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Abstract Efforts have been made to appreciate the extent

to which we can predict the dominant modes of December–

January–February (DJF) 2 m air temperature (TS) vari-

ability over the Asian winter monsoon region with

dynamical models and a physically based statistical model.

Dynamical prediction was made on the basis of multi-

model ensemble (MME) of 13 coupled models with the

November 1 initial condition for 21 boreal winters of

1981/1982–2001/2002. Statistical prediction was per-

formed for 21 winters of 1981/1982–2001/2002 in a cross-

validated way and for 11 winters of 1999/2000–2009/2010

in an independent verification. The first four observed

modes of empirical orthogonal function analysis of DJF TS

variability explain 69 % of the total variability and are

statistically separated from other higher modes. We iden-

tify these as predictable modes, because they have clear

physical meaning and the MME reproduces them with

acceptable criteria. The MME skill basically originates

from the models’ ability to capture the predictable modes.

The MME shows better skill for the first mode, represented

by a basin-wide warming trend, and for second mode

related to the Arctic Oscillation. However, the statistical

model better captures the third and fourth modes, which are

strongly related to El Niño and Southern Oscillation

(ENSO) variability on interannual and interdecadal time-

scales, respectively. Independent statistical forecasting for

the recent 11-year period further reveals that the first and

fourth modes are highly predictable. The second and third

modes are less predictable due to lower persistence of

boundary forcing and reduced potential predictability dur-

ing the recent years. In particular, the notable decadal

change in the monsoon–ENSO relationship makes the

statistical forecast difficult.

Keywords Asian winter monsoon � Seasonal climate

prediction � DJF 2 m air temperature variability �
Monsoon-ENSO relationship � Statistical model �
Multi-model ensemble (MME)

1 Introduction

During the 2009/2010 winter season, many parts of Asia

experienced conspicuous climate anomalies concurrent

with the Central Pacific El Niño and strong negative phase

of the Arctic Oscillation (AO) in which frequent severe

cold surges (outbreaks of cold air) and record-breaking

heavy snowfall were observed. During the first few days of

January 2010, North China and Korea dropped to 50- and

70-year record low temperature and snowfall, respectively.

These events resulted in heavy losses from the viewpoint of

agriculture, transportation, and other socioeconomic

activities. The cold winter over the most parts of Asia

seems against the global warming trend projected by the

contemporary climate models (e.g. Lee and Wang 2012b).

Although economic and social influences are equally

affected by salient variability in the Asian winter monsoon

(AWM) and that in the summer, prediction of the AWM
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(Wang et al. 2010; Wu et al. 2011; Sohn et al. 2011) has

received less attention than that of the summer counterpart

which has turned out to be the most challengeable in cur-

rent climate models and observation shown by numerous

studies (e.g. Kang et al. 2002; Ha et al. 2005; Kang and

Shukla 2006; Yang et al. 2008; Wang et al. 2004, 2008,

2009; Lee et al. 2010, 2011a, b; Lee and Wang 2012a and

many others). The extent to which we can predict dominant

modes of the AWM variability with dynamical and with

physically based empirical models is still unclear.

The identification of the dominant modes of AWM

variability is a crucial step in understanding its predict-

ability. Wang et al. (2010) identified two dominant modes

of air temperature variability over the East Asian winter

monsoon (EAWM) region, which were called the northern

and southern mode respectively. The former represents a

cold winter in northern East Asia due to cold air intrusion

from northeastern Siberia, and the latter is characterized by

deepening of the East Asian trough and strengthening of the

Mongolian High. They showed that nine of ten existing

EAWM circulation indices (Ji et al. 1997; Cui and Sun

1999; Lu and Chan 1999; Chen et al. 2000; Li and Zeng

2002; Jhun and Lee 2004; Wu et al. 2006) basically describe

the southern modes and one index (Guo 1983) describes

both modes equally. It was further demonstrated that the

two dominant modes can explain a significant amount of

temperature variability over the entire Asian region.

Several factors have been determined to influence

interannual and interdecadal variability of the AWM. Many

observational and modeling studies have shown that the

decrease of snow cover over the Eurasian continent during

the previous fall season results in weakening of the EAWM

(Walland and Simmonds 1997; Watanabe and Nitta 1999;

Clark and Serreze 2000; Jhun and Lee 2004). The impor-

tance of autumn Arctic sea ice to abnormal AWM climate

was suggested (Wu et al. 2011; Li and Wu 2012). It is

found that the joint action of western Pacific Subtropical

High and Siberian High affects cold wave frequency in

China (Ma et al. 2012). Moreover, El Niño-Southern

Oscillation (ENSO) plays an important role in regulating

the interannual variability of the AWM (Zhang et al. 1996;

Wang et al. 2000; Chan and Li 2004; Chang et al. 2004;

Wang et al. 2010). On the other hand, several studies have

shown that AO and North Atlantic Oscillation (NAO) are

related to the AWM on a decadal time scale (Gong et al.

2001; Jhun and Lee 2004; Wu et al. 2006; Li and Bates

2007). Wu et al. (2009) indicated that the Southern

Hemisphere annular mode is also linked to the AWM

variability.

Despite of the aforementioned studies, how to determine

predictability of AWM variability on a seasonal time scale

is still elusive. Better understanding of the origins and

predictability sources of the AWM may contribute to the

improvement of its seasonal prediction capability. Wang

et al. (2007) and Lee et al. (2011a) suggested the concept of

predictable mode analysis (PMA) because the multi-model

ensemble (MME) seasonal prediction skill is based essen-

tially on the major modes. With this method, attainable

potential climate predictability can be quantified using the

fractional variance of the ‘‘predictable’’ leading modes

determined by examination of observation and hindcast

results of the models. The purpose of this study is to

explore the attained prediction skill and achievable

potential predictability of the AWM variability by using

the PMA approach and to understand the range for

potential improvement of dynamical and statistical model

predictions. The specific questions to be addressed include

(1) how to determine the current level of dynamic predic-

tion skill for the AWM seasonal mean 2 m air temperature

(hereafter, TS) anomaly and identify the source of the

dynamical forecast skill; (2) how to empirically estimate

the potential predictability of the AWM; and (3) how to

optimally construct a statistical model with physically

based predictors for the AWM TS prediction. These points

will be respectively addressed in Sects. 3, 4 and 5,

respectively, following a brief discussion of the datasets,

models, and methodology used in this study. Section 6

summarizes our major findings.

2 Models, data, and methodology

2.1 Coupled models’ hindcast data

Thirteen coupled models used for the present study were

adopted from Asia–Pacific economic cooperation climate

center (APCC)/climate prediction and its application to

society (CliPAS) and development of European multi-

model ensemble system for seasonal-to-interannual pre-

diction (DEMETER) projects; hindcast datasets are

detailed by Wang et al. (2009) and Lee et al. (2010). A

brief summary of these models is presented in Table 1. The

models show a large range of model horizontal resolution

and number of ensemble members, from 6 to 15. Flux

correction was not applied to any of the selected coupled

models and these models have retrospective hindcasts with

the November 1 initial condition that yield 1-month-lead

winter DJF forecasts for the common period of

1981/1982–2001/2002. MME prediction was made using

simple average of the ensemble means of the 13 coupled

models.

2.2 Observed data

The observed TS data were obtained from the National

Centers for Environmental Prediction (NCEP) reanalysis
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version 2 (NCEP R2; Kanamitsu et al. 2002). The

monthly Niño 3.4 SST index was calculated using

improved Extended Reconstructed SST Version 3

(ERSST V3) data (Smith et al. 2008). All data used in

this study were normalized by their own standard

deviations.

2.3 Predictable mode analysis

Wang et al. (2007) and Lee et al. (2011a) suggested a

method for determining predictable modes from empirical

orthogonal function (EOF) modes of observation and state-

of-the-art climate model prediction. The correlation matrix

is used for EOF analysis because dynamical models more

effectively capture observed dominant modes with this

approach than with that of the covariance matrix for the

AWM TS anomalies. Two basic criteria were considered

for the determination: (1) In observation, predictable

modes should explain a large part of the total variability

with physical interpretations and should be statistically

separated from other higher modes; and (2) the climate

prediction models should be capable of predicting these

major modes.

To represent climate model capability in predicting EOF

modes, a skill score is defined in terms of the pattern

correlation coefficient (PCC) skill for eigenvector (EV) and

temporal correlation coefficient (TCC) skill for the prin-

cipal component (PC) time series of each mode (i). The

skill score for each mode is calculated by

SkillScoreðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PCCðiÞ � TCCðiÞ
p

: ð1Þ

The skill score ranges from 0 to 1, respectively

indicating no skill at all and perfect forecast. It should be

noted that we reordered the EOF modes of the MME

prediction according to the skill score because the order of

the predicted EOF mode is not necessarily the same as its

Table 1 Description of 13 coupled atmosphere–ocean models. Model index used in figures is also shown

Institute

(model index)

Model

name

AGCM OGCM Ensemble

member

References

NCEP (M1) CFS GFS

T62 L64

MOM3

1/3�lat 9 5/8�lon L27

15 Saha et al. (2006)

FRCGC (M2) SINTEX-F ECHAM4

T106L19

OPA 8.2

2� cos(lat) 9 2�
lon L31

9 Luo et al. (2005)

SNU (M3) SNU SNU

T42L21

MOM2.2

1/3�lat 9 1�lon L40

6 Kug et al. (2008)

UH (M4) UH ECHAM4

T31L19

UH Ocean

1�lat 9 2�lon L2

10 Fu and Wang (2001)

GFDL (M5) CM2.1 AM2.1

2�lat 9 2.5�lon L24

MOM4

1/3�lat 9 1�lon L50

10 Delworth et al. (2006)

BMRC (M6) POAMA1.5 BAM 3.0d

T47 L17

ACOM3

0.5�–1.5� lat 9 2.0�
lon L31

10 Zhong et al. (2005)

CERFACE (M7) CERFACE ARPEGE

T63 L31

OPA 8.2

2.0� 9 2.0� L31

9 Déqué (2001)

Delecluse and Madec (1999)

ECMWF (M8) ECMWF IFS

T95 L40

HOPE-E

1.4� 9 0.3�–1.4� L29

9 Gregory et al. (2000)

Wolff et al. (1997)

INGV (M9) INGV ECHAM4

T42 L19

OPA 8.2

2.0� lat 9 2.0� lon L31

9 Roeckner et al. (1996)

Madec et al. (1998)

LODYC (M10) LODYC IFS

T95 L40

OPA 8.0

182GP 9 152GP L31

9 Gregory et al. (2000)

Delecluse and Madec (1999)

MPI (M11) MPI ECHAM5

T42 L19

MPI-OM1

2.5� lat 9 0.5�–2.5�
lon L23

9 Roeckner et al. (1996)

Marsland et al. (2003)

METFR (M12) Meteo-

France

ARPEGE

T63 L31

OPA 8.0

182GP 9 152GP L31

9 Déqué (2001)

Madec et al. (1997)

UKMO (M13) UKMO HadAM3

2.5 9 3.75L19

GloSea OGCM

1.25� 9 0.3�–1.25�L40

9 Roeckner et al. (1996),

Marsland et al. (2003)
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observed counterpart. To reorder the predicted EOF modes,

the skill score for the first observed mode was first

calculated against all of the predicted modes, and the

predicted mode with the best skill score in the first

observed mode was taken as the first predicted mode. Other

predicted modes were determined by repeating this

process.

From the determination of predictable modes, the total

field (TS) is decomposed into the predictable and unpre-

dictable parts. The predictable part (TSpred), as a function

of longitude (lon), latitude (lat), and time (t), is recon-

structed by the linear combination of the predictable EOF

modes defined by

TSpredðlon; lat; tÞ ¼
X

N

i¼1

kiEViðlon; latÞPCiðtÞ; ð2Þ

where ki is the eigenvalue of ith mode, and N is the total

number of predictable modes. The unpredictable part

(TSunpred) is then calculated by subtracting the predictable

part from the total field. We consider the correlation

coefficient between the original TS and TSpred as a measure

of attainable potential predictability assuming that pre-

dictable PCs are accurately predicted (Lee et al. 2011a; Lee

and Wang 2012a).

2.4 Statistical model

We attempted to determine the extent to which we can

predict the predictable dominant modes of AWM vari-

ability with a physically based statistical model. In this

study, the statistical model, named predictable mode

forecast model (PMFM), has two steps: (1) prediction of

the predictable EOF PCs of DJF TS over the AWM region

using physically based and optimally selected predictors;

and (2) reconstruction of the TS field over the entire AWM

region from predicted PCs with determined EV and

eigenvalues during the training period.

A simple multiple linear regression model was used for

prediction of each PC defined by

STM PCiðtÞ ¼
X

M

j

aijPredijðt � sÞ; ð3Þ

where STM_PCi is the predicted PC for the ith EOF

mode; t, the time for forecast target; M, the total number

of predictors for each PC; Predij, the jth predictor for the

ith PC normalized by its own standard deviation with

time lag s (1 month in this study); and aij, the coefficient

of the jth predictor for the ith PC. The most important

factor for accurate prediction of PCs in the PMFM is the

determination of optimal predictors for each predictand.

The details of predictors for each PC will be addressed

in Sect. 4.

Using PCs, DJF TS can be reconstructed by

STM TStrainingðlon; lat; ttrainingÞ

¼
X

N

i¼1

kiEViðlon; latÞSTM PCiðttrainingÞ; ð4Þ

where STM_TStraining indicates reconstructed DJF TS as a

function of longitude and latitude at time t, which is similar

to Eq. (2). Two different statistical forecasts were made. In

the first, we performed a cross-validated statistical forecast

for the 21 years of 1981/1982–2001/2002 in order to

compare with the MME prediction. In the second, an

independent forecast was made for the period of 1999/

2000–2009/2010 DJF with the latest 20-year training

period for validation of the current statistical approach

because cross-validated forecasts are not free from

common overfitting problems. For example, the 1999/

2000 (2009/2010) DJF forecast was made using the

empirical relationship determined for the 20 years of

1979/1980–1998/1999 (1989/1990–2008/2009) DJF. The

predicted DJF TS was determined by the following

equation:

STM TSforecastðlon; lat; tforecastÞ

¼
X

N

i¼1

kiEViðlon; latÞSTM PCiðtforecastÞ: ð5Þ

We considered the correlation coefficient between the

original TS and STM_TStraining as a measure of attained

fitting skill and that between the original TS and

STM_TSforecast as a measure of attained forecast skill for

the PMFM.

3 Dynamical prediction

3.1 Evaluation of AWM TS prediction

In this section, we first examine the AWM prediction

skills of the 13 coupled models and their MME predic-

tions. The strength of the AWM is measured by TS over

the Asia–Western North Pacific (WNP) region (Eq–60�N,

60�E–140�E) in the period of DJF. Figure 1 shows the

TCC skills of the 1-month-lead seasonal prediction for

DJF TS obtained from the 13 coupled models (Fig. 1b–n)

and their MME (Fig. 1a) with November 1 initial condi-

tion over the AWM region for the 21-year period of

1981/1982–2001/2002. Although most coupled models

accurately predict anomalies over the tropical ocean due to

persistent SSTs 1 month in advance, prediction of the DJF

TS anomaly over the continental AWM region is difficult.

For the hindcast period, the TCC skill averaged over the

entire domain (Eq–60�N, 60�E–140�E) for individual

models ranges from 0.16 to 0.46 with the averaged skill of

J. Lee et al.
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0.33. In comparison, the all-model MME is capable of

predicting the AWM 1 month in advance with the domain-

averaged TCC skill of 0.51 for the 21 years, which is

better than that observed for any individual coupled model

and significantly higher than the averaged skill of all

individual models.

3.2 Prediction of major EOF modes

The first four major EOF modes of AWM TS variability

are investigated in observation and in a 1-month-lead

MME prediction. Figure 2 shows spatial distribution of the

EV and PC time variation in addition to the percentage

variance accounted for by each EOF mode, shown at the

top of each panel of the spatial structure. Moreover, the

MME PCC skill for EV and the TCC skill for PC are

presented for each mode. A comparison of spatial structure

and temporal coefficient indicates that the second, third,

and fourth predicted modes respectively correspond to the

fourth, second, and third observed modes, suggesting that

the MME tends to highly overestimate the variance of the

observed fourth mode and underestimates that of the

observed second and third modes. Thus, the predicted

modes were reordered following the procedure introduced

in Sect. 2.3.

The observed first mode represents a domain-wide

warming trend across the period examined and accounts for

32.1 % of the total observed variability. This mode is the

same as the second EOF mode of the EAWM (southern

mode) shown in Wang et al. (2010). The MME captures its

spatial pattern and temporal variation 1 month in advance

with high fidelity. The PCC skill for EV1 is 0.95, and the

TCC skill for PC1 is 0.83.

The second observed EOF mode features a north–south

seesaw pattern with an interannual timescale, accounting

for 16.6 % of the total observed variability. This mode

resembles the first mode of the EAWM (northern mode)

shown in Wang et al. (2010). The MME accurately cap-

tures the spatial and temporal characteristics of the second

observed mode but underestimates its variance. The PCC

skill for EV2 is 0.72, and the TCC skill for PC2 is 0.50.

The observed third mode displays a sandwich pattern

characterized by a cold TS anomaly over the mid-latitude

Asian continent with a warm TS anomaly over the high-

latitude Asian continent and the Tropics and vice versa.

This mode has mainly interannual variability and accounts

(a) (e) (i) (m)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

(n)

Fig. 1 The TCC skill for 1-month lead DJF prediction of 2 m TS

obtained from 13 coupled models and their MME with November 1

initial condition over the AWM region for the period of

1981/1982–2001/2002. Solid (dashed) line indicates a correlation

coefficient of 0.6 (0.4). The numbers in the left upper corners indicate

the averaged correlation skill over the AWM region
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for 11.2 % of the total observed variability. The MME

reasonably predicts the spatial and temporal characteristics,

although its accuracy is less than that of the first two

observed modes. The percentage variance is significantly

underestimated, and spatial errors are exhibited over most

of the oceanic region. In addition, the strong positive phase

of the observed PC in DJF 1982/1983 and 1997/1998 is not

well captured.

The fourth observed mode exhibits prominent decadal

variability and three variability centers over the WNP

(negative anomaly), northwestern China (positive), and

Kazakhstan (negative). Interestingly, the second predicted

mode most resembles the fourth observed mode. However,

the MME significantly overestimates its percentage vari-

ance and had remarkable spatial errors over most of mid-

latitude Asia. Nonetheless, the MME offers some skill in

predicting the fourth observed mode with a PCC skill of

0.36 and a TCC skill of 0.39.

4 Predictable mode analysis

4.1 Identification of predictable modes

On the basis of the EOF analysis result introduced in Sect.

3 and the determination criteria discussed in Sect. 2.3,

(a) (b)

Fig. 2 a Spatial patterns and b PC time series of the first four EOF

modes of DJF TS over the AWM region, respectively, obtained from

observation (OBS) and 1-month lead MME prediction. Percentage

variance accounted by each mode is also denoted. The value of PCC

indicates PCCs between the observed and predicted EV. The value of

TCC indicates temporal correlation coefficients between the observed

and the predicted PC time series
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predictable modes were identified for the AWM TS vari-

ability. Figure 3 shows a scatter diagram between the

observed percentage variance (ordinate) and the MME skill

score (abscissa), defined by Eq. (1), for each EOF mode.

The first two observed EOF modes are statistically well

separated from higher modes according to the rule of North

et al. (1982) and are predicted with high fidelity by the

MME of the current coupled models. The skill scores were

0.89 and 0.6 for the first and second EOF modes, respec-

tively. The third and fourth modes, to a certain extent, are

separated from other higher modes and captured by the

MME with lower fidelity than the first and second. Based

on the result, we defined the first four modes as predictable

modes for DJF TS over the AWM region. These modes

account for approximately 69 % (83 %) of the total vari-

ance of DJF TS in observation (MME prediction).

4.2 Prediction skill and attainable potential

predictability

This subsection describes the current level of prediction

skill attained by the 1-month-lead MME prediction and

attainable potential predictability from the first four pre-

dictable modes. The total predicted and observed TS were

decomposed into predictable (TSpred) and unpredictable

(TSunpred) parts as described in Sect. 2.3. Reconstruction

from PCs was achieved using Eq. (2). Figure 4a, b compare

TCC skills for the DJF TS obtained from TSpred and

TSunpred components, respectively, of the MME prediction.

For the calculation, the observed total field was used for

both predictable and unpredictable cases. The skills of the

dynamical model predictions made by the four predictable

modes are essentially comparable to the original prediction

using all empirical modes (Fig. 1a). On the contrary, the

contribution of all residual modes to seasonal prediction

skill is minimal, except for those over the Indochina pen-

insula. This result clearly indicates that the current coupled

model prediction skill for the DJF AWM TS essentially

originates from the skill for prediction of the first four

modes.

To improve the 1-month-lead MME prediction, we

applied statistical postprocessing to the prediction. Since

the MME prediction exhibited errors in capturing the

spatial pattern of the observed EVs, the predicted EVs were

replaced by the observed values during the reconstruction

procedure for the predictable modes of the MME predic-

tion. The statistical postprocessing potentially improved

the dynamical prediction over most of the AWM region

shown in Fig. 4c. However, if the statistical postprocessing

was applied to the MME prediction with a cross-validated

approach, no significant improvement was observed (not

shown).

From the conventional perspective, potential predict-

ability can be defined by the fractional variance of the

predictable part. In this case, 69 % of the total observed

variability was potentially predictable over the AWM

region. In present study, however, the realizable potential

predictability was estimated by the TCC between the

observed total field and the observed TSpred to facilitate

comparison with the MME prediction skill, as mentioned in

Sect. 2.3. Figure 4d indicates that the variability of the DJF

TS is highly predictable, particularly over the EAWM

region, the tropical oceans, and a large region of northern

Asia. The predictability is relatively low over northern

India. The area-averaged TCC skill is 0.82, which corre-

sponds to 69 % of the total observed variability in the

linear regression.

4.3 Sources of predictability

The results presented in Figs. 3 and 4 suggest that the first

four leading observed EOF modes are predictable. To

support this postulation, we further examined the sources

of predictability of the modes. Figure 5 shows TCC

between the DJF TS anomaly and each mode for the

21-year period of 1981/1982–2001/2002. The first

observed mode, which exhibits a warming trend over most

of the AWM, significantly correlates with SST warming

over the WNP, North Indian Ocean, and subtropical North

Atlantic Ocean and with continental TS warming over

North America, middle Africa and the Maritime Continent

(Fig. 5a). In addition, this mode significantly correlates

with Niño 3.4 SST anomalies observed in the previous

September–October–November (SON) with a TCC of 0.4

(Fig. 6).

Fig. 3 The percentage variances that are accounted for by the

observed first eight EOF modes (ordinate) and the combined forecast

skill score for the EV and PC for each mode (abscissa) for DJF TS

over the AWM region. The first four major modes capture about 69 %

of the total observed interannual variability
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The second observed mode shows strong positive cor-

relation with the DJF TS over most of northern Asia and

Europe (Fig. 5b). This mode exhibits no relationship with

the simultaneous Niño 3.4 SST anomaly but may be

slightly related to the developing ENSO during following

June–July–August (JJA), shown in Fig. 6. It is noted that

this mode has significant correlation with the simultaneous

AO with a TCC of 0.66 for the 21-year period of DJF

1981/1982–2001/2002. A significant positive correlation

(0.68) remains for the recent 20-years period of DJF

1990/1991–2009/2010.

ENSO regulates the third observed EOF mode (Fig. 5c)

on the interannual time scale. The lead–lag relationship

between the seasonal Niño 3.4 SST anomaly and the third

observed PC clearly indicates that the third mode is

observed during the mature phase of ENSO (Fig. 6). Dur-

ing the mature phase of El Niño, the cold TS anomaly tends

to occur over most of mid-latitude Eurasia, and the warm

anomaly occurs over most of northern Eurasia and the

Equatorial and South Indian Ocean.

The fourth observed mode is related to the decadal

variability of the North Pacific Ocean variability (Fig. 5d)

(a) (b) (c) (d)

Fig. 4 The MME’s TCC skill for DJF TS using a reconstructed field

from the first four modes, b reconstructed field from higher modes,

and c statistical correction using the first four modes. d The realizable

potential predictability from the first four predictable EOF modes.

Solid (dashed) line indicates a correlation coefficient of 0.6 (0.4). The

numbers in the left upper corners indicate averaged correlation skill

over the AWM region

(a) (c)

(b) (d)

Fig. 5 a The TCC skill for the first PC against DJF TS anomaly. b, c and d Are counterpart of (a) for the second, third, and fourth PCs. The

dashed contour indicates regions where correlation coefficient is statistically significant at a 99 % confidence level
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and has a prolonged relationship with the Niño 3.4 SST

anomaly from the previous JJA to the following DJF (Fig. 6),

indicating that the decadal component of ENSO and the

North Pacific Ocean variability regulate the mode. The

fourth observed PC is closely related to the long-term TS

variability over the eastern Tibetan Plateau and northwest

China, where the TS variability shows a weaker correlation

with the observed PC1 than that over the other Asian region

indicated in Fig. 5a. It is further noted that PC4 has no rela-

tionship (nearly zero) with the AO for the 21-year period of

DJF 1981/1982–2001/2002; however, a significant negative

correlation of -0.4 is evident for the recent 20-year period of

DJF 1990/1991–2009/2010. Interestingly, the second pre-

dicted PC, which resembles the fourth observed PC, has a

significant relationship with the predicted ENSO on both

interannual and interdecadal time scales (not shown).

5 Statistical prediction

This section demonstrates the achievable prediction skill of

the AWM using the physically based statistical model

(predictable modes forecast model; PMFM) introduced in

Sect. 2.4. In this approach, the first four predictable PCs are

first predicted with optimally selected predictors, and the

prediction of the DJF TS over the entire AWM is achieved

from TS reconstruction using the observed EVs and sta-

tistically predicted PCs from Eq. (5). The selection of

predictors plays a crucial role on improving the forecast

skill of the PMFM.

5.1 Sources of predictability

To facilitate comparison with the 1-month-lead MME

prediction, the preceding September–October mean (SO)

TS was used for selecting predictors for the first four

predictable PCs. We first investigated the correlation

coefficients between the SO mean TS over the globe and

each PC time series of the DJF AWM TS shown in Fig. 7.

A comparison between Figs. 5 and 7 reveals remarkable

persistent characteristics of lower-boundary forcings rela-

ted to the predictable PCs, except for the second PC, which

indicates an existing perspective on the statistical forecast.

During the SO prior to a weakened AWM (i.e. basin-

wide warming of the TS), pronounced warming is observed

in the north Indian Ocean and in the subtropical-mid-lati-

tude North Atlantic Ocean (Fig. 7a) that persists through

the following DJF (Fig. 5a). In accordance with the note-

worthy relationship, the predictors for the PC1 (Pred1j) are

defined by

a1jPred1jðtÞ ¼ 0:5
r1j

CTS1j; j ¼ 1; 2

CTS1j ¼ ½CORðlon; latÞ � SO TSðlon; lat; tÞ�Rj

if CORðlon; latÞj j � 0:38;

ð6Þ

where COR is the correlation coefficient between SO TS

and the first PC as a function of longitude and latitude, r is

the standard deviation of CTS time series, square brackets

indicate area averaging over region R1 (Eq–25�N, 60�E–

130�E) and region R2 (Eq–60�N, 80�W–10�W) shown in

Fig. 7a. The SO TS anomaly, which has a correlation

coefficient larger than ?0.38 or smaller than -0.38 (95 %

confidence level), is averaged over the selected region. For

the forecast purpose, the correlation coefficient was

obtained during training period.

Contrary to that in PC1, outstanding precursors were not

observed for PC2 (Fig. 7b) over the Northern Hemisphere.

In the simultaneous relationship, the positive AO is

strongly concurrent with the warm (cold) TS anomaly over

the northern (subtropical) AWM. Because of the chaotic

nature of the AO, however, no significant relationship of

PC2 with the SO AO was observed. However, useful pre-

cursors were detected over the Barents and Kara seas, some

Fig. 6 Lead-lag correlation

coefficients of seasonal mean

Niño 3.4 SST index against the

first four EOF PCs, respectively

Seasonal prediction and predictability

123



parts of the northern AWM, and the extratropical

North Pacific. The predictors for the PC2 (Pred2j) are

defined by

a2jPred2jðtÞ ¼
0:5

r2j
CTS2j; j ¼ 1; 2; ð7Þ

where region R1 is 35�N–80�N, 20�E–160�E, and region

R2 is 30�N–70�N, 180�–80�W. We have determined that

the precursors for PC2 are not optimal; therefore, further

study is needed to find more effective predictors.

Since the positive phase of PC3 tends to occur during the

mature phase of El Niño, its correlation field with SO TS

exhibits a clear progressing El Niño pattern over the

tropical Indo–Pacific Ocean (Fig. 7c). In addition, a posi-

tive correlation is observed over Russia and Kazakhstan

that may be related to SO snow cover over the region. The

predictors for PC3 (Pred3j) are defined by

a3jPred3jðtÞ ¼
0:25

r3j
CTS3j; j ¼ 1; 2; 3; 4; ð8Þ

where region R1 is 20�S–20�N, 40�E–100�E; R2 is 20�S–

20�N, 100�E–160�E; R3 is 20�S–20�N, 170�W–60�W; and

R4 is 30�N–70�N, 40�E–90�E.

The positive phase of PC4 is strongly related to the cold

SST anomaly over the WNP and the warm SST anomaly

over the central and eastern Pacific (Fig. 7d) that persist

through the following DJF. The predictors for PC4 (Pred4j)

are defined by

a4jPred4jðtÞ ¼
0:5

r4j
CTS4j; j ¼ 1; 2; ð9Þ

where region R1 is Eq–50�N, 80�E–160�E, and R2 is

10�S–60�N, 170�E–120�W.

5.2 Cross-validated statistical forecast

To compare with the 1-month-lead MME prediction, we

first attempted statistical forecasting for the first four PCs

using the aforementioned predictors with a cross-validated

approach for the 21-year period of 1981/1982–2001/2002.

All coefficients and standard deviations of predictors were

determined during the training period excluding the fore-

cast year. Figure 8 shows the observed and empirically

predicted PCs for the cross-validated method (Fcst). As a

control forecast, a fitting result (Fit) that used all 21-year

information for the statistical forecast is also displayed. In

Fig. 8, r indicates the correlation coefficient between the

observed and predicted PCs. Because of the overfitting

problem of the statistical model, the cross-validated skill

dropped in comparison to the fitted skill. However, the first

and fourth PCs that exhibit trend and interdecadal vari-

ability, respectively, are highly predictable with the current

(a) (c)

(b) (d)

Fig. 7 Same as Fig. 5 except for September–October (SO) TS. Geographic regions that are used to define the predictors in TS anomaly field

during SO are denoted by black solid box
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empirical approach. The empirical model is also able to

predict the third PC with less fidelity than the first and

fourth PCs. It is noted that current dynamical MME has

better skill for the first and second PCs than the PMFM

whereas the PMFM relatively better captures the third and

fourth PCs, which are strongly related to ENSO variability

on interannual and interdecadal timescales, respectively,

than the MME.

The statistical prediction for the entire AWM TS was

next performed using the reconstruction method from the

fitted (Eq. 4) and predicted PCs (Eq. 5) introduced in

Sect. 2.4. Figure 9a, b show the TCC skill for statistically

fitted (STM_TStraining) and cross-validated prediction

(STM_TSforecast) for the 21-year period. The fitted skill is as

good as the dynamical prediction skill with spatial bias

correction (Fig. 4c), and the cross-validated prediction skill

is comparable to the 1-month-lead MME prediction

reconstructed from the first four PCs (Fig. 4a). While the

dynamical model has better skill in predicting the TS over

the subtropical AWM, the statistical model more effec-

tively predicts the TS over the mid-latitude EAWM region.

In addition, the spatial distribution of the statistically fitted

skill is similar as that of the attainable potential predict-

ability shown in Fig. 4d, indicating that the selected pre-

dictors for each PC are capable of capturing most of

interannual-to-interdecadal variability of the AWM TS.

The persistent forecast skill was also compared with the

statistical and dynamical forecast (Fig. 9c). The persistent

forecast was obtained with the assumption that the October

mean TS persists through the following DJF season. A

comparison of Fig. 9b, c indicates that the PMFM exhibits

significantly better skill than the persistent forecast except

over some parts of Central Asia and the Arabian Sea, where

large persistence was observed.

The spatial distributions of the dynamical (Fig. 4a) and

statistical forecast skills (Fig. 9b) are demonstrated to be,

to some degree, independent and complementary to each

other. The dynamical forecast has significant skill over

most of the oceanic region, while the statistical forecast has

skill over the mid-latitude EAWM region. From these

results, we simply averaged the dynamical and statistical

forecasts and investigated their resultant forecast skill.

Figure 9d shows that a simple average of two forecasts can

improve the DJF TS forecast over most of the AWM

region. The area-averaged forecast skill for the combined

forecast was 0.59, which is larger than that of the

dynamical (0.53) and statistical (0.51) skills.

5.3 Independent forecast

Although the statistical forecast utilized the cross-validated

approach, overfitting problems remain inevitable. Thus, we

performed independent forecasting for the 11-year period

of DJF 1999/2000–2009/2010 to confirm whether the

suggested methodology is actually useful. The independent

forecast procedure is detailed in Sect. 2.4.

Figure 10 shows the observed, fitted, and independently

predicted PCs. Since the training period is used for the

(a) (c)

(b) (d)

Fig. 8 The PC time series obtained from observation and fitted and

cross-validated forecast of 1-month lead statistical prediction with SO

mean predictors for the a first, b second, c third, and d fourth EOF

mode, respectively. The value of r within the parenthesis in the figure
legend indicates the TCC between the observed and predicted PC
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latest 20 years from the forecast target year, the fitted PC

displayed in the figure is the result for the forecast of

1999/2000 DJF TS. It is obvious that the independent

forecast skill drops further than the fitted skill from the

cross-validated forecast in the previous section. Nonethe-

less, the trend mode (PC1) and interdecadal mode (PC4) are

highly predictable with TCC skills of 0.76 and 0.65,

respectively, for the recent 11 years. However, two inter-

annual modes of PC2 and PC3 are not well predicted. For

the AO-related second PC (northern mode in Wang et al.

2010), the remarkable positive phases in 2001/2002,

2003/2004, and 2006/2007 are totally missed in the PMFM,

while negative phases are relatively well predicted. The

low performance of the ENSO-related third PC may be

attributed to the interdecadal change in the ENSO–mon-

soon relationship. The correlation between the third PC and

DJF Niño 3.4 SST index is 0.56 for 1979/1980–1999/2000

and 0.37 for 1989/1990–2009/2010, which indicates a

weakening of the relationship during the recent decade.

This notable decadal change in the monsoon–ENSO rela-

tionship likely causes difficulties in statistical forecasting.

Figure 11 shows the TCC skill for the DJF TS

over the entire AWM by the reconstructed field from

the fitted and independently predicted PCs along with

the aforementioned potential predictability during

1999/2000–2009/2010. During the recent 11 years the TS

over the subtropical AWM is more statistically predict-

able than that over the northern AWM. The area-aver-

aged TCC skill is 0.43 for the 11-year period, which is

less than the skill of 0.51 for the 21-year period of

1981/1982–2001/2002. It is important to note that the TS

during the recent decade is less predictable than that of

1981/1982–2001/2002 (Figs. 11a and 4d). The attainable

potential predictability is 0.71 over the AWM, which is

(a) (b) (c) (d)

Fig. 9 The TCC skill for DJF TS for the period of 1981/1982–2001/

2002 DJF using a statistically fitting procedure, b the cross-validated

forecast of 1-month lead statistical prediction, c persistent forecast

using October mean TS, and d average of dynamical prediction and

statistical prediction. Solid (dashed) line indicates a correlation

coefficient of 0.6 (0.4). The numbers in the left upper corners indicate

averaged correlation skill over the AWM region

(a) (c)

(b) (d)

Fig. 10 Same as Fig. 8 except for the independent forecast. Independent forecast is performed for the period of 1999/2000–2009/2010 winter

using the last 20-year training results
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less than that for 1981/1982–2001/2002 (0.82). In addi-

tion, the persistence of TS was also reduced from 0.24

(Fig. 9c) to 0.12 (Fig. 11d). Considering the lower

persistence and potential predictability during the recent

decades, the independent statistical forecast appears to be

valid and useful.

6 Summary

The 1-month-lead seasonal forecast skills of current

dynamical and statistical models were investigated on the

DJF TS anomaly over the AWM region and were com-

pared with attainable potential predictability obtained from

the ‘‘predictable’’ leading modes for the 21-year period of

1981/1982–2001/2002.

The 1-month-lead dynamical prediction for the DJF

AWM TS was achieved by the MME of thirteen coupled

models with the November 1 initial condition that were

included in DEMETER and CliPAS projects. The MME is

capable of predicting the AWM TS 1 month in advance

with the domain-averaged TCC skill of 0.51 for the 21-year

period, which is significantly higher than the 0.33 averaged

skill of all individual models and better than individual

model skills, which ranged from 0.16 to 0.46.

The first four observed modes are identified as predict-

able modes because they explains 69 % of the total

observed variability with physical interpretations and are

statistically separated from other higher modes. Moreover,

they are also well predicted by the current climate pre-

diction models, to some extent. The MME effectively

captures the first and second observed EOF modes with

high fidelity, which are characterized by a domain-wide

warming trend and by AO-related interannual variability,

respectively. The observed third and the fourth modes are

respectively associated with interannual and interdecadal

components of ENSO and are reasonably captured by the

MME, although less faithfully than the first two modes.

The MME highly overestimates percentage variance of the

fourth observed mode but far underestimates that of the

second observed mode.

The observed total field of the DJF AWM TS was

decomposed into predictable and unpredictable compo-

nents. Considering the assumption that the first four pre-

dictable modes are perfectly predicted, attainable potential

predictability can be quantified by the TCC between total

TS and reconstructed TS from the predictable modes. The

area-averaged attainable TCC skill is 0.82, and this corre-

sponds to 69 % of the total observed variability in linear

regression. The MME tends to more accurately predict

areas of high potential predictability except over that above

50�N of the AWM region. It is important to note that the

MME forecast skill essentially originates from the ability

of dynamical models to capture the first four predictable

modes.

A statistical prediction with the PMFM was achieved

using predictors obtained from the SO mean TS that sig-

nificantly correlated with the predictable modes of the DJF

AWM TS. During 1981/1982–2001/2002, the cross-vali-

dated statistical forecast shows significantly high skills for

the first and fourth observed modes, which exhibits trend

and interdecadal variability, respectively. It is noted that

the current dynamical MME shows better skills for the first

and second PCs whereas the PMFM more effectively

captures the third and fourth PCs, which are strongly

related with ENSO variability on interannual and inter-

decadal timescales, respectively, compared to the MME.

Since the dynamical and statistical predictions are com-

plementary, a simple composite of two predictions is

capable of improving the forecast skill of the DJF TS over

most of the AWM region. The area-averaged forecast skill

for the combined forecast is 0.59 which is larger than that

of 0.53 dynamical and 0.51 statistical skills.

Independent statistical forecasting for the DJF AWM TS

was achieved for the 11-year period of 1999/2000–2009/

2010 to validate the statistical model’s usefulness for real-

time forecasting during recent years. The area-averaged

TCC skill of the statistical forecast is 0.43 for the recent

(a) (b) (c) (d)

Fig. 11 The TCC skill for DJF TS for the period of 1999/2000–2009/

2010 DJF using a realizable potential predictability measure, b fitting

procedure, c independent forecast of 1-month lead statistical predic-

tion, and d persistent forecast using October mean TS. Solid (dashed)

line indicates a correlation coefficient of 0.6 (0.4). The numbers in the

left upper corners indicate averaged correlation skill over the AWM

region
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11 years, which is less than that of 0.51 for the 21-year

period of 1981/1982–2001/2002. It is important to note that

the attainable potential predictability is 0.71 over the

AWM, which is less than that of 0.81 for the 21-year

period, and this result indicates that the TS during the

recent decade was potentially less predictable. In addition,

the persistent skill of the TS from October to DJF of the

21-year period is also reduced from 0.24 to 0.12 in the

recent 11 years. Considering the lower persistence and

potential predictability during the recent decade, the inde-

pendent statistical forecast skill appears to be valid and

useful.

The interannual variability is less predicted than the

interdecadal variability and warming trend by the current

statistical forecast. The statistical forecast shows difficulty

in capturing the positive phase (warming over the northern

AWM region) but well predicts the negative phase of the

second observed PC. The low performance of the ENSO-

related third PC may be attributed to the interdecadal

change in the monsoon–ENSO relationship. The correla-

tion coefficient between the third PC and the Niño 3.4 SST

index dropped to 0.37 for the recent 21 years from 0.56 for

1979/1980–1999/2000. This notable decadal change in the

monsoon–ENSO relationship likely makes difficulty in

statistical forecast.

It should be emphasized that the forecast skill demon-

strated here for the AWM TS is a baseline and attained skill

for both dynamical and statistical models. During the

recent two decades, climate models have been improved

remarkably; extensive effort will be devoted to further

improvement. The statistical forecast can be further

improved with the incorporation of better predictors than

only the SO mean TS.
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