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Abstract The boreal summer Asian monsoon has been

evaluated in 25 Coupled Model Intercomparison Project-5

(CMIP5) and 22 CMIP3 GCM simulations of the late

twentieth Century. Diagnostics and skill metrics have been

calculated to assess the time-mean, climatological annual

cycle, interannual variability, and intraseasonal variability.

Progress has been made in modeling these aspects of the

monsoon, though there is no single model that best repre-

sents all of these aspects of the monsoon. The CMIP5

multi-model mean (MMM) is more skillful than the CMIP3

MMM for all diagnostics in terms of the skill of simulating

pattern correlations with respect to observations. Addi-

tionally, for rainfall/convection the MMM outperforms the

individual models for the time mean, the interannual var-

iability of the East Asian monsoon, and intraseasonal

variability. The pattern correlation of the time (pentad) of

monsoon peak and withdrawal is better simulated than that

of monsoon onset. The onset of the monsoon over India is

typically too late in the models. The extension of the

monsoon over eastern China, Korea, and Japan is under-

estimated, while it is overestimated over the subtropical

western/central Pacific Ocean. The anti-correlation

between anomalies of all-India rainfall and Niño3.4 sea

surface temperature is overly strong in CMIP3 and typi-

cally too weak in CMIP5. For both the ENSO-monsoon

teleconnection and the East Asian zonal wind-rainfall

teleconnection, the MMM interannual rainfall anomalies

are weak compared to observations. Though simulation

of intraseasonal variability remains problematic, several

models show improved skill at representing the northward

propagation of convection and the development of the til-

ted band of convection that extends from India to the

equatorial west Pacific. The MMM also well represents the

space–time evolution of intraseasonal outgoing longwave

radiation anomalies. Caution is necessary when using

GPCP and CMAP rainfall to validate (1) the time-mean

rainfall, as there are systematic differences over ocean and

land between these two data sets, and (2) the timing of

monsoon withdrawal over India, where the smooth south-

ward progression seen in India Meteorological Department

data is better realized in CMAP data compared to GPCP

data.
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1 Introduction

Nearly half of the world’s population is dependent on

monsoon rainfall for food and energy security. The mon-

soon is an integral and robust component of the seasonal

cycle, though the vagaries of its timing, duration, and

intensity are of major concern, especially over semi-arid

regions where agriculture is the primary source of food. On

interannual time scales the standard deviation of the Indian/

South Asian monsoon rainfall is on the order of 10 % of

the seasonal mean, and the corresponding percentage of

East Asian summer monsoon rainfall is *30 % (Zhou and

Yu 2005). However, subseasonal variations can give rise to

much greater swings in rainfall variability and modulate

higher frequency variations, including tropical cyclones

(e.g., Nakazawa 1986). Recent examples of such extreme

swings in the monsoon include the July 2002 drought over

India (Prasanna and Annamalai 2012), and the Pakistan

flood of July–August 2010 (Lau and Kim 2010). Fore-

warning of extreme subseasonal variations is particu-

larly important, since this would enable the selection of

alternative crops, the adjustment of planting times, and

management of hydrometeorological services (water dis-

tribution, etc.) to help cope with the extreme conditions

(Webster and Jian 2011). Improvement in the prospects of

monsoon predictability at all time scales requires (1) an

improved understanding of the physical processes that

modulate the monsoon, (2) improved observations for

processes studies, initialization of forecast models, and

long term monitoring, and (3) better simulation of the

monsoon in numerical weather prediction models and cli-

mate models.

There are many facets of the atmosphere–ocean–land–

cryosphere system that interact to produce monsoon.

The seasonal cycle of solar forcing is the basic driver of

the monsoon over the Asian region, contributing to the

development of a land–sea temperature gradient, including

aloft, due to heating of the Tibetan Plateau (Li and Yanai

1996; Webster et al. 1998). The temperature and sea-level

pressure gradients that develop promote the formation of

the low-level cross-equatorial southwest monsoon circula-

tion (Findlater 1970). This circulation transports moisture

laden air from the ocean to feed convection (Pearce and

Mohanty 1984) that leads to the onset of the monsoon.

Subsequently, the off-equatorial convective heating inter-

acts with the circulation to help maintain monsoon rainfall

(Gill 1980; Annamalai and Sperber 2005).

Precursory and/or contemporaneous forcings, such as

those related to snowcover (Blanford 1884), and pressure

over the Pacific and Indian Oceans (Walker 1924), sug-

gested evidence that teleconnections from remote regions

could influence the monsoon, and be a source of predict-

ability. Potential prediction of such slowly varying com-

ponents of the climate system, especially sea surface

temperature (SST; Charney and Shukla 1981), form the

basis of seasonal prediction systems with dynamical

models and empirical/statistical models. The main skill in

seasonal forecasting of the monsoon is intimately linked to

our ability to forecast the El Niño/Southern Oscillation

(ENSO). However, properly representing the location

and intensity of the ENSO diabatic heating is essential

for getting a response consistent with that expected

from statistical teleconnections relationships (Slingo and

Annamalai 2000). Other more local interactions, such as

Indian Ocean variations (Boschat et al. 2012) and soil

moisture (Webster et al. 1998), may play a role in modu-

lating the monsoon.

Given the multitude of physical processes and inter-

actions that influence the monsoon, it is no wonder that

simulation and prediction of the monsoon remain grand

challenge problems. The challenges of modeling the

monsoon and making climate change projections have

been discussed in Turner et al. (2011) and Turner and

Annamalai (2012). By its very nature, simulating the

monsoon requires models with coupling between the

atmosphere, the ocean, and land. In prescribed SST

experiments, such as from the Tropical Ocean Global

Atmosphere Monsoon Experimentation Group (WCRP

1992, 1993), the Atmospheric Model Intercomparison

Project (Sperber and Palmer 1996), and the Climate

Variability and Predictability (CLIVAR) Climate of the

twentieth Century simulations (Zhou et al. 2009a)

observed interannual variations of Asian–Australian

monsoon rainfall over land were poorly represented. This

in part occurred because of the use of prescribed SST’s,

which forced an incorrect rainfall-SST teleconnection

(Wang et al. 2004). Ocean–atmosphere coupling also

gives rise to a wide-range of model performance, in which

monsoon climate and variability can be adversely affected

by poorly representing air–sea interaction and its rela-

tionship to evaporation (Bollasina and Nigam 2009). Even

so, incremental progress in simulating monsoon has been

hard-fought due to improvements in local, regional, and

global interactions that modulate the monsoon on diurnal

through interdecadal time scales (e.g., Wang 2006).

The goal of this paper is to assess the fidelity of boreal

summer Asian monsoon in the Coupled Model Intercom-

parison Project-5 (CMIP5) models as compared to the

CMIP3 models and observations. We employ a multitude

of diagnostics and skill metrics to present a quantitative

assessment of the models’ monsoon performance relative

to observations. The diagnostics were selected after much
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deliberation by the CLIVAR Asian–Australian Monsoon

Panel (AAMP) Diagnostics Task Team, and helpful com-

ments from the AAMP membership and other experts. The

accompanying skill scores are meant to provide a broad

overview of the ability to simulate the Asian summer

monsoon, though analysis at the process-level is beyond

the scope of this assessment. We will, however, discuss

possible physical interpretations of the main results. The

models and observations are discussed in Sect. 2. We

evaluate the time-mean rainfall and 850 hPa wind in Sect.

3, and the climatological annual cycle and timing of

monsoon onset, peak, withdrawal, and duration are

explored in Sect. 4. The interannual variability of the

ENSO-monsoon teleconnection, and teleconnections to the

850 hPa zonal wind over East Asia are given in Sect. 5.

Boreal summer intraseasonal variability (BSISV) is eval-

uated in Sect. 6, and discussion and conclusions are given

in Sect. 7.

2 Models, observations, and skill scores

Table 1 contains basic information on the CMIP5 (Taylor

et al. 2012) and CMIP3 models (Meehl et al. 2007) used in

this study, including horizontal and vertical resolution of

the atmospheric and oceanic components. The CMIP5

models were developed circa 2011, while the CMIP3

models were developed circa 2004. To more easily dis-

criminate between the two vintages of models in this

paper, the model designations for the CMIP5 models are

Table 1 Modeling group, model designation, and horizontal and vertical resolution of the atmospheric and oceanic models, respectively.

Capitalized designations are CMIP5 models, and lower-case designations are CMIP3 models

Modelling group Model designation AGCM horizontal/

vertical resolution

OGCM horizontal/

vertical resolution

Beijing Climate Center, China Meteorological

Administration

BCC-CSM1.1 T42 L26 1� lon 9 1.33� lat L40

Bjerknes Center for Climate Research bccr-bcm2.0 T63 L31 1.5� lon 9 0.5�–1.5�cos(lat) L35

Canadian Centre for Climate Modelling and

Analysis

CanESM2 T63 L35 256 9 192 L40

cgcm3.1 (t47) T47 L31 192 9 96 L29

cgcm3.1 (t63) T63 L31 256 9 192 L31

National Center for Atmospheric Research CCSM4 1.25� lon 9 0.9� lat L26 1.1� lon 9 0.27�–0.54� lat L60

ccsm3 T85 L26 384 9 288 L32

pcm1 T42 L 18 384 9 288 L32

Centre National de Recherches Meteorologiques/

Centre Europeen de Recherche et Formation

Avancees en Calcul Scientifique

CNRM-CM5 TL127 L31 1� lon 9 1� lat L42

cnrm-cm3 T42 L45 180 9 170 L33

Commonwealth Scientific and Industrial Research

Organization in collaboration with Queensland

Climate Change Centre of Excellence

CSIRO-Mk3.6.0 T63 L18 1.875� lon 9 *0.9375� lat L31

csiro-mk3.0 T63 L18 1.875� lon 9 0.925� lat L31

csiro-mk3.5 T63 L18 1.875� lon 9 0.925� lat L31

Meteorological Institute of the University of Bonn,

Meteorological Research Institute of KMA, and

Model and Data group

echo-g T30 L19 T42 L20

LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences and CESS,Tsinghua

University

FGOALS-g2 128 9 60 L26 360 9 196 L30

LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences

FGOALS-s2 R42 L26 0.5�–1� lon 9 0.5�–1� lat L

fgoals-g1.0 T42 L26 1� lon 9 1� lat L16

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 C48 L48 360 9 200 L50

GFDL-ESM2G M45 L24 360 9 210 L63

GFDL-ESM2M M45 L24 360 9 200 L50

gfdl-cm2.0 N45 L24 1� lon 9 0.33�–1� lat L50

gfdl-cm2.1 N45 L24 1� lon 9 0.33�–1� lat L50

NASA Goddard Institute for Space Studies GISS-E2-H 2.5� lon 9 2� lat L40 1.25� lon 9 1� lat L32

GISS-E2-R 2.5� lon 9 2� lat L40 1� lon 9 *1� lat L32

giss-aom 90 9 60 L12 90 9 60 L16
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capitalized, while the model designations of the CMIP3

models are given as lower-case. Single realizations for each

of the models have been evaluated using the historical

simulations from CMIP5 and the Climate of the twentieth

Century (20c3m) simulations from CMIP3. Though the

simulation period is *1850-present, the period 1961–1999

is analyzed herein. This is the period when both CMIP5

and CMIP3 had high-frequency (daily) data with which to

evaluate intraseasonal variability and the climatological

annual cycle of pentad rainfall. Thus, the analysis period of

the high-frequency variability is consistent with the anal-

ysis period of the interannual variability and the climato-

logical performance derived from monthly data. These

simulations include the modeling groups best estimates of

natural (e.g., solar irradiance, volcanic aerosols) and

anthropogenic (e.g., greenhouse gases, sulfate aerosols,

ozone) climate forcing during the simulation period.

Compared to CMIP3, the CMIP5 models typically have

higher horizontal and vertical resolution in the atmosphere

and ocean, a more detailed treatment of aerosols, and some

have a more complete representation of the Earth system

(e.g., carbon cycle). Detailed documentation of the CMIP3

models can be found at: http://www-pcmdi.llnl.gov/ipcc/

model_documentation/ipcc_model_documentation.php and

CMIP5 model documentation can be found at: http://www.

earthsystemgrid.org/search?Type=Simulation%2bMetadata.

In most cases, multiple sources of observations are used

in our analysis. For rainfall we use the Global Precipitation

Climatology Project (GPCP) data (Huffman et al. 2001) and

the Climate Prediction Center Merged Analysis of Precip-

itation (CMAP; Xie and Arkin 1997) for 1979–2007.

Advanced Very-High Resolution Radiometer daily outgo-

ing longwave radiation for 1979–2006 (AVHRR OLR,

Liebmann and Smith 1996), which is a good proxy of

tropical convection (Arkin and Ardanuy 1989), is used to

validate intraseasonal variability. For the 850 hPa wind we

use the Japan Meteorological Agency and the Central

Research Institute of Electric Power Industry Reanalysis-25

(JRA-25; Onogi et al. 2007) for 1979–2007, the European

Centre for Medium-Range Weather Forecasts Reanalysis-

40 (ERA40; Uppala et al. 2005) for 1961–1999, and the

National Centers for Environmental Prediction/National

Center for Atmospheric Research Reanalysis (NCEP/

NCAR; Kalnay et al. 1996) for 1961–2007.

Model skill is calculated against a primary observa-

tional data set, for example, GPCP in the case of

Table 1 continued

Modelling group Model designation AGCM horizontal/

vertical resolution

OGCM horizontal/

vertical resolution

Met Office Hadley Centre HadCM3 N48 L19 1.25� lon 9 1.25� lat L20

HadGEM2-CC N96 L60 1� lon 9 0.3�–1.0� lat L40

HadGEM2-ES N96 L38 1� lon 9 0.3�–1.0� lat L40

ukmo-hadcm3 2.5� lon 9 3.75� lat L19 1.25� lon 9 1.25� lat L20

ukmo-hadgem1 N96 L38 1� lon 9 0.3�–1.0� lat L40

Instituto Nazionale di Geofisica e Volcanologia ingv-sxg T106 L19 1� lon 9 1� lat L31

Institute for Numerical Mathematics INM-CM4 2� lon 9 1.5� lat L21 1� lon 9 0.5� lat L40

inm-cm3.0 5� lon 9 4� lat L21 2.5� lon 9 2� lat L33

Institut Pierre-Simon Laplace IPSL-CM5A-LR 96 9 95 L39 2� lon 9 2� lat L31

IPSL-CM5A-MR 144 9 143 L39 2� lon 9 2� lat L31

ipsl-cm4 96 9 72 L19 2� lon 9 2� lat L31

Japan Agency for Marine-Earth Science and

Technology, Atmosphere and Ocean Research

Institute (The University of Tokyo), and National

Institute for Environmental Studies

MIROC-ESM T42 L80 256 9 192 L44

MIROC-ESM-CHEM T42 L80 256 9 192 L44

Atmosphere and Ocean Research Institute (The

University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology

MIROC4h T213 L56 1280 9 912 L48

MIROC5 T85 L40 256 9 224 L50

miroc3.2(hires) T106 L56 T106 L48

miroc3.2(medres) T42 L20 256 9 192 L44

Max Planck Institute for Meteorology MPI-ESM-LR T63 L47 GR15 L40

echam5/mpi-om T63 L32 1� lon 9 1� lat L42

Meteorological Research Institute MRI-CGCM3 TL159 L48 1� lon 9 0.5� lat L51

mri-cgcm2.3.2 T42 L30 256 9 192 L44

Norwegian Climate Centre NorESM1-M 144 9 96 L26 384 9 320 L53
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Table 2 Skill scores for the June–September climatology and the climatological annual cycle

Model Climatology Climatological annual cycle rainfall

Pr 850 hPa T–Lat Onset Peak Withd. Duration Hit rate Threat

Observations 0.927 0.986 0.887 0.748 0.834 0.830 0.671 0.893 0.744

CMIP5 MMM 0.898 0.976 0.674 0.664 0.786 0.792 0.605 0.844 0.625

CMIP3 MMM 0.865 0.967 0.657 0.510 0.733 0.712 0.380 0.821 0.573

BCC-CSM-1 0.808 0.928 0.338

bccr-bcm2.0 0.733 0.933 0.639

CanESM2 0.815 0.951 0.552 0.298 0.451 0.543 0.164 0.782 0.517

cgcm3.1 (t47) 0.782 0.935 0.465 0.063 0.476 0.454 0.109 0.766 0.522

cgcm3.1 (t63) 0.796 0.944 0.461 0.155 0.432 0.384 0.154 0.758 0.508

CCSM4 0.849 0.952 0.678 0.581 0.717 0.798 0.570 0.836 0.619

ccsm3 0.748 0.913 0.390 0.394 0.481 0.459 0.346 0.757 0.487

pcm1 0.634 0.793 0.364

CNRM-CM5 0.852 0.974 0.567 0.674 0.638 0.750 0.656 0.796 0.513

cnrm-cm3 0.717 0.908 0.763 0.489 0.596 0.633 0.329 0.749 0.437

CSIRO-Mk3.6.0 0.713 0.896 0.232 0.006 0.451 0.729 0.331 0.762 0.497

csiro-mk3.0 0.803 0.889 0.385 0.196 0.461 0.601 0.147 0.790 0.495

csiro-mk3.5 0.796 0.923 0.171 0.287 0.474 0.665 0.350 0.788 0.540

FGOALS-g2 0.766 0.923 0.455

FGOALS-s2 0.807 0.916 0.613 0.601 0.596 0.649 0.531 0.812 0.537

fgoals-g1.0 0.690 0.803 0.587 -0.050 0.672 0.785 0.097 0.770 0.460

GFDL-CM3 0.844 0.941 0.742 0.458 0.407 0.546 0.406 0.796 0.532

GFDL-ESM2G 0.821 0.955 0.727 0.370 0.560 0.660 0.328 0.841 0.615

GFDL-ESM2M 0.828 0.958 0.676 0.490 0.714 0.730 0.383 0.824 0.586

gfdl-cm2.0 0.826 0.954 0.673 0.715 0.540 0.624 0.495 0.812 0.559

gfdl-cm2.1 0.843 0.957 0.681 0.453 0.662 0.731 0.485 0.825 0.587

GISS-E2-H 0.631 0.902 0.318

GISS-E2-R 0.730 0.912 0.235

giss-aom 0.780 0.894 0.282 0.359 0.614 0.540 0.203 0.774 0.457

HadCM3 0.773 0.931 0.550 0.555 0.447 0.519 0.452 0.873 0.675

HadGEM2-CC 0.795 0.927 0.376 0.526 0.659 0.634 0.317 0.777 0.543

HadGEM2-ES 0.800 0.933 0.356 0.562 0.620 0.648 0.367 0.769 0.538

ukmo_hadcm3 0.778 0.932 0.529

ukmo_hadgem1 0.798 0.938 0.386

ingv-sxg 0.814 0.950 0.629 0.277 0.575 0.724 0.417 0.797 0.516

INM-CM4 0.742 0.864 0.561 0.153 0.616 0.649 0.224 0.810 0.560

inm-cm3.0 0.619 0.837 0.497 -0.125 0.331 0.592 -0.064 0.795 0.517

IPSL-CM5A-LR 0.797 0.926 0.442 0.399 0.540 0.712 0.482 0.798 0.515

IPSL-CM5A-MR 0.809 0.935 0.501 0.421 0.575 0.769 0.591 0.787 0.501

ipsl-cm4 0.743 0.907 0.214 0.215 0.495 0.634 0.254 0.786 0.468

MIROC-ESM 0.617 0.824 0.518 0.391 0.610 0.666 0.394 0.756 0.434

MIROC-ESM-CHEM 0.642 0.831 0.538 0.518 0.669 0.653 0.423 0.752 0.433

MIROC4h 0.802 0.940 0.573 0.674 0.626 0.766 0.620 0.843 0.611

MIROC5 0.842 0.940 0.778 0.362 0.778 0.851 0.652 0.808 0.531

miroc3.2 (hires) 0.761 0.914 0.523 0.483 0.383 0.709 0.568 0.792 0.486

miroc3.2 (medres) 0.765 0.919 0.513 0.633 0.402 0.571 0.503 0.744 0.384

MPI-ESM-LR 0.792 0.949 0.664 0.316 0.579 0.652 0.472 0.781 0.535

echam5/mpi-om 0.800 0.942 0.664 0.265 0.412 0.537 0.337 0.800 0.547

echo_g 0.803 0.911 0.522 0.008 0.041 0.368 0.189 0.787 0.507
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Table 3 Skill scores for the Indian Monsoon and East Asian monsoon interannual variability and the boreal summer intraseasonal variability

(BSISV)

Model Indian Monsoon East Asian Monsoon BSISV

AIR/N3.4 Pr Pr 850 hPa Variance Life cycle

Observations -0.533 0.798 0.959 0.989 0.995 0.893

CMIP5 MMM 0.616 0.888 0.972 0.903 0.766

CMIP3 MMM 0.600 0.799 0.969 0.895 0.754

BCC-CSM-1 -0.250 -0.140 0.695 0.930

bccr-bcm2.0 -0.430 0.249 0.670 0.951

CanESM2 -0.273 0.014 0.672 0.861 0.846 0.651

cgcm3.1 (t47) -0.335 0.404 0.625 0.899 0.727 0.605

cgcm3.1 (t63) -0.182 0.173 0.703 0.938 0.717 0.604

CCSM4 -0.556 0.337 0.789 0.947

ccsm3 -0.561 0.264 0.722 0.800 0.695 0.588

pcm1 -0.356 0.293 0.232 0.870

CNRM-CM5 -0.307 0.245 0.642 0.894

cnrm-cm3 -0.484 0.419 0.313 0.727 0.570 0.600

CSIRO-Mk3.6.0 -0.487 0.162 0.346 0.858 0.809 0.645

csiro-mk3.0 -0.403 -0.112 0.629 0.939 0.830 0.581

csiro-mk3.5 -0.719 0.137 0.569 0.924

FGOALS-g2 -0.052 0.238 0.739 0.936

FGOALS-s2 0.114 0.096 0.787 0.921 0.734 0.608

fgoals-g1.0 -0.747 0.276 0.415 0.426 0.271 0.438

GFDL-CM3 -0.442 0.192 0.315 0.867

GFDL-ESM2G -0.289 0.251 0.458 0.972 0.753 0.643

GFDL-ESM2M -0.187 0.251 0.606 0.955

gfdl-cm2.0 -0.667 0.336 0.668 0.976 0.818 0.677

gfdl-cm2.1 -0.494 0.412 0.390 0.919 0.850 0.712

GISS-E2-H -0.094 0.254 0.586 0.918

GISS-E2-R -0.366 0.379 0.656 0.906

giss-aom 0.094 0.189 0.117 0.754 -0.070 0.395

HadCM3 -0.299 0.180 0.773 0.897

Table 2 continued

Model Climatology Climatological annual cycle rainfall

Pr 850 hPa T–Lat Onset Peak Withd. Duration Hit rate Threat

MRI-CGCM3 0.752 0.886 0.195 0.024 0.619 0.535 -0.014 0.751 0.465

mri-cgcm2.3.2 0.726 0.885 0.538 0.471 0.345 0.550 0.346 0.746 0.473

NorESM1-M 0.848 0.913 0.634 0.558 0.723 0.791 0.565 0.838 0.624

The results are given for observations, the MMM’s, and for the CMIP5 and CMIP3 models. The observed skill for precipitation is between GPCP

and CMAP, and the skill for the 850 hPa wind (850 hPa) is between ERA40 and JRA25. The model pattern correlations for the precipitation

climatology (Pr) are calculated with respect to GPCP precipitation. For the 850 hPa wind climatology (850 hPa), the model pattern correlations

are calculated with respect to ERA40 850 hPa wind. For the climatologies the skill is calculated over the region 40�E–160�E, 20�S–50�N. For the

time–latitude (T–Lat) climatological annual cycle of monthly rainfall averaged between 70�E–90�E, the model pattern correlations are calculated

with respect to GPCP precipitation over the region 10�S–30�N, for May–October (see Sect. 4.1). For the climatological annual cycle of pentad

rainfall, the model pattern correlations are calculated with respect to GPCP precipitation for the pentads of onset, peak, withdrawal, and duration

of the monsoon over the region 50�E–180�E, 0�–50�N (see Sect. 4.2). The categorical skill scores, hit rate and threat score, indicate how well a

model represents the spatial domain of the monsoon, where a value =1 indicates perfect agreement between model and observations. Missing

table entries occur for models that did not have available data for analysis. The top five models with the largest skill scores for each diagnostic are

highlighted
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precipitation. Given that the observations are only esti-

mates of the true values, we also calculate the skill

between the different sets of observations. This observa-

tional skill estimate is a measure of consistency between

the two sets of observations. The model skill is predom-

inantly assessed using pattern correlation between the

models and observations. Space–time correlation is used

to assess the life cycle of the model and observed intra-

seasonal variability. Correlation of anomalies of all-India

rainfall (AIR) and Niño3.4 SST is one skill metric used to

assess the ENSO-monsoon relationship, and the threat

score and hit-rate are used to assess how well the models

represent the observed spatial extent of the monsoon

domain. The skill scores for the individual models and the

multi-model means (MMM’s) are presented in scatter

plots, and the numerical values are given in Tables 2 and

3. For the calculation of the skill metrics, the model data

have been regridded to a 2.5� 9 2.5� grid (144 9 73 for

Table 3 continued

Model Indian Monsoon East Asian Monsoon BSISV

AIR/N3.4 Pr Pr 850 hPa Variance Life cycle

HadGEM2-CC -0.335 -0.068 0.787 0.935 0.857 0.641

HadGEM2-ES -0.344 0.216 0.839 0.949 0.862 0.651

ukmo-hadcm3 -0.374 0.323 0.758 0.947

ukmo-hadgem1 -0.446 0.154 0.744 0.912

ingv-sxg -0.455 0.313 0.513 0.925

INM-CM4 -0.033 0.110 -0.047 0.816 0.639 0.562

inm-cm3.0 -0.258 -0.073 0.520 0.850

IPSL-CM5A-LR -0.700 0.611 0.450 0.708 0.791 0.654

IPSL-CM5A-MR -0.763 0.636 0.532 0.749 0.827 0.635

ipsl-cm4 -0.554 0.347 0.675 0.787 0.785 0.648

MIROC-ESM 0.088 0.061 0.596 0.694 0.548 0.516

MIROC-ESM-CHEM -0.104 0.045 0.687 0.882 0.554 0.528

MIROC4h -0.327 0.529 0.723 0.921 0.736 0.625

MIROC5 -0.321 0.010 0.567 0.946 0.805 0.691

miroc3.2 (hires) 0.080 -0.009 0.643 0.915 0.666 0.543

miroc3.2 (medres) -0.329 0.234 0.719 0.928 0.800 0.575

MPI-ESM-LR -0.291 0.401 0.283 0.899 0.874 0.681

echam5/mpi-om -0.573 0.560 0.230 0.817 0.873 0.721

echo_g -0.554 0.113 0.664 0.914 0.810 0.702

MRI-CGCM3 -0.274 0.338 0.819 0.937 0.782 0.628

mri-cgcm2.3.2 -0.424 0.107 0.570 0.931 0.575 0.654

NorESM1-M -0.690 0.522 0.811 0.959 0.833 0.627

The results are given for observations, the MMM’s, and for the CMIP5 and CMIP3 models. The interannual variations of the ENSO-Monsoon

relationship are characterized by (1) the lag 0 correlation between JJAS anomalies of all-India rainfall and Niño3.4 SST (AIR/N3.4). The AIR is

for land-only gridpoints over the region 65�E–95�E, 7�N–30�N. The observations are for the anomalies of Rajeevan rainfall versus HadISST SST

for 1961–1999, and (2) the pattern correlations of JJAS precipitation anomalies (Pr) obtained from regression with JJAS anomalies of Niño3.4

SST. The model pattern correlations are calculated with respect to GPCP anomalies that were obtained by regression with the Niño3.4 SST

anomalies from the NCEP/NCAR reanalysis (1979–2007). The pattern correlations are calculated over the region 60�E–100�E, 0�–30�N. For

observations the skill is between GPCP and CMAP. For the East Asian monsoon, the negative of the June–August Wang and Fan (1999) zonal

wind shear index (WFN, see Sect. 5.2) is regressed against June–August anomalies of precipitation and 850 hPa wind. The model pattern

correlations are calculated with respect to GPCP rainfall anomalies and JRA 850 hPa wind anomalies that were obtained by regression with the

JRA25 WFN. The pattern correlations are calculated over the region 100�E–140�E, 0�–50�N. For observations the skill is between GPCP/JRA25

and CMAP/NCEP-NCAR Reanalysis. For BSISV, the skill is (1) the pattern correlation of June–September 20–100 day bandpass filtered OLR

variance between the model (1961–1999) and AVHRR OLR (1979–2006). For observations the skill is for AVHRR OLR for 1979–2006 versus

AVHRR OLR for 1979–1995, and (2) the spatio-temporal correlation of the model BSISV life cycle versus that from the observed cyclosta-

tionary EOF (CsEOF) analysis of Annamalai and Sperber (2005). The life cycle of the BSISV is obtained by first projecting 20–100 day filtered

OLR from observations (1979–2006) and the models (1961–1999) on to the Day 0 pattern of the observed CsEOF. The resulting PC is used for

lag regression against the 20–100 day filtered OLR with the spatio-temporal correlation between model and observation being calculated for Day

-15, Day -10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20. The skill scores for the intraseasonal variability are calculated over the

region 40�E–180�E, 30�S–30�N. Missing table entries occur for models that did not have available data for analysis. The top five models with the

largest skill scores for each diagnostic are highlighted
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winds and OLR (the AVHRR grid), and 144 9 72 for

precipitation (the grid of GPCP and CMAP). More details

of the skill scores are presented in the relevant sections of

the paper.

Due to the large number of models evaluated, in this

paper we only present spatial patterns of the diagnostics for

the observations, for the two models that demonstrate the

range of performance based on the relevant skill score, and

for the CMIP5 and CMIP3 MMM’s. To facilitate evalua-

tion by the modeling groups and other interested parties,

we have posted figures for all of the models for each of

the diagnostics at: http://www-pcmdi.llnl.gov/projects/ken/

cmip5_bsisv/Tables.html.

3 Time-mean state

The June–September time-mean patterns of rainfall and

850 hPa wind represent key aspects of the monsoon. The

intense solar heating in late spring and early summer

supports the development of a heat low over the land of

south and Southeast Asia. The resulting land–sea thermal

and pressure gradients induce the development of cross-

equatorial low-level winds that transport an increased flux

of moisture onto the Asian landmass, heralding the onset of

the monsoon. The strong coupling between diabatic heating

and the circulation further amplifies the cross-equatorial

flow, the moisture influx, and the rainfall. The orographic

structure of the Asian landmass provides anchor points

where the observed monsoon rainfall tends to be concen-

trated, especially adjacent to the Western Ghats, the foot-

hills of the Himalayas, the Burmese coast, and the

Philippines (Fig. 1a). The orography also plays an impor-

tant role in anchoring the intensity and position of the

cross-equatorial flow (Hoskins and Rodwell 1995). Thus,

apart from realistic representation of physical processes,

the details of the vertical representation of orography and

its interaction with the circulation are important for real-

istic simulation of regional rainfall in models. With a

pattern correlation of 0.93 between GPCP and CMAP

rainfall, the spatial distribution of observed rainfall is well

established (Table 2). The vagaries in simulating the

multitude of physical processes involved in the monsoon

leads to diversity in the ability to simulate the observed

rainfall distribution, as seen in Fig. 1b, c. Despite gridscale

noise at its native horizontal resolution (Fig. 1b), when

regridded to the observational horizontal resolution (not

shown), the CNRM-CM5 model has the highest pattern

correlation with GPCP rainfall. This model over-empha-

sizes the monsoon rainfall over the tropical oceans and

does not capture the local maxima over central India. The

MIROC-ESM model, Fig. 1c, has the smallest pattern

correlation with GPCP rainfall, and it overestimates the

rainfall over the Arabian Sea, and it underestimates the

East Asian component of the monsoon.

The MMM is an efficient way to assess the overall

performance of the CMIP5 and CMIP3 models. For both

sets of integrations, the MMM outperforms the individual

models in terms of the pattern correlation skill metric

(Table 1). Figure 1d, e indicate that the CMIP5 MMM has

an improved representation of rainfall compared to the

CMIP3 MMM. This is reflected by the more realistic

magnitude of rainfall adjacent to the Western Ghats, the

foothills of the Himalayas, and adjacent to the Philippines.

The enhanced skill in representing the precipitation anchor

points in the CMIP5 models may be associated with their

higher horizontal resolution compared to the CMIP3

models. Even so, the MMM’s have smaller pattern corre-

lations than that between GPCP and CMAP, indicating

scope for model improvement in the representation of

rainfall.

Figure 1f–j show the spatial distributions of the rainfall

errors. The magnitude of the rainfall errors in individual

models (Fig. 1g, h) is larger than seen in observations

(Fig. 1f) and the MMM’s (Fig. 1i, j). The CMIP5 and

CMIP3 MMM errors have virtually the same spatial

structure, with an underestimate of rainfall over the Asian

continent from India to Southeast Asia, and extending

north over eastern China, Korea, and southern Japan. The

error over eastern China, Korea, and Japan indicates that

rainfall in the Meiyu front is underestimated. Alternatively,

the rainfall is over-estimated over most of the tropical

western/central Indian Ocean. Over the western Pacific,

there is a tripole error pattern from the equator to 45�N.

The MMM error structure is largely consistent with dif-

ference between CMAP and GPCP (Fig. 1f). A similar

error structure is also seen by comparing Tropical Rainfall

Measurement Mission rainfall with GPCP (Brian Mapes,

personal communication, 2012), suggesting that the lack of

definitive precipitation intensity estimates may be an

impediment to making further progress in simulating

monsoon rainfall.

The observed and simulated time-mean 850 hPa wind is

given in Fig. 2. Skill is calculated with respect to ERA40.

The ERA40 and JRA25 reanalysis (not shown) estimates of

the wind structure are highly consistent, as indicated by

their pattern correlation of 0.99 (Table 2). The main fea-

tures of the low-level monsoon circulation include the

Fig. 1 a–e JJAS precipitation rate climatology from a GPCP,

b CNRM-CM5, c MIROC-ESM, d CMIP5 MMM, and e CMIP3

MMM. Also given in a is the pattern correlation of GPCP with

CMAP, and in b–e are the model pattern correlations with GPCP over

the region 40�E–160�E, 20�S–50�N. f (CMAP) minus (GPCP), g–j as

b–e but for (model) - (GPCP). The units are (mm day-1). GPCP and

CMAP data is from 1979 to 2007 and the model data is from 1961 to

1999

c
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(d) CMIP5 MMM 0.90

(c) MIROC-ESM 0.62

(b) CNRM-CM5 0.85

(a) GPCP (1979-2007) 0.93

(e) CMIP3 MMM 0.86

(i) CMIP5 MMM –GPCP

(h) MIROC-ESM –GPCP

(g) CNRM-CM5 –GPCP

(f) CMAP –GPCP (1979-2007)

(j) CMIP3 MMM –GPCP
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cross-equatorial flow over the western Indian Ocean/East

African highlands, the westerly flow that extends from the

Arabian Sea to the South China Sea, the monsoon trough

over the Bay of Bengal, and the weak southerlies over the

South China Sea and East Asia. The difference between

JRA25 and ERA40, seen in Fig. 2f (note the different unit

vector scale relative to the full field in Fig. 2a), is smaller

than that between the NCEP-NCAR and ERA15 reanaly-

ses (Annamalai et al. 1999), where there were also large

errors over the tropical Indian Ocean. The simulated

northwesterly wind error over the Arabian Peninsula, and

the northerly error over Pakistan and the Thar Desert,

Fig. 2g–j, is similar to the differences between the rea-

nalyses (Fig. 2f). This suggests that improved observations

are needed to constrain the climate simulations. It is pos-

sible that a dearth of rawindsonde reports from remote

regions, in conjunction with the way in which the land

surface processes and/or orography are handled, may

contribute to the observational uncertainty over the land

from the reanalyses.

As for rainfall, the MMM’s (Fig. 2d, e) outperform the

range of model behavior (Fig. 2b, c), and the systematic

model error is nearly identical between CMIP5 and CMIP3

(Fig. 2i, j). The MMM wind error is consistent with the

rainfall error, with weak flow over India and the Bay of

Bengal being associated with the underestimated rainfall

over these locations. Despite overly strong rainfall over the

western Arabian Sea, both CMIP5 and CMIP3 MMM’s

suggest that the underestimated cross-equatorial flow is

associated with the underestimated off-equatorial diabatic

heating anomalies along the monsoon trough, near 20�N.

The monsoon trough over the Bay of Bengal is too zonal

(Fig. 2d, e), which may contribute to the excessive rainfall

in the vicinity of the South China Sea and Maritime

Continent (Fig. 1d, e). Support for this scenario has been

found in experiments using the GFDL AM2.1 model

(Annamalai et al. 2012a). However, the sequence of events

that give rise to these errors needs to be worked out: Is it

the poor development of the monsoon trough that gives rise

to the excessive rainfall near the Maritime Continent, or

does excessive rainfall near the Maritime Continent result

in a poor representation of the monsoon trough? Alterna-

tive and/or additional interactions/feedbacks need to be

considered in the development of the systematic error,

including the possible role of Rossby wave descent over

South Asia (Annamalai and Sperber 2005), SST feedback,

and moisture transports.

Over the western Pacific the simulated cyclonic wind

error (Fig. 2g–j), which is consistent with the rainfall

overestimate seen near 120�E–180�E, 8�N–22�N (Fig. 1g,

i, j; PCM rainfall error not shown), indicates a large bias in

the simulation of the western Pacific subtropical high. The

northeasterly wind error along the poleward flank of this

cyclonic circulation pattern and the northerly error over the

South China Sea are indicative of lower moisture content

air (Prasanna and Annamalai 2012) and reduced rainfall

along the Meiyu, Changma, Baiu rainfall front. For the

MMM’s, the time mean wind and the wind error oppose

each other, suggesting that reduced moisture from mon-

soon westerlies and the southerlies over the South China

Sea is a contributing factor in the weak Meiyu, Changma,

Baiu front. However, in the case of PCM, the time-mean

wind and the wind error (Fig. 2b, h) are both easterly/

northeasterly near southern Japan and China, suggesting

that advection of lower moisture air from the extratropics is

a factor in producing the weak Meiyu, Changma, Baiu

front.

The overall skill in simulating the time-mean monsoon

is given in Fig. 3, which is a scatterplot of the pattern

correlation relative to observations (ERA-40 and GPCP)

for 850 hPa wind versus precipitation. The results indicate

that for all models the 850 hPa wind is better simulated

than the precipitation. This is perhaps not surprising since

the circulation is a response to integrated diabatic heating

and not to the details of the regional rainfall distribution.

For 850 hPa wind, the MMM and CNRM-CM5 skill are

within the range of observational skill when NCEP/NCAR

Reanalysis wind is also considered. Importantly, for both

CMIP5 and CMIP3 there is a better than 1 % statistically

significant relationship between the skill in representing the

rainfall and the 850 hPa wind. For example, the CNRM-

CM5 had the largest pattern correlation with observations

for both rainfall and 850 hPa wind (Table 2). The statisti-

cal relationship suggests that improving the rainfall in the

models will result in an improved representation of the

wind and vice versa.

4 Annual cycle

In this section we evaluate the annual cycle of rainfall

using climatologies of both monthly data and pentad data.

The monthly data are used to generate latitude–time plots

to assess how well the models represent the annual cycle of

rainfall in the vicinity of India, including the northward

propagation of the continental rainband. The pentad data

are used to assess how well the models represent the time

of monsoon onset, peak, withdrawal, and the duration of

Fig. 2 a–e JJAS 850 hPa wind climatology from a ERA40,

b CNRM-CM5, c pcm1, d CMIP5 MMM, and e CMIP3 MMM.

Also given in a is the pattern correlation of ERA40 with JRA25, and

in b–e are the model pattern correlations with ERA40 over the region

40�E–160�E, 20�S–50�N. f (JRA25) - (ERA40), g–j as b–e but

for (model) - (ERA40). The units are (ms-1). ERA40 and the

model data are from 1961 to 1999, and JRA25 data is from 1979 to

2007

c
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the monsoon season, as well as the spatial extent of the

monsoon domain.

4.1 Indian monsoon

A latitude–time diagram of monthly rainfall, averaged

between 70�E and 90�E, is constructed to show the

transition of rainfall between the ocean and the Indian

subcontinent during the course of the annual cycle. The

GPCP and CMAP observations (Fig. 4a, b, respectively)

show the development of two rainfall maxima beginning in

May. The poleward branch depicts the evolution of the

Indian monsoon, with the maximum rainfall occurring in

July. The oceanic branch, located near 5�S, reaches a local

maximum in September, as the Indian monsoon weakens.

These features are consistent between GPCP and CMAP,

with a pattern correlation of 0.89 over the domain

10�S–30�N for May–October (see box in Fig. 4a). How-

ever, CMAP is drier (wetter) than GPCP over India (the

tropical Indian Ocean), consistent with the observational

biases noted for the time mean state (see Fig. 1, Sect. 3).

Furthermore, these biases in the distribution of land versus

oceanic rainfall also give rise to uncertainty in the latitude

of maximum rainfall over India during the boreal summer

in GPCP and CMAP.

The latitude–time plots for MIROC5 and csiro-mk3.5

show the range of model skill in representing the annual

cycle of rainfall over the Indian longitudes (Fig. 4c, d),

based on pattern correlation skill over the afore-mentioned

space–time domain. MIROC5 overestimates the magnitude

of the Indian monsoon and oceanic rainfall bands. The

oceanic rainband and the rainfall minimum to its north are

not as coherent as observed, contributing to a pattern cor-

relation of 0.78 relative to GPCP. csiro-mk3.5 has a late

development of the Indian monsoon, and the oceanic

rainband transitions into the Northern Hemisphere during

boreal summer, unlike the observations. With such biases,

csiro-mk3.5 only has a pattern correlation of 0.17 with

GPCP.

The CMIP5 and CMIP3 MMM’s (Fig. 4e, f) have nearly

identical pattern correlations with GPCP (0.67 and 0.66,

respectively). The MMM’s indicate that the core of the

continental rainband does not propagate as far north as

observed, consistent with the model biases seen of other

modeling studies (Gadgil and Sajani 1998; Rajeevan and

Najundiah 2009). Additionally, both MMM fail to capture

the observed northward propagation of the rainfall minimum

from the equator to 10�N during boreal summer, and the

oceanic rainband is weaker than observed. This latter error

is also seen in the JJAS rainfall climatology (Fig. 1i, j).

Even so, there is improvement in the CMIP5 MMM com-

pared to the CMIP3 MMM, with a more realistic magnitude

of rainfall between 10�N and 20�N during July and August.

Consistent with the results given in Fig. 1d, e, this

improvement is related to the better representation of mon-

soon rainfall adjacent to the Western Ghats in CMIP5

compared to CMIP3. The annual cycle skill scores from all

of the models are further evidence of improvement in the

simulation of the annual cycle of rainfall in CMIP5 com-

pared to CMIP3 (Fig. 4g). Notably, 6/10 and 13/20 of the

largest skill scores are from CMIP5 models.

4.2 Monsoon onset, peak, withdrawal, and duration

The analysis of the annual cycle of the monsoon using

pentad data is restricted to 21/25 CMIP5 models and 18/22

CMIP3 models due to limitations in the availability of

high-frequency rainfall data. To facilitate the analysis, the

climatological pentads of rainfall from the models have

first been regridded to the GPCP grid. Our methodology

closely follows that of Wang and LinHo (2002). At each

gridpoint the pentad time series is smoothed with a five

pentad running mean. The smoothing removes high-fre-

quency fluctuations that arise due to the limited sample

size, while retaining the climatological intraseasonal

oscillation (LinHo and Wang 2002). The January mean

rainfall is then removed from each pentad, resulting in the

Fig. 3 Scatterplot of the pattern correlation with observations of

simulated JJAS 850 hPa wind climatology versus the pattern

correlation with observations of simulated JJAS precipitation clima-

tology. The skill is relative to ERA40 and GPCP over the region

40�E–160�E, 20�S–50�N

Fig. 4 a–f Annual cycle climatology for rainfall rate averaged

between 70�E and 90�E from a GPCP, b CMAP, c MIROC5, d csiro-

mk3.5, e CMIP5 MMM, and f CMIP3 MMM. Also given in b–f is the

pattern correlation with GPCP over the region 10�S–30�N, for May–

September (the dashed region in a). The units are (mm day-1).

g Models stratified by their pattern correlation with GPCP. GPCP and

CMAP data are from 1979 to 2007 and the model data is from 1961 to

1999

c
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(g) 

(e) CMIP5 MMM 0.67

(c) MIROC5 0.78

0.89

(f) CMIP3 MMM

(d) csiro-mk3.5 0.17

0.66

(a) GPCP (1979-2007) (b) CMAP (1979-2007)
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relative rainfall rate. Using GPCP data, an example of the

relative rainfall rate for the Bay of Bengal is given in

Fig. 5. At a given gridpoint, the boreal summer monsoon is

taken to occur if the relative rainfall rate exceeds

5 mm day-1 during May–September. Onset is defined as

the first pentad at which this threshold is met or exceeded.

The time of peak monsoon is the pentad at which the

maximum relative rainfall rate occurs, and the withdrawal

of the monsoon is the first pentad at which the relative

rainfall rate falls below the onset criterion. The duration of

the monsoon is defined as: (decay pentad) minus (onset

pentad). Given that the monsoon is defined by a threshold

criterion, the monsoon domain will be different for each of

the models. Therefore, the MMM of the onset, peak, decay,

and duration is calculated at gridpoints if half or more of

the models have monsoon defined at that location. Skill is

assessed using pattern correlation for gridpoints where both

observations and models have monsoon defined.

Since the monsoon is defined by a threshold criterion,

this approach is a severe test of a models ability to properly

represent the observed amplitude and timing of the annual

cycle of the monsoon. Thus, for a given model, absence of

a signal relative to observations indicates that the model

does not have the correct amplitude of the annual cycle,

and this is a critical piece of information for modelers to

consider during the course of model development.

The pentads of onset and the peak monsoon for the

observations and models are given in Fig. 6. The observed

pattern of onset, seen in Fig. 6a, is consistent with the

analysis of Wang and LinHo (2002). Monsoon onset occurs

first over Southeast Asia (Matsumoto 1997), and then

subsequently over the South China Sea and to the south-

west of India. Wu et al. (2012) have found that the

development of the Asian summer monsoon onset vortex is

a consequence of air–sea interaction over the Bay of

Bengal. The onset progresses northward from these loca-

tions, subsequently engulfing India, southern China, Korea,

Japan, and the western Pacific. The range of skill in

simulating the pentad of monsoon onset is given by gfdl

cm2.0 and inm-cm3.0 (Fig. 6b, c). The former model

essentially has the progression correct, but the onset occurs

later than observed over India. However, this model fails to

define monsoon over northern China, Korea, and Japan,

while it has overly extensive monsoon rainfall over the

western/central Pacific Ocean. inm-cm3.0 also has a late

onset over India, but the monsoon incorrectly progresses

from north to south over China. The CMIP5 MMM has a

larger pattern correlation with GPCP than the CMIP3

MMM (Fig. 6d, e, Table 2), indicating improvement in the

ability to simulate the onset of the monsoon. This is seen as

a more realistic onset time over Southeast Asia. However,

for both MMM’s, the onset still remains too late over India,

and they overestimate the monsoon extension over the

western/central Pacific Ocean. Contrary to the time-mean

monsoon, individual models exceed the skill of the MMM.

Regarding the time of peak monsoon, the observations

indicate that over the Arabian Sea and extending into India

the peak time occurs progressively later, as it does from the

southeast of Japan into eastern/central China (Fig. 6f).

However, over southwestern China to Southeast Asia the

peak monsoon rainfall occurs from north to south, indi-

cating that the maximum rainfall occurs as the monsoon

retreats. MIROC5 best represents this progression, though

the time of the peak monsoon over India is too late

(Fig. 6g), and the extent of the observed monsoon over the

western Pacific is not simulated. echo-g qualitatively rep-

resents the northward progression of the peak pentad near

Fig. 5 The relative rainfall rate over the Bay of Bengal (85�E–90�E,

7.5�N–20�N) from GPCP data. The 5 mm day-1 threshold is used to

define the pentads of onset and withdrawal of the monsoon. To

calculate the relative rainfall rate, the pentad time series is smoothed

with a five pentad running mean. The January mean rainfall is then

removed from each pentad, resulting in the relative rainfall rate. See

Sect. 4.2 for more details

Fig. 6 Monsoon onset pentad a GPCP, b gfdl cm2.0, c inm-cm 3.0,

d CMIP5 MMM, and e CMIP3 MMM. Monsoon peak pentad

f GPCP, g MIROC5, h echo-g, i CMIP5 MMM, and j CMIP3 MMM.

Also given in a and f is the pattern correlation of GPCP with CMAP,

and in b–e and g–j are the model pattern correlations with GPCP over

the region 50�E–180�E, 0�–50�N. The units are pentad (Pentad

1 = January 1–5). Note the difference in scale for the onset versus

peak phases. GPCP and CMAP data are from 1979 to 2007 and the

model data is from 1961 to 1999
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(d) CMIP5 MMM 0.66

(c) inm cm 3.0 -0.13

(b) gfdl cm2.0 0.72

(a) GPCP (1979-2007) 0.75

(e) CMIP3 MMM 0.51

(i) CMIP5 MMM 0.79

(h) miub echo-g 0.04

(g) MIROC5 0.78

(f) GPCP (1979-2007) 0.83

(j) CMIP3 MMM 0.73

Onset Peak
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India, though the actual timing is poorly represented there

and over Southeast Asia (Fig. 6h). The CMIP5 MMM

outperforms the CMIP3 MMM (Fig. 6i, j), though both are

more uniform compared to observations in representing the

time of the monsoon peak, and they lack the early peak

near 90�E over the Bay of Bengal. The spatial extent of the

monsoon, in the CMIP5 MMM is more realistic than in the

CMIP3 MMM, with the monsoon domain extending over

northeast China. The spatial extent of the monsoon is

discussed in more detail below.

The earliest withdrawal of the observed monsoon occurs

over the West Pacific to the southeast of Japan, over China,

and over the Arabian Sea, the periphery of the monsoon

domain (Fig. 7a). Over East Asia the withdrawal pro-

gresses southward from northeast China, with the latest

withdrawal occurring over Southeast Asia and the South

China Sea. Over India, the results in Fig. 7a indicate that

the GPCP data do not represent the smooth withdrawal of

the monsoon from northwest India to southeast India (the

reverse of the onset progression), as seen from the ‘‘Normal

Date For Withdrawal of Southwest Monsoon’’ from the

India Meteorological Department (http://www.imd.gov.in/

section/nhac/dynamic/Monsoon_frame.htm). Our analysis

indicates that CMAP data is more suitable for representing

this aspect of the monsoon withdrawal. This is confirmed

by comparing our CMAP results (not shown) with those

from Wang and LinHo (2002, their Fig. 8). MIROC5 well

represents the gross features of observed monsoon with-

drawal, though it simulates a large land–sea contrast in the

withdrawal time, and with the withdrawal occurring later

than observed over India (Fig. 7b). echo-g also has a late

withdrawal over India, with only a hint of evidence of

north to south withdrawal over China due to its truncated

monsoon domain (Fig. 7c). The CMIP5 MMM outper-

forms the CMIP3 MMM, though both MMM’s are more

zonal than observed in their north to south withdrawal

(Fig. 7d, e). As for the onset phase, individual models

outperform the MMM.

The observed duration of the monsoon is longest

(*29–37 pentads) over Southeast Asia, and it becomes

(more or less) progressively shorter with increasing radial

distance over the surrounding monsoon domain (Fig. 7f).

CNRM-CM5 well represents this gross structure (Fig. 7g),

though the monsoon domain is not as contiguous as

observed. A similar radial structure is seen in both MMM’s

(Fig. 7i, j), with CMIP5 better representing monsoon

duration than CMIP3. Despite the late onset over India in

the MMM’s (Fig. 6d, e), the monsoon duration over India

is overestimated by up to three pentads. These results

suggest that over some regions the models have a monsoon

seasonal cycle that is phase-delayed and/or longer in

duration when compared to observations.

Figure 8a–c show the skill of the models in simulating the

pattern correlation relative to GPCP of the onset versus the

peak, withdrawal, and duration of the monsoon, respec-

tively. The motivation is to evaluate which aspects of the

annual cycle are best represented, and to test whether skill in

simulating the onset, also translates into skill in representing

the other stages in the annual cycle evolution of the mon-

soon. Figure 8a, b indicate that the skill in simulating the

pattern of monsoon peak and monsoon withdrawal typically

exceeds that of onset, but there is no statistical relationship in

either peak or withdrawal skill relative to onset skill. How-

ever, the regression fits in Fig. 8c, significant at better than

the 1 % level, indicate that the pattern of the monsoon

duration is better represented in models that have a better

simulation of the onset pattern. In summary, the pattern

correlation skill metrics indicate that the models are very

diverse in their ability to simulate the monsoon annual cycle,

with the CMIP5 MMM outperforming the CMIP3 MMM

(Table 2). Biases in the annual cycle of SST, the spatial

distribution of rainfall, and the vertical structure of the dia-

batic heating that are important for the circulation and

moisture transports may all play a role in the errors in sim-

ulating the annual cycle evolution of the monsoon.

The hit rate and threat score are two categorical skill

scores that are used to quantify the ability of the models to

simulate the observed (GPCP) spatial domain of the mon-

soon. The skill analysis is performed over the region 40�E–

180�E, 10�S–50�N (see Fig. 6). These skill scores are based

on a 2 9 2 contingency table, where a = the number of

grid points at which the model correctly represents the

observed presence of monsoon, b = the number of grid-

points at which the model represents monsoon, but mon-

soon is not observed, c = the number of gridpoints at which

the model represents the absence of monsoon, but monsoon

is observed, and d = the number of grid points at which the

model correctly represents the observed absence of mon-

soon. The hit rate is the fraction of model gridpoints that are

correctly represented as observed monsoon and non-mon-

soon ([a ? d]/[a ? b ? c ? d]). The threat score, prefer-

able when the quantity being forecast (the presence of the

monsoon) occurs less frequently than the alternative

(absence of the monsoon), ‘‘is the number of correct ‘yes’

forecasts divided by the total number of occasions on which

Fig. 7 Monsoon withdrawal pentad a GPCP, b MIROC5, c echo-g,

d CMIP5 MMM, and e CMIP3 MMM. Monsoon duration f GPCP,

g CNRM-CM5, h inm-cm3.0, i CMIP5 MMM, and j CMIP3 MMM.

Also given in a and f is the pattern correlation of GPCP with CMAP,

and in b–e and g–j are the model pattern correlations with GPCP over

the region 50�E–180�E, 0�–50�N. For withdrawal the units are pentad

(Pentad 1 = January 1–5). For duration the units are the number of

pentads based on (withdrawal) - (onset) pentad. GPCP and CMAP

data are from 1979 to 2007 and the model data is from 1961 to 1999

c
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(d) CMIP5 MMM 0.79

(c) miub echo-g 0.37

(b) MIROC5 0.85

(a) GPCP (1979-2007) 0.83

(e) CMIP3 MMM 0.71

(i) CMIP5 MMM 0.60

(h) inm cm 3.0 -0.06

(g) CNRM CM5 0.66

(f) GPCP (1979-2007) 0.67

(j) CMIP3 MMM 0.38

Withdrawal Duration
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that event was forecast and/or observed (a/[a ? b ? c]).

It can be viewed as a hit rate for the quantity being forecast,

after removing correct ‘no’ forecasts (d) from consider-

ation’’ (Wilks 1995, p. 240). A hit rate and threat score of

1.0 would indicate perfect agreement between model and

observations. Figure 8d and Table 2 indicate that the

CMIP5 MMM is more skillful than the CMIP3 MMM in

representing the spatial extent of the monsoon, with indi-

vidual models being more skillful than the MMM’s. The

low model skill relative to that between CMAP with GPCP

confirms the results of Figs. 6 and 7 that improving the

extent of the simulated monsoon domain is needed. Par-

ticularly problematic in the models is the lack of a monsoon

extension over northeast China, Korea, and Japan, and the

incorrect monsoon signal simulated over the central Pacific

Ocean.

5 Interannual variability

In this section we evaluate the interannual variability of

(1) the ENSO-monsoon teleconnection, with emphasis on

the rainfall response in South Asia to Niño3.4 SST

anomalies, and (2) the response of rainfall and 850 hPa

wind in the East Asia region to the meridional gradient of

the zonal wind anomalies at 850 hPa.

5.1 Indian summer monsoon

The relationship between AIR and ENSO is one of the

most studied teleconnections in climate science (see review

article by Turner and Annamalai 2012). Annamalai et al.

(2007) provided an analysis of the time-mean state and

interannual-interdecadal variability of the Asian summer

Fig. 8 Scatterplot of the pattern correlation with observations of the

simulated pentad of monsoon onset versus a the pattern correlation

with observations of the simulated pentad of monsoon peak, b the

pattern correlation with observations of the simulated pentad of

monsoon withdrawal, and c the pattern correlation with observations

of the simulated number of pentads of monsoon duration. d Scatterplot

of the Monsoon Domain Hit Rate versus the Monsoon Domain

Threat Score. In a–d the skill is with respect to GPCP for the region

50�E–180�E, 0�–50�N
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monsoon in the CMIP3 models. The complexities in rep-

resenting (1) the spatial distribution of the time-mean

monsoon rainfall, (2) the ENSO forcing from the tropical

Pacific, and (3) the seasonality of the ENSO-monsoon

relationship revealed that only four of the CMIP3 models

were realistic in representing the interannual coupled

atmosphere–ocean teleconnection between AIR and tropi-

cal SST.

Given in Fig. 9 and Table 3 is the lag 0 teleconnection

between JJAS Niño3.4 SST anomalies and JJAS AIR

anomalies. This provides a preliminary skill estimate of the

models ability to represent the AIR-ENSO relationship.

Over the period 1961–1999 the observations indicate the

anti-correlation to be about -0.5. However, there is no

expectation that the models should represent exactly this

magnitude of anticorrelation, since their ENSO variability

may be unrealistic, and/or their ENSO characteristics may

be regime dependent with periods (decades or longer)

when ENSO is stronger or weaker than presently observed

(Wittenberg 2009). Therefore, the bounds of the observed

interdecadal variability of the AIR-ENSO teleconnection

are used to provide a constraint on evaluating model per-

formance. The observed anticorrelation ranges from

approximately -0.3 to -0.75 at interdecadal time scales,

and rarely has it been statistically insignificant (Annamalai

et al. 2007). Changes in the interdecadal strength of the

observed anticorrelation are suggested to be related to

changes in ENSO variance (Annamalai et al. 2012b) as

well as changes to the lead-lag relationship between ENSO

and June–July and August–September Indian monsoon

Fig. 9 a The ENSO-monsoon

relationship skill is given by the

lag 0 correlation between

interannual JJAS anomalies of

AIR and Niño3.4 SST. The AIR

is for land-only gridpoints over

65�E–95�E, 7�N–30�N. The

results are given for the

Rajeevan rainfall data versus

HadISST SST (1961–1999;

black), GPCP rainfall versus

SST used in the NCEP-NCAR

Reanalysis (1979–2007; violet),

CMIP5 models (1961–1999;

red), and the CMIP3 models

(1961 - 1999; green). The

thick black dashed line is the

5 % significance level assuming

each year is independent for 37

degrees of freedom. b The

AIR-Niño3.4 SST correlations

in a are plotted versus the

pattern correlations of the

interannual JJAS precipitation

anomalies (mm day-1) from

linear regression with JJAS

Niño3.4 SST anomalies

(see Fig. 10). The pattern

correlations are calculated with

respect to GPCP over the region

60�E–100�E, 0�–30�N
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rainfall (Boschat et al. 2012). Using these observed bounds,

11/25 (18/22) CMIP5 (CMIP3) models exhibit a statisti-

cally significant AIR-ENSO teleconnection.

The spatial pattern of the ENSO-forced rainfall anom-

alies is obtained from linear regression of JJAS Niño3.4

SST anomalies with JJAS rainfall anomalies (Fig. 10). The

regressions are presented for one standard deviation of the

Niño3.4 SST anomalies, and thus correspond to rainfall

anomalies associated with El Niño. The high-resolution

observations over India from Rajeevan et al. (2006) and the

GPCP observations show similar characteristics for El

Niño conditions. The largest rainfall decreases occur

adjacent to the Western Ghats and near the foothills of the

Himalayas, with a secondary rainfall deficit over central

India, near 78�E, 18�N. Over northeastern India and near

the Burmese coast, above-normal rainfall anomalies pre-

vail, and are also seen in CMAP rainfall (not shown). With

the strongest AIR-ENSO anticorrelation of the models

analyzed (-0.76), the IPSL CM5A-MR simulation exhibits

a stronger than observed deficit of rainfall over India, and

enhanced rainfall near Burma (Fig. 10c). Additionally, this

model has the largest pattern correlation, 0.64, of all

models considered herein between the simulated and

observed ENSO-forced rainfall anomalies. As seen in

Fig. 10d, over India, the FGOALS-s2 model has a mixed

rainfall signal, with a pattern correlation of only 0.10, and

as such an insignificant AIR-ENSO teleconnection (0.11).

Furthermore, this model has a strong rainfall enhancement

over the Arabian Sea and the Bay of Bengal adjacent to

India that is not seen in observations. An evaluation of the

ENSO impact on the Asian monsoon in the FGOALS-s2

pre-industrial simulation is given by Wu and Zhou (2012).

The CMIP5 MMM has a slightly larger pattern correlation

with GPCP (0.62) than does the CMIP3 MMM (0.60),

while individual models have larger pattern correlations

than the MMM’s (Table 3). Improvement in the CMIP5

MMM is also noted, since it also has larger rainfall

anomalies than the CMIP3 MMM. However, in both cases

the MMM anomalies are weaker than observed due to the

wide-range of fidelity in simulating the precipitation tele-

connections in the individual models.

The skill in representing the AIR-ENSO correlation

versus the pattern correlation of ENSO-forced rainfall

anomalies with GPCP observations over 60�E–100�E,

0�–30�N is given in Fig. 9b. For the CMIP5 models there is

a better than 1 % statistically significant relationship

between these skill metrics, indicating that the pattern of

rainfall anomalies is better represented in models with a

stronger anticorrelation between AIR and Niño3.4 SST

anomalies. Conversely, as expected, models with a near-

zero AIR-ENSO correlation have ENSO-forced rainfall

anomaly pattern correlations that are not statistically sig-

nificant. Interestingly, for AIR-ENSO correlations of about

-0.3, the rainfall anomaly pattern correlations range from

-0.14 to 0.53. This wide-range of skill in representing the

rainfall anomaly pattern correlation can be due to many

simulation features, such as the location and strength of the

ENSO SST anomalies (Krishna Kumar et al. 2006), the

spatio-temporal evolution of ENSO diabatic heating

anomalies, and the proper seasonality of the AIR-ENSO

relationship. As discussed in Annamalai et al. (2007), these

interactions conspire to make simulation of the ENSO-

monsoon teleconnection a challenge, with only four of the

CMIP3 models representing the detailed aspects of this

teleconnection. A more detailed diagnosis of the ENSO-

monsoon teleconnection in the CMIP5 models is presented

in Annamalai et al. (2012b). By examining all the ensemble

members for the entire historical simulation period

(*1850–2005), they note that the timing, amplitude, and

spatial extent in the ENSO-monsoon relationship depends

on the ability of the models’ to capture the mean mon-

soon rainfall distribution and the ENSO-related SST and

diabatic heating anomalies along the equatorial Pacific.

They also note that incorrect simulation of regional SST

anomalies over the tropical Indian Ocean and west Pacific

sectors degrades the ENSO-monsoon association, even if

the models capture ENSO realistically. This SST sensi-

tivity is consistent with Lau and Nath (2012), who showed

that during El Niño the tropical Pacific SST forcing and the

warm SST anomalies in the Indian Ocean have oppos-

ing effects on the monsoon development. The role of

SST errors over the Indian Ocean was investigated by

Achuthavarier et al. (2012) using the NCEP Coupled

Forecast System Model. They found that unrealistic early

development of the Indian Ocean dipole prevents the Pacific

ENSO signal from impacting the monsoon, and results in

the inability of the model to generate the observed negative

correlation of the ENSO-monsoon relationship. Thus, there

are many critical factors for simulating a realistic ENSO-

monsoon teleconnection, including indirect affects due to

Fig. 10 Interannual JJAS precipitation anomalies (mm day-1) from

linear regression with JJAS Niño3.4 SST anomalies a Rajeevan

rainfall data versus HadISST SST (1961–1999), b GPCP rainfall

versus SST used in the NCEP-NCAR Reanalysis (1979–2007),

c IPSL-CM5A-MR, d FGOALS-s2, e CMIP5 MMM, and f CMIP3

MMM. The regressions are scaled by 1 standard deviation of the

Niño3.4 SST anomalies and are thus consistent with anomalies

during El Niño. c and d are the models that span the range of the

AIR-Niño3.4 SST correlations from the CMIP5 and CMIP3 models

(see Fig. 9a). In panels a–d the first (or only) value is the correlation

of AIR-Niño3.4 SST. The last value in b is the pattern correlation of

GPCP with CMAP for the interannual JJAS precipitation anomalies,

and in c–f the last (or only) value is the model pattern correlation with

GPCP for the interannual JJAS precipitation anomalies. The skill

metrics are calculated over the region 60�E–100�E, 0�–30�N. The

Rajeevan rainfall, the HadISST SST, and the model data is for

1961–1999. The GPCP, CMAP and NCEP-NCAR Reanalysis SST

data are for 1979–2007

c
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(e) CMIP5 MMM

(c) IPSL-CM5A-MR -0.76, 0.64

(a) Rajeevan/HadISST -0.53

(f) CMIP3 MMM

0.11, 0.10

(b) GPCP/NCEP -0.47, 0.80

0.62 0.60

(d) FGOALS-s2
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preceding boreal winter ENSO development (Wu et al.

2012).

5.2 East Asian summer monsoon

The East Asian summer monsoon (EASM) is a complicated

region in that there are many competing mechanisms by

which the monsoon is modulated. Influences from the

Indian Ocean, ENSO, and from the eastern Pacific, plus

local air–sea interactions over the South China Sea and

interaction of tropical and subtropical circulation systems

have been documented (Zhou et al. 2009b, 2011). Thus,

there are many observational metrics to assess model per-

formance (Zhou and Li 2002; Chen et al. 2010; Boo et al.

2011), and a plethora of indexes for measuring the strength

of the EASM. As discussed in Wang et al. (2008) the

indexes fall broadly into five categories related to (1) East–

West thermal contrast, (2) North–South thermal contrast,

(3) wind shear vorticity, (4) southwest monsoon, and

(5) South China Sea. In an effort to provide a unified

approach to measuring the strength of the East Asian

summer monsoon, Wang et al. (2008) have performed a

multivariate Empirical Orthogonal Function (EOF) analysis

using precipitation, sea-level pressure, and the zonal and

meridional winds at 850 and 200 hPa using JJA anomalies

over the domain 100�E–140�E, 0�–50�N for 1979–2006.

The leading mode, which is not related to the developing

phase of ENSO, is characterized by enhanced precipitation

along the East Asian subtropical front associated with

interannual variations of the Meiyu/Baiu/Changma rain-

band. These authors found that the principal component

(PC) of this leading mode had a correlation of -0.97 with

JJA anomalies of the zonal wind shear index of Wang and

Fan (1999), the strongest correlation among the 25 East

Asian monsoon indexes considered in their paper. Thus, as a

simple East Asian summer monsoon index for validating

the CMIP5 and CMIP3 models we adopt the negative of the

Wang and Fan (1999) zonal wind shear index:

WFN ¼ ðU850; 110�E� 140�E; 22:5�N� 32:5�NÞ
� ðU850; 90�E� 130�E; 5�N� 15�NÞ

Figure 11a shows the regression of the WFN from JRA25

reanalysis with JJA anomalies of GPCP rainfall and JRA25

850 hPa wind for 1979–2007. These rainfall and wind

anomalies are consistent with the multivariate EOF

anomalies presented in Figs. 2a and 5a of Wang et al.

(2008). Furthermore, pattern correlations of these anoma-

lies with those derived from CMAP and NCEP/NCAR

reanalysis are 0.99 and 0.96, respectively (Table 3), indi-

cating that these features are robust characteristics of East

Asian summer monsoon variability.

For both CMIP5 and CMIP3, the MMM’s are equally

adept at representing the wind anomalies (Fig. 11b, c), with

CMIP5 being superior to CMIP3 in representing the pattern

of rainfall anomalies, especially the deficit rainfall adjacent

to the west coast of the Philippines. The MMM are poor in

representing the rainfall maxima that extends from central

China to Southwest Japan. Additionally, the MMM rainfall

anomalies are smaller than observed or simulated by

individual models; a feature also noted for the ENSO

forced rainfall anomalies over the Indian sector (Fig. 10e,

f). Figure 11d, e show the anomalies for models that have

the largest and smallest 850 hPa wind anomaly pattern

correlations compared to JRA25. In gfdl cm2.0 the 850 hPa

pattern correlation is nearly identical to that of the MMM,

while the pattern correlation of the precipitation anomalies

is smaller. iap fgoals-g1.0 has enhanced rainfall near 30�N

with below normal rainfall to the south, though the details

of the observed spatial pattern are not well represented.

Furthermore, the relationship of the enhanced rainfall to

the western Pacific subtropical high and anti-cyclonic

850 hPa wind anomalies are not properly represented.

Rather, the enhanced rainfall is associated with strong

cyclonic wind anomalies near 40�N, with a possible con-

tribution of moisture from the westerly monsoon flow over

Southeast Asia. This bias is related to the weak western

Pacific summer monsoon and deficient rainfall surrounding

the Philippines in the atmospheric model component of iap

fgoals-g1.0 (Liu et al. 2011). HadGEM2-ES has the largest

rainfall pattern correlation of the models analyzed, with an

excellent representation of the rainfall minima adjacent to

the west coast of the Philippines, and the maxima over

southeast China and southwest Japan (Fig. 11f). INM CM4

has a weak signal in the 850 hPa wind anomalies, indi-

cating that the simulated subtropical high is not modulating

the flow as strongly as observed. As a consequence the

rainfall is not modulated as observed.

The skill assessment of the ability of the models to

simulate East Asian monsoon patterns of rainfall and

850 hPa wind anomalies over 100�E–140�E, 0�–50�N is

presented in Fig. 12. For both CMIP5 and CMIP3 the

850 hPa wind anomalies are better simulated than the

rainfall anomalies (Fig. 12a), consistent with the CMIP3

analysis of Boo et al. (2011). The CMIP5 MMM rainfall

anomalies and 850 hPa wind anomalies have larger pattern

correlations relative to those from the CMIP3 MMM. For

both sets of models there is a better than 5 % significant

relationship of a correspondence between the quality of the

850 hPa wind anomalies and the rainfall anomalies. As

seen in Fig. 12b, c for 850 hPa wind and rainfall, respec-

tively, there is no relationship between the quality of the

interannual variability and the climatology over the East

Asian region. Interestingly, the interannual variability of

the 850 hPa wind anomalies is better represented than the

wind climatology for all but 3 models (Fig. 12b), while for

the majority of models the rainfall climatology is better
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represented than the interannual variability (Fig. 12c). A

reasonable representation of climate mean monsoon rain

band over East Asia relies heavily on convection parame-

terization (Chen et al. 2010).

The analysis of the interannual variability of the Asian

summer monsoon indicates that there is a wide-range of

performance among the models, with substantial scope for

model improvement in the simulation of the rainfall

anomalies. A summary of the ability of the models to

simulate the interannual variability of rainfall for the Indian

summer monsoon and the East Asian monsoon is given in

Fig. 12d. Relative to GPCP rainfall, it shows the pattern

correlations of the interannual rainfall anomalies over the

East Asian Summer Monsoon domain (also see Figs. 11,

12a, c) are better simulated than the pattern correlations of

the interannual rainfall anomalies over the Indian Monsoon

domain (also see Figs. 9b, 10). The lack of a statistical

relationship between the interannual variations over these
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(c) CMIP3 MMM   
  (0.97, 0.80) 

(d) gfdl cm2.0      
   (0.98, 0.67) 

(e) fgoals-g1.0
   (0.43, 0.42) 

(f) HadGEM2-ES   
   (0.95, 0.84) 

(g) INM-CM4   
    (0.82, -0.05) 

Fig. 11 Interannual East Asian summer monsoon JJA 850 hPa wind

anomalies and precipitation anomalies from linear regression with the

revised JJA Wang-Fan 850 hPa zonal wind index for a JRA25/GPCP,

b CMIP5 MMM, c CMIP3 MMM, d gfdl cm2.0 model, e fgoals-g1.0,

f HadGEM2-ES, and g INM-CM4. d and e The models with the

largest and smallest 850 hPa wind pattern correlations compared to

JRA25 850 hPa wind anomalies, and f and g are the models with the

largest and smallest precipitation pattern correlations compared to

GPCP. Also given in a is the pattern correlation of JRA25 with

NCEP/NCAR Reanalysis and GPCP with CMAP, respectively, and in

b–g are the model pattern correlations with JRA25 and GPCP over

the region 100�E–140�E, 0�–50�N. The units for the 850 hPa wind

anomalies are ms-1 and for precipitation anomalies the units are

mm day-1. The JRA25 reanalysis, the NCEP-NCAR reanalyses, the

GPCP, and CMAP data are for 1979–2007. The model data is for

1961–1999
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regions confirms that the controlling mechanisms are dis-

tinct for the two regions, and that progress in modeling

monsoon interannual variability requires fidelity in repre-

senting a wide variety of processes.

6 Boreal summer intraseasonal variability

Boreal summer intraseasonal variability of the monsoon is

the dominant modulator of convection over the Asian

domain, and it has been shown to contribute to interannual

variability of the monsoon (Sperber et al. 2000). Where the

environment is favorable for convection over a broad

region, embedded features, such as tropical depressions and

typhoons, are important contributors to total seasonal

rainfall. On modeling intraseasonal time scales, Sperber

and Annamamlai (2008) found that only 2 of 17 CMIP3

and CMIP2? models analyzed could represent the life

cycle of the leading mode of 30–50 day BSISV. Lin et al.

(2008) found that the 12–24 day mode was better repre-

sented than the BSISV in CMIP3. Even so, the BSISV

simulation in the CMIP3 models was a marked improve-

ment compared to the previous generation of models

(Waliser et al. 2003).

Following the analysis of the CMIP3 models by Sperber

and Annamamlai (2008), the BSISV is characterized by

20–100 day bandpass filtered variance, and by evaluation

of the models ability to simulate the spatio-temporal

Fig. 12 a Scatterplot of the pattern correlation with observations of

simulated JJA 850 hPa wind anomalies versus the pattern correlation

with observations of simulated JJA precipitation anomalies over East

Asia. The skill is relative to JRA25 and GPCP over the region 100�E–

140�E, 0�–50�N. b Scatterplot of the pattern correlation with

observations of simulated JJA 850 hPa wind anomalies versus the

pattern correlation with observations of the simulated JJA 850 hPa

wind climatology. The skill is with respect to JRA25 on the x-axis,

and with respect to ERA40 on the y-axis. c Scatterplot of the pattern

correlation with GPCP of simulated JJA precipitation anomalies

versus the pattern correlation with observations of the simulated JJA

precipitation climatology. d Scatterplot of the pattern correlation with

GPCP of simulated JJA precipitation anomalies over the East Asia (as

in Fig. 12a, c) versus the pattern correlation with GPCP of simulated

JJAS precipitation anomalies over the Indian Summer Monsoon (as in

Fig. 9b)
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evolution of the leading Cyclostationary EOF (CsEOF) of

filtered OLR that was described in Annamalai and Sperber

(2005). Due to limited availability of daily data, 16 CMIP5

models and 15 CMIP3 are analyzed herein. Given the

CMIP3 analysis of Sperber and Annamamlai (2008), we

predominantly concentrate on the performance of the

CMIP5 models herein.

The 20–100 day bandpass filtered variance from

observations and models is shown in Fig. 13a–f. The MPI

ESM-LR model (Fig. 13b), with a pattern correlation of

0.87 relative to the AVHRR OLR (Fig. 13a), has the best

representation of the variance pattern of the models con-

sidered (Table 3). Consistent with previous MPI models, it

has skillful performance for this baseline intraseasonal

diagnostic. Importantly, the CMIP5 model version has a

more realistic amplitude of OLR variance, which in pre-

vious versions was substantially overestimated. Additional

improvement is with respect to the partitioning of variance

between the continental longitudes (*15�N–20�N) and the

smaller values over the near-equatorial Indian Ocean. Of

the CMIP5 models, the MIROC-ESM model has the

smallest pattern correlation with observations, 0.55. It

exhibits pockets of strong intraseasonal variability with a

pronounced variance minimum near 10�N over the Indian

Ocean that unrealistically separates the variance maxima

over the continental latitudes (*20�N) and the near-

equatorial region (Fig. 13c). The MIROC5 model, which

will be discussed in more detail below, has intermediate

skill, with a pattern correlation of 0.81 (Fig. 13d). The

CMIP5 MMM, Fig. 13e, has larger skill than the best

(f) CMIP3 MMM 0.89(e) CMIP5 MMM 0.90

(d) MIROC5 0.81(c) MIROC-ESM 0.55

(b) MPI-ESM-LR 0.87(a) AVHRR (1979-2006) 0.99

Fig. 13 20–100 day bandpass filtered OLR variance for JJAS from

a AVHRR (1979–2006), b MPI-ESM-LR, c MIROC-ESM, d MI-

ROC5, e CMIP5 MMM, and f CMIP3 MMM. Also given in a is the

pattern correlation with AVHRR OLR for 1979–1995, and in b–f are

the model pattern correlations with AVHRR OLR (1979–2006) over

the region 40�E–180�E, 30�S–30�N. The model data is for 1961–1999
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model and the CMIP3 MMM (Fig. 13f and Table 3).

Furthermore, the magnitude of the intraseasonal variance in

the CMIP5 MMM is more realistic than that from the

CMIP3 MMM.

The observed BSISV life cycle is presented in Fig. 14.

The 20–100 day bandpass filtered OLR anomalies for JJAS

1979–2007 are projected on to the Day 0 CsEOF pattern

of Annamalai and Sperber (2005). Using lag regression,

the resulting PC (referred to as PC-4 in Sperber and

Annamamlai 2008) is regressed back onto the filtered OLR

to obtain the spatio-temporal evolution of the BSISV. As in

Sperber and Annamamlai (2008), projection of the model

20–100 day bandpass filtered OLR onto the observed Day

0 CsEOF pattern ensures that the models are analyzed

using a uniform approach, which addresses the question:

How well do the models simulate the observed BSISV?

The observed results in Fig. 14 are plotted where the

regressions are statistically significant, assuming every

pentad is independent. As seen in Fig. 14a, b, the enhanced

convection first begins near the east coast of equatorial

Africa, and extends into the western Indian Ocean. Over

the central and eastern Indian Ocean suppressed convection

dominates. From Day -5 through Day 0, Fig. 14c, d, the

enhanced convection over the Indian Ocean amplifies and

extends eastward to the Maritime Continent, while a tilted

band of suppressed convection dominates to the north,

extending from the Arabian Sea to the western Pacific. By

Day 5, Fig. 14e, the enhanced convection bifurcates near

the equator over the Indian Ocean, with the strongest

convective anomalies extending southeastward from the

Arabian Sea and India to New Guinea. At this time the

suppressed convection dominates over the western Pacific

near 15�N. By Day 10, Fig. 14f, the northwest to southeast

tilted region of enhanced convection extends from the

Arabian Sea to the equatorial central Pacific. This structure

arises due to northward propagation of convective anom-

alies in the vicinity of the Indian longitudes, as the equa-

torial convective anomalies propagate eastward from the

Indian Ocean to the Maritime Continent/west Pacific. The

tilt arises due to the favorable vertical wind shear and

the shedding of Rossby waves over this domain during

boreal summer (Lau and Peng 1990; Wang and Xie 1997;

Annamalai and Sperber 2005). Over the west Pacific near

15�N the suppressed convection weakens and diminishes in

extent. With the development of suppressed convection

over the equatorial Indian Ocean there is a quadrapole

pattern of convective anomalies that persists through Day

15, Fig. 14g, that then weakens by Day 20, Fig. 14h. The

tilted band of enhanced convection weakens, and the sup-

pressed convection over the Indian Ocean begins to dom-

inate. These stages in the BSISV lifecycle, obtained via

regression (the approach needed to analyze the models),

compare well with the evolution of the CsEOF’s of

Annamalai and Sperber (2005, see their Fig. 2), with which

they have pattern correlations of 0.83 or larger.

The skill of the models in simulating the observed

20–100 bandpass filtered variance and the BSISV lifecycle

is presented in Fig. 15. The filtered variance accounts for

both standing and propagating components while the

BSISV is the leading propagating mode. The skill for the

filtered variance is based on the pattern correlation of

the model with observations. The model skill of the BSISV

life cycle is the space–time pattern correlation of the best

matching lag regressions to the Day -15, Day -10, Day

-5, Day 0, Day 5, Day 10, Day 15, and Day 20 patterns

from the observed BSISV CsEOF (Annamalai and Sperber

2005). Data at all gridpoints over the region 40�E–180�E,

30�S–30�N are used for the calculation of the skill scores.

The results indicate that at better than the 1 % significance

level there is a statistically significant relationship between

the filtered variance pattern and the BSISV life cycle for

both the CMIP5 and CMIP3 models. This suggests that the

location and strength of the filtered variance maxima are

largely determined by the propagating BSISV. The skill of

the CMIP5 MMM is slightly larger than the CMIP3 MMM,

and the filtered variance pattern tends to be better simu-

lated than the BSISV life cycle.

To facilitate the evaluation of the BSISV life cycle,

animations of the BSISV life cycle from the CMIP5

models and observations can be found at: http://www-

pcmdi.llnl.gov/projects/ken/cmip5_bsisv/index.html, while

the animations from the CMIP3 and CMIP2? models

analyzed by Sperber and Annamamlai (2008) can be found

at: http://www-pcmdi.llnl.gov/projects/ken/. In Sperber and

Annamamlai (2008), only two models showed appreciable

skill at representing the BSISV life cycle, including the

northwest to southeast tilted band of enhanced convection.

Both coupled models were Max Planck Institute derived

models that used the same atmospheric model (European

Centre Hamburg-4; ECHAM4). In CMIP5, the MIROC5

model has the largest space–time correlation of the BSISV

life cycle with observations (0.69). As seen in Fig. 16, the

BSISV life cycle of the MIROC5 model exhibits many of

the observed features seen in Fig. 14, especially the

strongly suppressed convection over the Indian Ocean on

Day -15 (Fig. 16a). It also represents well the amplifica-

tion and eastward propagation of enhanced convection over

Fig. 14 Lag regression of 20–100 day bandpass filtered AVHRR

OLR with PC-4 for JJAS 1979–2006 for a Day -15 to h Day 20. The

lag regressions have been scaled by 1 standard deviation of PC-4 to

give units of W m-2. The pattern correlations are calculated with

respect to Day -15, Day -10, Day -5, Day 0, Day 5, Day 10, Day

15, and Day 20 of the CsEOF of Annamalai and Sperber (2005) over

the region 40�E–180�E, 30�S–30�N. Data are plotted where the

regressions are statistically significant at the 5 % level, assuming each

pentad is independent

c
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(d) Day 0 0.94

(c) Day -5 0.93

(b) Day -10 0.87

(a) Day -15 0.83

(h) Day 20

(g) Day 15

(f) Day 10

(e) Day 5 0.93

0.87

0.87

0.84
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the equatorial Indian Ocean and the tilted band of sup-

pressed convection to the north from Day -10 through

Day 0 (Fig. 16b–d). The bifurcation of enhanced convec-

tion over the central/eastern Indian Ocean is seen on Day 5

(Fig. 16e), though the strongest anomalies are incorrectly

located south of the equator. Although present from Day 10

through Day 20 (Fig. 16f–h), the tilted region of enhanced

convection is not as spatially contiguous as observed, and

the anomalies are weaker than observed. Another short-

coming of the simulation is that the convective anomalies

over the western Pacific are not as strong as observed. Even

so, the simulation of the BSISV life cycle by MIROC5 is

an important step forward, since an atmospheric model

with a different formulation from ECHAM4 shows the

capability to simulate important aspects of the BSISV life

cycle, especially the northwest to southeast tilted band of

enhanced convection. Despite using the same convection

scheme as ECHAM4, the more recent MPI derived models,

MPI-ESM-LR and echam5/mpi-om, do not properly rep-

resent the tilted band of convection. Subsequent to

ECHAM4, replacement and/or changes to the grid-scale

condensation scheme and radiation schemes have occurred

in the MPI-based models. Since the MJO has been shown

to be sensitive to cloud-radiation interaction (Ma and

Kuang 2011), it has been suggested that these modifica-

tions may account for the reduced skill in simulating MJO

in these more recent MPI models (D. Kim, personal com-

munication, 2012).

MRI-CGCM3, and to a lesser extent GFDL-ESM2G,

also show a tilted region of convection, but the extension

into the western equatorial Pacific occurs after the north-

ward propagation reaches 20�N over India and the Bay of

Bengal, whereas in observations the eastward extension

and northward propagation occur in tandem. Mizuta et al.

(2012) suggest that the improvement of the BSISV in the

MRI model is due to modification of the convection

scheme, which allows for higher levels of convective

available potential energy to build-up before the instability

is released. Rectifying model errors, including those related

to SST and tropospheric temperature over the Indian

Ocean, may result in a more realistic representation of the

northward propagation of the BSISV, and consequently the

interannual variability of the Indian monsoon (Joseph et al.

2012). Excepting those CMIP5 models that have westward

propagation over the equatorial Indian Ocean, FGOALS-s2

and NorESM1-M, the majority of models have difficulty in

getting the enhanced equatorial convection to propagate

into the western Pacific, consistent with the CMIP3 results

of Sperber and Annamamlai (2008).

Given the wide-range of model performance in repre-

senting the BSISV life cycle, it was surprising to find that

the CMIP5 and CMIP3 MMM’s were more skillful than

the individual models. The life cycle of the CMIP5 MMM

is shown in Fig. 17. In an effort to show statistical sig-

nificance, the averages at each gridpoint were calculated

if more than half of the models had a statistically sig-

nificant convective anomaly (irrespective of sign) at that

time lag. As such, the anomalies are slightly larger than

those from the ‘‘true’’ MMM used for the skill score

calculation in Fig. 15, in which the arithmetic mean of all

models was taken at each gridpoint, at each time lag.

With the exception of representing the tilted band of

suppressed convection that is observed on Day -10

(compare Fig. 17b with Fig. 14b), the CMIP5 MMM

represents the major aspects of the life cycle of the

BSISV. Furthermore, compared to MIROC5, the CMIP5

MMM better represents the spatial extent and magnitude

of the convective anomalies over the western Pacific

(compare Fig. 17c–h with Fig. 16c–h). These astounding

results suggest the potential for making skillful multi-

model forecasts of the BSISV.

Future work on the BSISV will include a more detailed

evaluation to assess if the physical processes involved are

consistent between the observations and the most skillful

models, to evaluate the impact of climate change on the

BSISV, and explore the usefulness of the MMM in this

regard.

Fig. 15 Scatterplot of the pattern correlation with observations of the

simulated JJAS 20–100 day bandpass filtered OLR variance versus

the space–time pattern correlation with observations of the simulated

JJAS BSISV life-cycle. For the variance, the observed and simulated

skill is calculated with respect to AVHRR OLR for JJAS 1979–2006.

The observed variance skill is calculated using the JJAS 20–100 day

bandpass filtered OLR variance for 1979–1995. For BSISV, the skill

is for the models best matching patterns with respect to Day -15, Day

-10, Day -5, Day 0, Day 5, Day 10, Day 15, and Day 20 of the

CsEOF given in Annamalai and Sperber (2005). The observed

(1979–2006) and simulated BSISV life-cycle is recovered from linear

regression with PC-4 obtained by projecting 20–100 day bandpass

filtered OLR onto the Day 0 CsEOF pattern from Annamalai and

Sperber (2005). The skill scores are calculated over the region

40�E–180�E, 30�S–30�N
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(d) Day 0 0.83

(c) Day -5 0.83

(b) Day -10 0.29

(a) Day -15 0.51

(h) Day 20

(g) Day 15

(f) Day 10

(e) Day 5 0.57

0.50

0.76

0.72

Fig. 16 As Fig. 14, but for MIROC5 20–100 day bandpass filtered JJAS OLR (1961–1999)
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(d) Day 0 0.94

(c) Day -5 0.80

(b) Day -10 0.33

(a) Day -15 0.68

(h) Day 20

(g) Day 15

(f) Day 10

(e) Day 5 0.75

0.65

0.85

0.85
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7 Discussion and conclusions

The CLIVAR Asian–Australian Monsoon Panel Diagnos-

tics Task Team selected the diagnostics presented herein.

These diagnostics provide a broad overview of the state-of-

the-art in simulating boreal summer Asian monsoon as of

2011. The most important take away message is that in

terms of the MMM, the CMIP5 models outperform the

CMIP3 models for all of the diagnostics. While the CMIP5

MMM gains in terms of the skill scores are incremental,

additional supporting evidence is noted, such as the

improved amplitude of precipitation in the CMIP5 MMM

relative to the CMIP3 MMM. Even so, there are systematic

errors that are consistent between the two vintages of

models. For example, the time mean rainfall error has a

consistent pattern between CMIP5 and CMIP3 (Fig. 1i, j),

though the amplitude of the error is smaller in CMIP5

relative to CMIP3. Part of the error reduction is the better

simulation of the precipitation maxima in the vicinity of

steep orography. Other systematic errors that are common

to both sets of models include (1) late monsoon onset over

India and poor representation of the annual cycle of the

Indian monsoon and oceanic rainfall bands, (2) the mon-

soon domain not extending far enough north over China,

Korea, and Japan, and (3) the monsoon domain extending

too far to the east over the Pacific Ocean (Fig. 6a–e). For

the time mean state and the interannual variability over

East Asia, the 850 hPa wind is better simulated than the

precipitation (Figs. 3, 12a). On intraseasonal time scales,

changes to convective parameterizations have contributed

to new models representing important aspects of the BSISV

(Mizuta et al. 2012). The MIROC5 model (Watanabe et al.

2010) provides a credible simulation of the leading mode

of the BSISV (Fig. 16). This is an important advance, since

heretofore only ECHAM4-based models showed similar

capability (Sperber and Annamamlai 2008). Despite the

poor representation of the BSISV in most of the models,

especially seen in the animations, the CMIP5 MMM

outperforms the individual models (Figs. 15, 17). This

suggests that a multi-model approach to forecasting the

BSISV might be fruitful.

Given that the aim of this paper has been a comparison

of CMIP5 relative to CMIP3, we have taken the basic

approach of generating MMMs using all models [with the

exception of the monsoon domain extent (Fig. 6) and the

BSISV (Fig. 17)], even though in some cases individual

institutions have made multiple submissions with slightly

different model versions. More exhaustive approaches to

assessing model independence and weighting can be

applied (Mason and Knutti 2011), but this is beyond the

scope of this overview. Furthermore, skill for some phe-

nomena, such as the relationship between AIR and ENSO

and the impact of climate change on this teleconnection,

requires the joint assessment of multiple facets of model

performance, including the climatology of rainfall over

India, and the fidelity with which ENSO is simulated

(Annamalai et al. 2007, 2012b). However, for assessing

larger scale impacts, incorporating model quality infor-

mation using parametric and non-parametric weighting

approaches based on mean state, annual cycle, and El Niño

variability has been shown to NOT affect conclusions in

climate detection and attribution studies (Santer et al.

2009). Thus, there is no unique best approach to generating

MMMs. We suggest that the skill scores presented herein

be used as a starting point for selecting subsets of models

for more in-depth analysis of boreal summer Asian mon-

soon phenomena. Furthermore, given the overlap of skill

between individual CMIP5 and CMIP3 models, it is sug-

gested that the CMIP5 and CMIP3 models be viewed as a

joint resource for investigating processes and climate

change impacts, rather than dismissing the CMIP3 models

simply because they predate the CMIP5 models.

In the figures we have presented the range of model

performance for each of the diagnostics. In many instances,

only fractions of a percent separate one model from the

next in terms of skill. In an effort to look for consistency in

skill, in Tables 2 and 3 we have highlighted the five models

that have the largest skill scores for each diagnostic. This

approach reveals numerous common features: (1) Nor-

ESM1-M and CCSM4, which use the same atmospheric

model, consistently finish in the top five in 9/14 and 7/12

categories, respectively. Both models are top five finishers

in simulating the rainfall climatology, and most aspects of

the climatological annual cycle of pentad rainfall. The

former model also performs consistently well in repre-

senting the interannual variability; (2) the MIROC5 and

MIROC4h models have complimentary skill in represent-

ing the climatological annual cycle of pentad rainfall;

(3) the IPSL-CM5a-LR and IPSL-CM5a-MR models are top

five performers in representing the interannual variability of

the Indian monsoon; (4) several of the GFDL models are top

five performers in representing the climatology and the

interannual variability of the 850 hPa wind; and (5) the

ECHAM based models tend to have large skill scores on

intraseasonal time scales. Given our focus on a limited set of

boreal summer Asian monsoon diagnostics, we emphasize

that the discussion of skill given in this paper is not neces-

sarily representative of overall model performance.

The diagnostics and associated skill estimates presented

are not exhaustive in scope, and given the regional com-

plexity of the monsoon (Zhou et al. 2011), there is ample

Fig. 17 As Fig. 14, but for the CMIP5 MMM. For each time lag, and

at each gridpoint, the average anomaly is plotted if more than half of

the models have a statistically significant convective anomaly,

irrespective of sign

b
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scope for additional analysis of other aspects of monsoon

variability and change (e.g., Zhou et al. 2009c; Zhou and

Zou 2010; Boo et al. 2011, Li and Zhou 2011; Meehl et al.

2012). Furthermore, it is important to more fully diagnose

the multitude of processes and interactions that are asso-

ciated with the different aspects of monsoon variability.

Examples of more in-depth questions to address include

(1) evaluating the partitioning of rainfall into convective

versus large-scale components, (2) assessing how well the

models represent the main rain-bearing synoptic systems,

and (3) investigating if there is a relationship between the

ability of the models to represent the BSISV and simulate

the onset of the monsoon correctly, especially over India

where onset is systematically too late. Through such

diagnoses, we will gain an improved understanding of

model processes and scale interactions. We may also gain

confidence that subsets of the models are more reliable for

investigating the impact of climate change on the monsoon

(e.g., Annamalai et al. 2007, 2012b). The analysis pre-

sented here, and for multi-model seasonal forecasts of

Indian summer monsoon (Rajeevan et al. 2012), highlight

the beneficial impact that parameterization development

and increased horizontal resolution have had on the simu-

lation of boreal summer monsoon climate and variability.
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