models for each surface variable. As a result we chose

different ‘‘best models’’ for different variables for a par-

ticular month. Using an ensemble mean of MIDV from the

top three models chosen separately for each surface vari-

able, we also examined the signal-to-noise ratio of simu-

lated MIDV in a future climate.

In analyzing future projections for changes in simulated

MIDV of surface maximum and minimum temperature, we

found that the signal of a marked reduction in the MIDV is

obvious over high latitudes, particularly in cold seasons.

This reduction signal is much more noticeable in NH

winter than in any other seasons. Also, the extent of

reduction signal covers broader areas in minimum tem-

perature than those in maximum temperature. The models

also showed a slight increase in the MIDV for surface

maximum temperature and a larger decrease for minimum

temperature over some regions. In addition, we found that

the models showed a higher uncertainty in the MIDV for

the maximum temperature than for the minimum temper-

ature. We found that there is a reduction in the MIDV for

surface wind speed over large land areas in the NH spring

than in any other seasons. In particular, a relatively clear

signal of reduction is evident over the continent of Eurasia

and the eastern parts of North America in NH spring.

However, the models revealed large spatial variations of

changes in MIDV for surface wind speed, compared with

those for other surface variables. We also found that there

is a signal of noticeable increase in the MIDV for precip-

itation over the Southeast and East Asia and the northern

part of India in NH winter. In addition, there is a signal of

large increase in the MIDV for precipitation over East Asia

and Southeast Asia throughout most of the year.

This study suggests a possible change in the character-

istics of weather (day-to-day) under future climate condi-

tions. These changes in the features of future weather

conditions should be considered as important as those of

mean climate change, because the increasing risk of

extremes is related to the variability on daily time scales as

well as to mean climate change. For instance, most impacts

of heat waves on societies and ecosystems act on daily and

weekly time sales (e.g., Fischer and Schär 2009).

How to interpret the MIDV future changes? In most

cases, the MIDV of minimum and maximum temperature

and surface wind speed is determined by the vigorousness

of the synoptic systems (Kitoh and Mukano 2009). A

reduction of MIDV means weakening of the disturbances

while an increase means strengthening of the synoptic

systems. To understand these changes, one has to link the

synoptic scale changes to the large scale environmental
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Fig. 12 Same as Fig. 9 except for precipitation (mm/day)

Weather characteristics change in a warming climate 3279

123

Author's personal copy



circulation changes (Williams and Parker 1997), such as

changes in the baroclinicity in midlatitudes and the strength

of the tropical convergence zones and subtropical highs as

well as moisture availability in the tropics and subtropics.

For precipitation, increased (reduced) MIDV is normally

associated with increased (decreased) mean precipitation

(Wang and Rui 1990). The mean precipitation change in

future is characterized by ‘‘dry-gets-drier’’ and ‘‘wet-gets-

wetter’’ (Held and Soden 2006; Neelin et al. 2006; Chou

et al. 2009; Liu et al. 2013) due mainly to the increased

moisture advection by mean circulation (Chou et al. 2009)

and intensification of the monsoon precipitation (Wang

et al. 2012; Lee and Wang 2013). ‘‘Wet-gets-wetter’’

implies an increase of the mean precipitation in the ITCZ

and summer monsoon regions; the increased mean pre-

cipitation in turn links to increased temporal variability

(MIDV) of precipitation, which is the result obtained in this

study. Therefore, it is considered that future studies are

needed to examine the changes in the atmospheric circu-

lation patterns and/or synoptic disturbances associated with

changes in MIDV at the surface. That is, the inclusion of

phenomena that leads to large-scale atmospheric circula-

tion or oceanic conditions could further explain the chan-

ges in day-to-day variability in a future climate. Attributing

land surface processes to the MIDV on the surface would

also be an important subject area for exploration in future

studies.

Several other issues also remain to be solved through

further in-depth studies. For example, the physical basis for

the functional relationship between day-to-day variability

and changes in extremes for a certain variable, are yet to be

clarified. Various research has assessed the change in cli-

mate extremes (Easterling et al. 2000; Frich et al. 2002;

Klein Tank and Können 2003; Alexander et al. 2006).

However, few systematic and extensive studies have been

conducted on the relationship between changes in extreme

climatic events and day-to-day variability at the surface,

even though future changes in daily variability at the sur-

face are associated with extremes and will thus have a

significant influence on our life and on several application

sectors (Kitoh and Mukano 2009). Furthermore, the utili-

zation of modeling data on a much finer spatial scale,

through various dynamical and/or statistical techniques,

would allow for the study of the relationship between

regional or local factors and the day-to-day variability on

the surface over specific areas.
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