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ABSTRACT

The boreal summer intraseasonal oscillation (BSISO) is a dominant tropical mode with a period of 30–60

days, which offers an opportunity for intraseasonal forecasting of the Asian summer monsoon. The present

study provides a preliminary, yet up-to-date, assessment of the prediction skill of the BSISO in four state-of-

the-art models: the ECMWF model, the University of Hawaii (UH) model, the NCEP Climate Forecast

System, version 2 (CFSv2), and version 1 for the 2008 summer (CFSv1), which is a common year of two

international programs: the Year of Tropical Convection (YOTC) and Asian Monsoon Years (AMY). The

mean prediction skill over the global tropics and Southeast Asia for first three models reaches about 1–2 (3)

weeks for BSISO-related rainfall (850-hPa zonal wind), measured as the lead time when the spatial anomaly

correlation coefficient drops to 0.5. The skill of CFSv1 is consistently lower than the other three. The strengths

and weaknesses of the CFSv2, UH, and ECMWF models in forecasting the BSISO for this specific year are

further revealed. The ECMWF and UH have relatively better performance for northward-propagating

BSISO when the initial convection is near the equator, although they suffer from an early false BSISO onset

when initial convection is in the off-equatorial monsoon trough. However, CFSv2 does not have a false onset

problem when the initial convection is in monsoon trough, but it does have a problem with very slow

northward propagation. After combining the forecasts of CFSv2 and UH into an equal-weighted multimodel

ensemble, the resultant skill is slightly better than that of individual models. An empirical model shows

a comparable skill with the dynamical models. A combined dynamical–empirical ensemble advances the

intraseasonal forecast skill of BSISO-related rainfall to three weeks.

1. Introduction

Every year, the Asian summer monsoon brings much-

needed water into South and East Asia from the Indo–

Pacific Ocean to sustain more than 60% of the world’s

population living on this biggest continent on Earth.

On the other hand, the Asian summer monsoon exhibits

rich variability with a wide range of time scales from

synoptic (;days) and intraseasonal (;weeks) to inter-

annual (;years) and beyond, which makes efficient

water management, agricultural planning, and disaster

prevention very difficult. For the well-being of the so-

cieties affected by the monsoon, the capability of fore-

casting the Asian monsoon systems with lead times from

days and weeks to years and beyond is very desirable.

Medium-range weather forecasts with a lead time of

one week (Lorenz 2006) have been routinely carried out

by all national weather services around the world for

decades. Seasonal prediction, based on the premise that
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there is long-range forecasting memory residing in un-

derlying boundary conditions (e.g., SST, soil moisture,

sea ice, etc.), has also been launched by a large number

of operational and research centers around the world

since the late 1980s (Cane et al. 1986; Shukla 1998;

B. Wang et al. 2009; Shukla et al. 2009; Lee et al. 2010).

An obvious forecasting gap exists between weather

forecast and seasonal prediction. The recurrent nature

of tropical intraseasonal variability with a period of

30–60 days offers a golden opportunity to fill this gap

(Waliser et al. 2003). However, the current modeling

and forecasting capability of tropical intraseasonal var-

iability and its influence on the Asian summer monsoon

is still very limited (Lin et al. 2006; Fu et al. 2007;

Matsueda and Endo 2011), although much research has

been conducted intending to address this issue since

early 1970s (Madden and Julian 1971; Krishnamurti

1971; Lau and Waliser 2012).

In boreal summer, tropical intraseasonal variability

initiates over the western Indian Ocean and propagates

both northward and eastward (Yasunari 1979;Wang and

Rui 1990; Fu et al. 2003; Lee et al. 2013). On its passage,

the tropical intraseasonal variability modulates the oc-

currence of monsoon depressions and tropical cyclones

in the northern Indian Ocean (Goswami et al. 2003;

Kikuchi et al. 2009), South China Sea, and western North

Pacific Ocean (Nakazawa 1986; Liebmann et al. 1994;

Chen and Weng 1999). After reaching the Asian conti-

nent, tropical intraseasonal variability brings active and

break spells to the Asian summer monsoon. The tropi-

cal intraseasonal variability in northern summer is also

known as the monsoon intraseasonal oscillation (MISO;

Hoyos and Webster 2007) or more generally as the bo-

real summer intraseasonal oscillation (BSISO; Wang

and Xie 1997).

In an intuitive sense, the oscillating nature of the

BSISO offers an upper limit of predictability of about

two months (van den Dool and Saha 1990). Using 23-yr

intraseasonal-filtered daily all-Indian rainfall, Goswami

and Xavier (2003) assessed the predictability of BSISO-

related rainfall to be about 20 and 10 days, respectively,

for break and active monsoon phases, which suggested

that the active-to-break monsoon transition is more pre-

dictable than the break-to-active transition. The latter

transition represents a ‘‘monsoon prediction barrier.’’

Using 30-yr intraseasonal-filtered daily outgoing long-

wave radiation (OLR) observations with a different

method, Ding et al. (2011) assessed the potential pre-

dictability of the BSISO to be about 35 days. The as-

sessment with several atmospheric general circulation

models indicated that the dynamical variables of the

BSISO have much longer predictability than the con-

vective variables (Waliser et al. 2003; Liess et al. 2005;

Reichler andRoads 2005). Fu et al. (2007) demonstrated

that the inclusion of two-way air–sea interactions in a

University of Hawaii (UH) model1 extends the BSISO

predictability in the atmosphere-only version by at least

oneweek. The resultant potential predictability of BSISO-

related rainfall in the UHmodel reaches around 40 days

(Fu et al. 2008).

The forecast skill of the BSISO, however, is still much

shorter than its potential predictability as a result of

model weaknesses in accurately representing the initia-

tion, structure, intensity, and propagation of the BSISO;

errors existing in the initial and boundary conditions;

and the misrepresentation of atmosphere–ocean inter-

actions (Chen and Alpert 1990; Lau and Chang 1992;

Hendon et al. 2000; Seo et al. 2005; Woolnough et al.

2007; Vitart et al. 2007; Fu et al. 2009; Fu et al. 2011). The

pioneering study of Krishnamurti et al. (1992) suggested

that the useful skill of the flow fields of the BSISO could

reach 20–30 days in several cases. The forecast skill of an

older version (Hendon et al. 2000; Jones et al. 2000)

and an updated version (Seo et al. 2005) of the National

Centers for Environmental Prediction (NCEP) forecast

model, however, was only about oneweek for theBSISO-

related dynamic fields. After improving model physics

(e.g., Bechtold et al. 2008; Seo et al. 2009) and using

latest-generation reanalysis datasets [e.g., Climate Fore-

cast System Reanalysis (CFSR), Modern-Era Retrospec-

tive Analysis for Research and Applications (MERRA),

and the European Centre for Medium-Range Weather

Forecasts (ECMWF) InterimRe-Analysis (ERA-Interim)]

as initial conditions (Saha et al. 2010; Rienecker et al.

2009; Simmons et al. 2007), intraseasonal forecasting

skills have shown significant advancement in recent

years (Vitart and Molteni 2009; Rashid et al. 2011; Fu

et al. 2011; Zhang and van den Dool 2012).

In this study, we extend our previous work (Fu et al.

2011) to include more models: the ECMWF model, the

NCEPClimate Forecast System, versions 1 and 2 (CFSv1

and CFSv2); and the UH research model. The objectives

of this study are threefold: 1) to provide a preliminary, yet

up-to-date, assessment of intraseasonal forecast skill for

these four models in summer 2008, which is a common

year of two international programs: the Year of Tropical

Convection (YOTC; http://www.ucar.edu/yotc/) (Waliser

et al. 2012) and the Asian Monsoon Years (AMY; http://

www.wcrp-amy.org/); 2) to identify the strengths and

weaknesses of individual models on intraseasonal forecast

1 This model coupled a modified ECHAM4 atmospheric gen-

eral circulation model with an intermediate upper-ocean model

developed at University of Hawaii. For simplicity, this coupled

model is referred to as the UH model.
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of the BSISO, which will provide useful insights for

further model evaluation and improvement; and 3) to

explore ways to advance the intraseasonal forecast skill

of the BSISO—for example, through the developments

of a multimodel ensemble and a combined dynamical–

empirical ensemble. The remaining parts of this paper

are organized as follows. Section 2 describes the models

used to produce the forecasts and methods used to mea-

sure the forecast skill. Section 3 documents the intra-

seasonal forecast skill of the four models over the global

tropics and reveals the strengths and weaknesses of in-

dividual models in this specific year. In section 4, we

focus on the intraseasonal forecasting of the monsoon

over Southeast Asia and also analyze the phase depen-

dences of monsoon forecast skills. In the last section, we

discuss possible causes of the individual models’ weak-

nesses and explore the potential of multimodel and

dynamical–empirical approaches on the advancement

of intraseasonal forecasting, and summarize our major

findings.

2. Models and methods

The four models used in this study are briefly de-

scribed in this section. The details of individual models

can be found in given references. The atmospheric com-

ponent of the ECMWF monthly system (Vitart et al.

2008) is a version of the ECMWF Integrated Forecast

System (IFS) known as cycle 36r2 (operational in 2011)

with a horizontal resolution of T639 (about 30 km). The

ECMWF monthly system runs in an atmosphere-only

mode during the first 10 days forced with persistent SST.

After 10 days, the system runs in a coupled mode with

the atmosphericmodel resolution reduced toT319 (about

60 km); the ocean component is a general circulation

model, the Hamburg Ocean Primitive Equation (HOPE;

Wolff et al. 1997). The resolution change of the atmo-

spheric model is expected to have little impact on the

simulation of intraseasonal variability (Jung et al. 2012).

In total, 51 ensemble forecasts covering one month were

generated by the ECMWF model and initialized weekly

with the ERA-Interim (Simmons et al. 2007). From each

week’s forecasts, 5 out of a total of 51 ensembles were

randomly selected and used in this study. Because the

ensemble spread of the ECMWF forecasts is modest on

the intraseasonal time scale (the ensemble spread of

ECMWF forecasts can be found online at http://www.cpc.

ncep.noaa.gov/products/precip/CWlink/MJO/CLIVAR/

clivar_wh.shtml), the mean of five random ensembles

canbe viewed as a good representative of themodel’s overall

performance (F. Vitart 2011, personal communication).

In August 2004, CFSv1 became operational at NCEP.

Saha et al. (2006) documented the details of this system

and its performance on seasonal prediction. The atmo-

spheric component of CFSv1 is the NCEP atmospheric

Global Forecast System (GFS) model with a horizontal

resolution of T62 (about 200 km), which has repre-

sented the version since February 2003 (Moorthi et al.

2011). The oceanic component of CFSv1 is the Geo-

physical Fluid Dynamics Laboratory (GFDL) Modular

OceanModel, version 3 (MOM3; Pacanowski andGriffies

1998). Daily season-long forecasts have been routinely

carried out with CFSv1 using the NCEP–Department of

Energy (DOE) Reanalysis 2 (R2) as initial conditions.

The CFSv2 model is the latest-generation climate fore-

cast system at NCEP, which became operational in

March 2011. The atmospheric component is the frozen

version of the GFS as of May 2010 with a horizontal

resolution of T126 (about 100 km). The ocean compo-

nent has been upgraded to MOM4. The CFSv2 model

includes a more comprehensive land and sea ice model.

A new-generation reanalysis (CFSR) has been gener-

ated with CFSv2 (Saha et al. 2010). Daily season-long

retrospective forecasts back to 1982 have been produced

with CFSv2 initialized with CFSR. For both CFSv1 and

CFSv2, the forecasts initialized four times (0000, 0600,

1200, and 1800 UTC) each day are treated as four ensem-

bles. Their daily ensemble mean was used in this study.

TheUHmodel is an atmosphere–ocean coupledmodel

(Fu et al. 2003) developed at the University of Hawaii.

The atmospheric component is a general circulation

model (ECHAM4) with a T106 (about 125 km) reso-

lution that was originally developed at the Max Planck

Institute for Meteorology, Germany (Roeckner et al.

1996). The mass flux scheme of Tiedtke (1989) is used to

represent deep, shallow, and midlevel convections. The

ocean component is an intermediate upper-oceanmodel

developed at UH. It comprises a mixed layer and a ther-

mocline layer with a horizontal resolution of 0.58 3 0.58.
Ten ensemble 45-day forecasts for summer 2008 have

been carried out with the UH model every 10 days ini-

tialized with a final operational global analysis at 18 3 18
produced byNCEP (also known asFNL;more details can

be found online at http://dss.ucar.edu/datasets/ds083.2).

Ten initial ensemble conditions are generated by simply

adding day-to-day differences to the unperturbed initial

condition, which is the FNL analysis in this study.

To assess the intraseasonal forecast skills, 120-day ob-

servations (Tropical Rainfall Measuring Mission rainfall

and 850-hPa zonal winds from the FNL analysis) before

the initial dates have been concatenated to the 30-day

(or 45 day) ensemble-mean forecasts along with several

months’ zero padded in the end. The merged time series

are bandpass filtered to extract intraseasonal variability

(30–90 days) from the forecasts. In a similar fashion, the

observed intraseasonal variability is also extracted. The
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efficiency of this method of extracting intraseasonal

variability has been demonstrated in Wheeler and

Weickmann (2001). Finally, the spatial anomaly corre-

lation coefficients (ACCs) and root-mean-square errors

(RMSEs) between the forecasted and observed intra-

seasonal anomalies are calculated during the forecast

period (Wilks 2005), respectively, for the global tropics

(308S–308N) and Southeast Asia (108–308N, 608–1208E).

3. Intraseasonal forecast skill over the global
tropics

a. Intercomparison of seasonal-mean skill

As previously mentioned, 2008 is a target year of

YOTC and AMY (Waliser et al. 2012). One of the com-

mon goals of these two international weather and climate

programs is to assess and improve the intraseasonal

forecast capability over the global tropics, particularly

for theAsian summermonsoon. The temporal evolution

of observed rainfall along the equator in the summer

2008 is shown in Fig. 1a. Five intraseasonal events oc-

curred during this summer. Four of themmoved eastward;

one event in July moved westward. The two in April and

October significantly weaken when crossing theMaritime

Continent. The other two in May and August, however,

propagate smoothly over the Maritime Continent. Al-

though all five events propagate northward from near

the equator into South and East Asia (Fig. 1b), the event

in late May and early June propagates much faster than

other four events. These interevent differences highlight

the intermittent nature of tropical intraseasonal vari-

ability (Goulet and Duvel 2000; Matthews 2008) and

also pose a great challenge for intraseasonal forecasting

of the monsoon.

The seasonal-mean intraseasonal forecast skills of

global tropical rainfall and 850-hPa zonal wind (U850

hereafter) in the summer 2008 for the four models are

shown in Fig. 2. Instead of using a modest ACC criterion

of 0.4 as in Fu et al. 2011, we define the forecast lead

time as when ACC drops to 0.5 as the forecast skill in

this study. Figure 2 indicates that the intraseasonal

forecast skill of CFSv1 is the lowest among the four mod-

els with rainfall smaller than one week and U850 about

two weeks. The other three models have systematically

higher skills than CFSv1 with rainfall of 1–2 weeks and

FIG. 1. Observed (a) time–longitude (averaged over 108S–108N) and (b) latitude–time (av-

eraged over 658–1108E) evolutions of rainfall rate (shading; mm day21) and 30–90-day-filtered

monsoon intraseasonal oscillations [contours; contour interval (CI) is 2 mm day21] in the

summer 2008. Solid (dashed) contours represent positive (negative) anomalies.
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U850 of 2–3 weeks (Fig. 2a). The ECMWF model is the

best among all four particularly for rainfall.

The higher skills of ECMWF, CFSv2, and UH over

CFSv1 are partly attributed to better initial conditions,

which can be seen from the larger ACCs at initial time

for the first three models (Figs. 2a,b). Because the ERA-

Interim, CFSR, FNL, and NCEP R2 data have been

used by ECMWF, CFSv2, UH, and CFSv1, respectively,

as initial conditions, the initial ACC differences are

actually consistent with the findings ofWang et al. (2012)

that the representations of tropical intraseasonal vari-

ability in CFSR and ERA-Interim are much better

than that in the NCEP R2. The initial dynamical fields

are almost the same among ECMWF, UH, and CFSv2

(Fig. 2b). Superior initial rainfall skill of ECMWF over

that of CFSv2 and UH (Fig. 2a) is likely because of

the explicit assimilation of observed rain rate into ERA-

Interim (Simmons et al. 2007).

The seasonal-mean RMSEs of forecasted rainfall and

U850 are also given in Figs. 2c and 2d. The results are

consistent with those measured with the ACCs. The

forecasts of the CFSv1 have larger RMSEs for both

rainfall andU850 than the other threemodels. As for the

ACCs (Fig. 2b), the initial RMSEs of U850 in ECMWF,

CFSv2, and UH are almost the same (Fig. 2d). For fore-

casted rainfall (Fig. 2c), however, ECMWFhas the smallest

RMSEs, followed by UH and CFSv2.

b. CFSv2 versus UH

Amore detailed comparison of the forecasts between

the CFSv2 and UH models has been given in this sub-

section. Because both models use very similar initial

conditions (Figs. 2a,b), different behaviors of the fore-

casts shed light on the strengths and weaknesses of each

model for this specific year. The finding from this anal-

ysis may also provide useful guidance on the use of in-

traseasonal forecasts from these models. The forecast

skills of CFSv2 and UH (Fig. 3) have a nearly opposite

variation as a function of initial dates. On the occasions

when the skill of CFSv2 is low, the skill of UH is high,

and vice versa. This is very obvious for the 850-hPa zonal

wind (Figs. 3c,d). Figure 3c indicates that CFSv2 has

FIG. 2. TheACCs of (a) intraseasonal rainfall and (b) U850 along with (c),(d) their respective RMSEs between the

observations and those forecasted by CFSv1, CFSv2, UH, and ECMWF models over the global tropics (308S–308N)

as a function of forecast lead time (days).
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relatively lower skill around 31 May, 11 July, and

21 August, while UH has relatively higher skill around

these dates (Fig. 3d). On the other hand, when UH has

lower skill around 21 June, 31 July, and 11 September,

the skill of CFSv2 is relatively higher. A similar situation

exists for rainfall (Figs. 3a,b). For example, the skill of

CFSv2 is very low around 31May, 11 July, and 31 August

(Fig. 3a), but the skill of UH around these dates is

relatively high (Fig. 3b). When UH skill is low around

21 June, 31 July, and 11 September, CFSv2 has rela-

tively high skill.

To understand why these two models have opposite

skill variations (Figs. 3a,b), two cases are selected for

further analysis. They are forecasts initialized on 31 July

and 31August. For the first case, CFSv2 hasmuch higher

skill than UH. For the second case, the skill of UH is

much higher than that of CFSv2. Figure 4 compares the

forecasted rainfall anomalies from CFSv2 and UH ini-

tialized on 31 July. Initially, a dipole pattern exists over

the Indian sector (Figs. 4a,f) with a positive convective

belt around 158N and a negative convective belt near

the equator. For the UH forecast at day 10 (Fig. 4h), the

northern convective belt weakens considerably and a

fictitious convection develops near the equator, while

CFSv2 is still able to maintain the initial dipole pattern

as in the observations (Fig. 4c). The onset of the near-

equatorial convection in CFSv2 occurs 10 days later and

agrees very well with the observations (Fig. 4d). Toward

day 30, the initial dipole pattern has reversed sign with

a positive (negative) rainfall anomaly near the equator

(around 158N), which has been well reproduced by

CFSv2 (Fig. 4e). However, the near-equatorial convec-

tion in the UH forecast (Figs. 4h,i) has already been

replaced with a suppressed phase (Fig. 4j). This result

indicates that for the five intraseasonal events that oc-

curred in the summer 2008, if the initial convection is

near the Asian summer monsoon trough, then the UH

model tends to produce an early false onset in the equa-

torial Indian Ocean, resulting in much lower skill than

that of CFSv2.

The forecasts initialized on 31 August, however, sug-

gest that when the initial convection is near the equator

along with a suppressed phase in the monsoon trough,

theUHmodel hasmuch higher skill than CFSv2 (Fig. 5).

For the first-day forecasts (Figs. 5a,f), a convective rain

belt exists near the equator, which extends from the

western Indian Ocean to western Pacific Ocean. For

CFSv2, the near-equatorial eastward-propagating con-

vection decays too fast, resulting in the Maritime Con-

tinent being largely covered by a negative anomaly in as

early as 5 and 10 days (Fig. 5c). The northward propa-

gation of the convection is also very slow and tends to

hang around 108N over the northwest Indian Ocean

(Figs. 5b–e).On the other hand, theUHmodel reproduces

the observed near-equatorial eastward and northward

propagations in the Indian Ocean and western Pacific

sectors very well (Figs. 5g–j). A tilted rain belt from the

eastern Arabian Sea to the Maritime Continent forms on

day 10 and gradually moves northward. Contrary to

CFSv2, the forecasted rainfall anomaly in the UH model

FIG. 3. The ACCs between forecasted and observed rainfall or U850 over the global tropics in the summer 2008 as a function of initial

dates (ordinate axis): (a) skill of forecasted rainfall by CFSv2, (b) skill of forecasted rainfall by UH, (c) skill of forecasted U850 by CFSv2,

and (d) skill of forecasted U850 by UH on different lead days (abscissa axis).
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FIG. 4. (a)–(j) Observed (shading) and forecasted (contours; CI is 2 mm day21 with the zero contour line excluded)

intraseasonal rainfall anomalies (mm day21) by the CFSv2 and UHmodels initialized on 31 Jul 2008. Solid (dashed)

contours represent positive (negative) anomalies.
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FIG. 5. As in Fig. 4, but for 31 Aug 2008.
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is still positive over the Maritime Continent on days 5

and 10 (Figs. 5g,h). When positive rainfall anomalies

gradually move out, negative anomalies start to set into

the Indian Ocean as in the observations (Figs. 5i,j).

4. Intraseasonal forecast skill over Southeast Asia

As shown by many previous studies (e.g., Lau and

Chan 1986; Kemball-Cook and Wang 2001; Sobel et al.

2010), the largest convective variance of tropical intra-

seasonal variability during boreal summer is present in

four oceanic basins: the equatorial and northern Indian

Ocean, the South China Sea, the western North Pacific,

and the eastern North Pacific. Tropical intraseasonal

variability significantly modulates the occurrences of

monsoon depressions and tropical cyclones in these re-

gions, which offers an opportunity for extended-range

probabilistic forecasting of these extreme events and

provides early warning to the affected maritime and

coastal activities (e.g., Vitart et al. 2010; Fu and Hsu

2011; Belanger et al. 2012). The northward-propagating

BSISO, therefore, can impact the weather activities over

Southeast Asia directly by inducing active and break

spells and indirectly bymodulating tropical cyclones and

monsoon depressions in the northern Indian Ocean,

South China Sea, and western North Pacific. The intra-

seasonal forecasting capability of the four models in this

extended Southeast Asian domain (108–308N, 608–1208E)
is examined in this section.

Figure 6 summarizes the seasonal-mean skills of rain-

fall and U850 in the summer 2008 over Southeast Asia

for the four models. The ECMWF and UHmodels have

similar skill in this region for both rainfall andU850. The

mean rainfall forecast skill measured by the ACC is

slightly more than one week (Fig. 6a); the skill of U850

is around three weeks (Fig. 6b). The results from the

RMSE measurements (Figs. 6c,d) are consistent with

the ACC. Although the skill of CFSv2 in this area is also

consistently higher than that of CFSv1, the improve-

ment is not as large as that over the global tropics.

Similar results can be seen from the RMSE measure-

ments (Figs. 6c,d).

FIG. 6. ACCs of (a) intraseasonal rainfall and (b) U850 along with (c),(d) their respective RMSEs between

the observations and those forecasted by CFSv1, CFSv2, UH, and ECMWF models over Southeast Asia (108–308N,

608–1208E) as a function of the forecast lead time (days).
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As in the global tropics, the skills of the CFSv2 and

UH models over Southeast Asia (Fig. 7) also exhibit

significant fluctuations at different initial dates. For

CFSv2 (Figs. 7a,c), there are apparently four pulses

representing higher skill with three low-skill periods in

between for both rainfall and U850. Referring back to

the northward-propagating intraseasonal events that

occurred in this year (Fig. 1b), we found that the four

periods with higher skill correspond to initial convection

over Southeast Asia (between 108 and 308N). This sug-

gests that the model reproduces the active-to-break mon-

soon transitions well for these cases. The three low-skill

periods correspond to an initially suppressed monsoon

over Southeast Asia, which indicates that the forecasts

have difficulty reproducing break-to-active monsoon

transitions. Similar to the situation over the global tropics

(Fig. 3), for these cases the temporal skill variations be-

tween CFSv2 and UH have an out-of-phase tendency for

the U850 (Figs. 7c,d) but are not so obvious for rainfall

(Figs. 7a,b). For example, the forecast skill in the UH

model (Fig. 7b) is very high from July to October, while

the CFSv2 model has two obvious skill dips during the

same period (Fig. 7a; e.g., the forecasts initialized on

11 July and 31 August, which correspond to break-to-

active monsoon transitions). The cases examined in this

study hint that, for CFSv2 over Southeast Asia, the

active-to-break monsoon transition is much more pre-

dictable than the other way around, which is consistent

with the observational study of Goswami and Xavier

(2003). Future study with long-term hindcasts is needed

to examine to what degree this is a general characteristics

of the model.

To further understand the cause of the CFSv2 skill dip

on 11 July (Fig. 7), the forecasted and observed rainfall

anomalies averaged between 608 and 1208E from 208S to

308N are given in Fig. 8. A northward-propagating in-

traseasonal event occurred during the forecast period.

If we only focus on the near-equatorial region (e.g., be-

tween 108S and 58N), the forecast of CFSv2 is very good,

which captures the development of an active phase and

the transition to a break phase around late July. The

model is even able to predict the initiation of a new event

one month later (Figs. 8a,b). If we turn to Southeast Asia

(north of 108N), the observed northward-propagating

event brings a wet period there from late July to early

August. The forecasted rain belt, however, tends to hang

around 108N instead of the observed 178N (Figs. 8a,b). The

factors that hinder the continuous northward progression

of the rain belt in the model warrant further study. The

relatively higher skill of the UH model on 11 July (Fig. 7)

can be attributed to the better representation of this

northward-propagating event in the model (Figs. 8c,d).

The ECMWFmodel has a very similar seasonal-mean

forecast skill to the UHmodel over Southeast Asia (Fig.

6), as does its skill variations as a function of initial dates

(Fig. 9). As in theUHmodel (Fig. 7), a drastic skill plunge

occurs in June and a small dip appears in late August

and early September. The relatively lower skill in June is

FIG. 7. ACCs between the forecasted and observed rainfall or U850 over Southeast Asia (108–308N, 608–1208E) in the summer 2008 as

a function of initial dates: (a) skill of forecasted rainfall by CFSv2, (b) skill of forecasted rainfall by UH, (c) skill of forecasted U850 by

CFSv2, and (d) skill of forecasted U850 by UH.
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attributed to a tendency to produce an early false onset

of a new intraseasonal event (e.g., Fig. 10d).

Because the summer rainfall over SoutheastAsia largely

results from the northward-propagating intraseasonal

variability (Yasunari 1979), the intraseasonal forecast

skill of the Asian summer monsoon relies highly on the

models’ capability to represent the northward propa-

gation of the BSISO. The relatively higher skills of the

ECMWF and UH models than the CFSv2 model in the

summer 2008 are primarily attributed to better repre-

sentation of the northward-propagating BSISO (Fu et al.

2003; Vitart and Molteni 2009).

What are the possible causes for the lower skill during

the break-to-active transition than during the active-to-

break transition? In nature, the lower predictability of

the break-to-active monsoon transition (Goswami and

Xavier 2003) likely reflects the large interevent varia-

tions of northward-propagating intraseasonal convec-

tion in the observations (e.g., Wang et al. 2006). The

higher predictability of the active-to-break monsoon

transition is probably because the primary governing

processes of this transition are quite deterministic. Ac-

tive convection cools the boundary layer through down-

drafts and warms the upper troposphere through diabatic

heating release, which stabilizes the entire troposphere

and leads to the decay of convection (or the transition to

break phase of the monsoon). In the models, the rela-

tively lower forecast skill of the break-to-active monsoon

transition is likely because of the models’ difficulty to

reproduce the uniqueness of individual northward-

propagating convective events. One encouraging result

is that some break-to-active monsoon transitions can be

well predicted (Figs. 7b, 8c, and 9a), which suggests that

improved representation of northward-propagating intra-

seasonal oscillations may be able to alleviate the so-called

monsoon prediction barrier problem to some degree.

5. Discussion and concluding remarks

a. Discussion

Our analysis of the forecasts in the summer 2008 shows

a great promise in using dynamical models to carry out

FIG. 8. Time–latitude cross sections of observed (shading) and forecasted (contours) (a),(c) intraseasonal rainfall

anomalies (CI is 1 mm day21) and (b),(d) total amount (CI is 3 mm day21) averaged over 608–1208E. Here (a) and

(b) are forecasts from CFSv2; (c) and (d) are forecasts from UH. All forecasts are initialized on 11 Jul 2008.
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operational intraseasonal forecasting of the Asian sum-

mer monsoon (e.g., Figs. 10a,c,e). At the same time, the

practical skills of themodels are still much less than their

potential predictability (Fu et al. 2008; Ding et al. 2011),

largely because of the models’ difficulty in realistically

representing individual BSISO events or possibly because

the models’ potential predictability is overestimated

(Pegion and Sardeshmukh 2011). To facilitate further

detailed diagnosis and model improvement, examples

of ‘‘good’’ and ‘‘bad’’ forecasts from ECMWF, UH, and

CFSv2 in the summer 2008 are highlighted here. The pos-

sible causes for the bad forecasts are discussed, which

will provide useful insights for subsequent diagnosis with

longer hindcasts and for the effort to improve models.

However, it is well recognized that improving dynamical

models takes very long cycles (Jakob 2010). With this in

mind, we further explore the possibility to advance in-

traseasonal forecast skill by the developments of a mul-

timodel ensemble and a combined dynamical–statistical

ensemble.

1) POSSIBLE CAUSES OF BAD FORECASTS IN

DYNAMICAL MODELS

Figure 10 highlights examples of good and bad fore-

casts of monsoon intraseasonal events fromUH,ECMWF,

and CFSv2 based on the skill estimates in Figs. 7 and 9.

The good example for the UH model is the forecast

initialized on 21 July (Fig. 10a) that reproduces the

northward-propagating wet phase well and maintains

it toward early August, even including the reinitiation

of a new intraseasonal event near the equator in mid-

August. For the ECMWFmodel, the forecast initialized

on 11 August (Fig. 10c) captures the monsoon active-to-

break transition and the reinitiation and northward prop-

agation of a new event. For CFSv2, the forecast initialized

on 31 July with initial convection in the monsoon trough

(;158N) predicts the gradually northward-propagating

rain belt and the reinitiation of a new event near the

equator well (Fig. 10e).

The bad examples for both the UH (Fig. 10b) and

ECMWF models (Fig. 10d) are the early false onsets of

new intraseasonal events. For CFSv2, it is the forecast

with initial convection near the equator and very slow

northward propagation of the convection (Fig. 10f). The

early false onset problems in the UH and ECMWF

models are first revealed in this study through inter-

comparison of forecasts. This type of problem is very

difficult to detect through diagnosing long-term free

simulations. On the other hand, the slow propagation of

intraseasonal variability in the CFS models has been de-

tected from the diagnoses of free simulations and fore-

casts (Pegion and Kirtman 2008; W. Wang et al. 2009;

Achuthavarier and Krishnamurthy 2011; Weaver et al.

2011). By analyzing the monsoon intraseasonal oscilla-

tion in CFSv2, B. Goswami et al. (2012, unpublished

manuscript) showed that while CFSv2 reproduces the

FIG. 9. ACCs between the forecasted and observed rainfall or U850 over Southeast Asia (108–308N, 608–
1208E) in the summer 2008 as a function of initial dates, for the skill of (a) forecasted rainfall and (b) U850 by the

ECMWF.
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FIG. 10. Examples of (left) ‘‘good’’ intraseasonal monsoon forecasts and (right) ‘‘bad’’ forecasts, from the (a),(b)

UH, (c),(d) ECMWF, and (e),(f) CFSv2 in the summer 2008. All results are presented as time–latitude cross sections

of total rainfall (mm day21) averaged over 608–1208E. Observations (forecasts) are in shading (contours; CI is

3 mm day21).
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overall observed characteristics of north–south space–

time spectra of rainfall anomalies over 208S–358Nbetween

708 and 908E during June–September, the wavenumber-

1 power spectrum maximum of the northward compo-

nent is around the period of 61 days in CFSv2 relative to

40 days in the observation, indicating that the northward

propagation in CFSv2 is too slow.

Preliminary diagnosis (not shown) suggests that the

early false BSISO onsets in UH and ECMWF are re-

lated to the rapid development of tropical cyclone–like

disturbances in these two models. For the UHmodel, the

false tropical cyclones frequently occur just south of the

equatorial Indian Ocean, probably leading to the early

false BSISO onset as seen in Fig. 10b. For the ECMWF

model, frequent false tropical cyclones tend to appear

over the Arabian Sea and Bay of Bengal (Belanger et al.

2012), likely contributing to the early false BSISO onset

as seen in Fig. 10d. This hypothesis is obtained from a

very limited case study. Further diagnostic andmodeling

studies with more cases and detailed analysis are needed

to address this issue, which is beyond the scope of the

present study. The slow northward propagation in CFSv2

is probably related to the misrepresentations of the cu-

mulus parameterization and air–sea coupling. Seo and

Wang (2010) found that the slow propagation of intra-

seasonal variability in CFSv1 can be significantly im-

proved by replacing its default cumulus parameterization

with a new scheme from increased stratiform rainfall (Fu

andWang 2009). The sensitivity experiments ofW.Wang

et al. (2009) suggest that improved air–sea coupling in

CFSv1 will lead to much better northward-propagating

BSISO.

2) DEVELOPMENTS OF MULTIMODEL AND

DYNAMICAL–EMPIRICAL ENSEMBLES

Given the problems of state-of-the-art dynamical

models and long cycles needed to improve the models,

additional methods have been sought to enhance and/or

supplement the dynamical prediction. Practical approaches

include the developments of multimodel ensembles

FIG. 11. ACCs of (a) intraseasonal rainfall and (b) U850 along with (c),(d) their respective RMSEs between

the observations and those forecasted by EPRmdl, multimodel ensemble CFSv2_UH, UH_EPRmdl ensemble,

and ECMWF_EPRmdl ensemble over the global tropics (308S–308N) as a function of forecast lead time in days.

Results from the ECMWF alone (dashed green lines) and UH alone (dashed red lines) have been repeated here for

reference.
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(Krishnamurti et al. 1999; B. Wang et al. 2009) and

empirical models (Waliser et al. 1999; Wheeler and

Weickmann 2001; Goswami and Xavier 2003; Jones et al.

2004; Jiang et al. 2008). Likely because of the com-

plementary nature between CFSv2 and UH, an equal-

weighted ensemble with these twomodels results in a skill

increase of BSISO-related rainfall from one (Fig. 2a) to

two weeks (Fig. 11a) over the global tropics; so does the

skill of 850-hPa zonal wind (Fig. 11b). Along with the skill

increase measured with ACCs, the RMSEs of the en-

semble (Figs. 11c,d) are also systematically reduced in

comparison with that of individual models (Figs. 2c,d).

However, the ensemble does not increase the skill of

BSISO-related rainfall over Southeast Asia (Figs. 12a,c)

although the skill of 850-hPa zonal wind is significantly

extended in comparison with that of individual models

(Figs. 12b,d). The reasons for this behavior deserve further

study. Because the initial dates of the ECMWF forecasts

are different from theUHmodel, nomultimodel ensemble

with the ECMWF has been attempted.

Following the approach of Wheeler and Weickmann

(2001), a simple empirical model (EPRmdl) has been de-

veloped to generate intraseasonal forecasting of rainfall

and U850 anomalies for the summer 2008. The skill of

EPRmdl reaches the same level as CFSv2, UH, and

ECMWF for BSISO-related rainfall but is systemati-

cally lower than dynamical models for U850 over the

global tropics and Southeast Asia (Figs. 11b and 12b).

When equal-weighted ensembles are developed with

either the UH/EPRmdl pair or the ECMWF/EPRmdl

pair, the resultant skills of BSISO-related rainfall (U850)

reach three weeks (beyond) over the global tropics and

Southeast Asia (Figs. 11 and 12). These results demon-

strate that the developments of both multimodel and

dynamical–empirical ensembles are fruitful pathways to

advance the practical intraseasonal forecast skill of the

Asian summer monsoon.

b. Concluding remarks

In this study, we assessed the intraseasonal forecast

skills of rainfall and 850-hPa zonal wind over the global

tropics and Southeast Asia for the summer 2008 in four

state-of-the-art operational and research models: NCEP

CFS, versions 1 and 2; UH; and ECMWF (Figs. 2 and 6).

The CFSv1 model has the lowest skill among the four.

The other three models have similar skill, with ECMWF

FIG. 12. As in Fig. 11, but for Southeast Asia (108–308N, 608–1208E).
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being the best. The forecast skills of the models vary

considerably with initial conditions. The skill fluctua-

tions of UH and ECMWF are very similar. Both of them

are almost opposite with that of CFSv2. The possible

link between skill variations and model problems has

been explored.We also attempt to advance intraseasonal

forecast skill by the developments of multimodel and

dynamical–empirical ensembles.

One major metric used to quantify the intraseasonal

forecast skill in this study is the spatial anomaly corre-

lation coefficient, which measures the similarity of the

spatial patterns between the forecasts and observations.

Rainfall has been selected as a key predictand in this

study because it can be directly utilized by end users for

the purposes of agricultural planning, water manage-

ment, and disaster prevention. Following the convention

in measuring weather forecast skill, an ACC criterion of

0.5 has been used here to define the intraseasonal fore-

cast skill, which is higher than that used in previous

studies (e.g., Jones et al. 2000; Lin et al. 2008; Fu et al.

2011). The resultant skill of rainfall (U850) over the global

tropics is about 1–2 weeks (3 weeks) for the ECMWF,

UH, and CFSv2 models (Fig. 2). The skill of the CFSv1

model is much lower than the other three.

Over the global tropics, CFSv2 has higher skill than

CFSv1 partly because of better initial conditions (Fig. 2;

see also Wang et al. 2012; Weaver et al. 2011). The

CFSv2 and UHmodels are complementary to each other

in terms of an out-of-phase skill fluctuations with differ-

ent initial conditions in the summer 2008 (Fig. 3). For the

cases when initial convection is located in the monsoon

trough (;158N), CFSv2 has much higher skill than UH

(Fig. 3) because the UH model at this time tends to pro-

duce an early false onset in the equatorial Indian Ocean

(Fig. 4). For cases when initial convection is near the

equator, CFSv2 has much lower skill than UH (Fig. 3)

because of the slow northward propagation of BSISO

in CFSv2 (Fig. 5).

Over Southeast Asia, the intraseasonal forecast skill

of the monsoon rainfall (U850) is also about 1–2 weeks

(3 weeks) for all four models (Fig. 6). In this region,

intraseasonal forecast skill is largely determined by a

model’s ability to represent the northward-propagating

BSISO. The relatively lower skill of CFSv1/CFSv2 (Fig.

6a) for BSISO events that occur in the summer 2008 is

primarily because of the difficulty of realistically repre-

senting the northward propagation, which is particularly

severe during the break-to-active monsoon transition

rather than the active-to-break transition. This charac-

teristic of monsoon predictability asymmetry was first

revealed from the observational study of Goswami and

Xavier (2003). The break-to-active transition, therefore,

has been referred to as the ‘‘monsoon prediction barrier.’’

It is also encouraging to note that with improved repre-

sentation of the northward-propagating BSISO (Fig. 8),

this monsoon prediction barrier problem can be allevi-

ated to some degree for the limited number of cases in-

vestigated in this study (Figs. 7 and 9).

Our analysis based on summer 2008 forecasts suggests

that early false BSISO onset in the UH and ECMWF

models and slow northward propagation in the CFSv2/

CFSv1models are potentially important stumbling blocks

for the further advancement of intraseasonal forecasting

in these models. However, because our results are based

on a single summer consisting of five intraseasonal events,

they do not fully represent the scope of potential issues

impacting improving intraseasonal forecasting. Hypoth-

eses of possible causes of these problems are also raised

from our preliminary analysis and previous studies. Con-

sidering the limited cases used in this study, future

research with long-term hindcasts and more detailed

diagnosis are definitely needed. Amultimodel ensemble

and a dynamical–empirical ensemble are also developed.

Both approaches result in much higher skill than that of

the individual models (Figs. 11 and 12). This finding sug-

gests that based on these cases in order to pursue further

advancement of intraseasonal forecasting, efforts to de-

velop both dynamical models and empirical models are

necessary.
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