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Abstract Reduction of uncertainty in large-scale lateral-

boundary forcing in regional climate modeling is a critical

issue for improving the performance of regional climate

downscaling. Numerical simulations of 1998 East Asian

summer monsoon were conducted using the Weather

Research and Forecast model forced by four different

reanalysis datasets, their equal-weight ensemble, and

Bayesian model averaging (BMA) ensemble means. Large

discrepancies were found among experiments forced by the

four individual reanalysis datasets mainly due to the

uncertainties in the moisture field of large-scale forcing

over ocean. We used satellite water–vapor-path data as

observed truth-and-training data to determine the posterior

probability (weight) for each forcing dataset using the

BMA method. The experiment forced by the equal-weight

ensemble reduced the circulation biases significantly but

reduced the precipitation biases only moderately. However,

the experiment forced by the BMA ensemble outperformed

not only the experiments forced by individual reanalysis

datasets but also the equal-weight ensemble experiment in

simulating the seasonal mean circulation and precipitation.

These results suggest that the BMA ensemble method is an

effective method for reducing the uncertainties in lateral-

boundary forcing and improving model performance in

regional climate downscaling.

Keywords Regional climate simulation � Lateral

boundary forcing � Bayesian model averaging

1 Introduction

Since the first demonstration of regional climate model

(RCM) by Dickinson et al. (1989) and Giorgi and Bates

(1989), applications of the RCM have surged to meet

variety of societal demands. Evaluating uncertainties in

regional climate modeling is becoming increasingly

important. A number of intercomparison projects of

regional model climate simulations have been organized to

examine the performance of RCMs (e.g., Christensen et al.

1997; Takle et al. 1999; Leung and Ghan 1999; Mearns

et al. 2009; Fu et al. 2005).

Numerous studies demonstrated that the uncertainties in

a nested RCM are mainly coming from the lateral boundary

(LB) forcing that is used to drive the simulation (e.g.,

Giorgi and Bi 2000; Liang et al. 2001; Diaconescu et al.

2007; Gong and Wang 2000; Dimitrijevic and Laprise

2005). The uncertainties induced by LB forcing persis-

tently influence the RCM simulation through entire inte-

gration (Anthes et al. 1985) and dominate the biases in

simulation after spin-up time (Giorgi and Bi 2000). Thus,

the uncertainties induced by LB forcing are generally lar-

ger than those induced by initial condition, model resolu-

tion, physical parameterizations (Vukicevic and Errico

1990; Elı́a et al. 2008), and even the RCM used (Arritt and

Rummukainen 2011).
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Moreover, various responses of the RCM to the uncer-

tainties in LB forcing were observed. Wu et al. (2005)

found the effect of perturbation in LB forcing shows no

clear trend, whereas Christensen et al. (1997) found the

RCM amplifies the biases in LB forcing, however, Hong

and Leetmaa (1999) found the RCM reduces the biases.

Some studies try to lesson the influence of the uncer-

tainties in LB forcing on the RCM simulation. Qian and

Liu (2001) found that choosing the LB location where the

LB forcing has rather small biases improves the perfor-

mance of the RCM. Xue et al. (2007) found that the RCM

is sensitive to its southern LB condition when the buffer

zone is extended to the tropics and is able to obtain the

reasonable simulations only with appropriate LB location.

Similarly, Liang et al. (2001) found there is large dis-

crepancy in humidity between the National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research global reanalysis (Kalnay et al. 1996) and

the 40-year reanalysis data from the European Centre for

Medium-Range Weather Forecasts (ERA-40) over low

latitude, and suggested that choosing the LB location

should avoid this area.

However, none of the studies tried to directly decrease

the uncertainties in LB forcing. In simulations of East

Asian summer monsoon (EASM), Wang and Yang (2008)

and Yang et al. (2011) found that the Weather Research

and Forecast (WRF) model driven by (1) the 40-year

reanalysis data from the European Centre for Medium-

Range Weather Forecasts (ERA-40), (2) National Centers

for Environmental Prediction-Department of Energy

reanalysis data (NCEP-R2), and (3) the Japanese 25-year

reanalysis (JRA-25) yields significantly different results.

All experiments have significant deficiencies in reproduc-

ing the observed rainfall and large biases in simulating

atmospheric circulation. They found that the large vapor

uncertainties among reanalysis datasets over the Bay of

Bengal and the Philippine Sea are the key factors that

induce the largely different realizations. They for the first

time proposed to use the equal-weight ensemble forcing

(i.e., algebra average of different reanalysis datasets) which

decreases the uncertainties in LB forcing and therefore

improves model performance.

However, the experiments performed by Wang and

Yang (2008) and Yang et al. (2011), driven by the equal-

weight ensemble forcing, did not consider the specificity of

different reanalysis datasets, especially the humidity fields

that induce large model biases. An optimized ensemble

scheme might be more competent than the equal-weight

ensemble method when the models are very different

(Arritt and Rummukainen 2011). Recently, the optimized

ensemble method of Bayesian model averaging (BMA)

(Hoeting et al. 1999) has been increasingly used in

ensemble weather prediction. Raftery et al. (2005)

successfully applied BMA to a 48-h regional weather

forecast on surface temperature and sea level pressure. Min

et al. (2007) performed their climate change study based on

the BMA method. Duan et al. (2007) applied BMA to

hydrologic prediction and found that BMA prediction is

generally superior to the best individual prediction.

Sloughter et al. (2007, 2010) applied BMA to precipitation

and wind-speed forecasting. BMA is a statistical approach

to generating a weighted average of the ensemble members

that outperforms any single ensemble member. The

weights are estimated according to the performance of

individual members on simulating the given training data.

Thus, we were motivated to apply the BMA method to

the humidity field, which has the largest uncertainty among

the variables in LB forcing, to investigate efficient ways to

reduce model biases. We sought to address the following

questions: Does the BMA ensemble forcing effectively

reduce model biases? Can BMA ensemble forcing improve

RCM performance more than equal-weight ensemble

forcing?

To answer these questions, we simulated the 1998

EASM with WRF model driven by NCEP-R2, ERA-40,

JRA-25, the third-generation ECMWF reanalysis product

INTERIM (ERA-IN), their equal-weight ensemble mean,

and the same forcing of the previous one except the

humidity field whose ensemble scheme is the BMA

method. The model and data are described in Sect. 2. The

experiments are described in Sect. 3. Section 4 presents the

biases in the experiments driven by individual reanalysis

datasets. The sources of the model biases are discussed in

Sect. 5. In Sect. 6, we describe the application of the BMA

ensemble method. Section 7 shows the performance of

experiments forced by the equal-weight ensemble forcing

and the BMA ensemble forcing. The final section presents

the summary and discussion.

2 Model and data

The WRF model (Skamarock et al. 2005), a primitive

equation model using sigma coordinates, was used in this

study. The main physical options we used included Lin

cloud microphysics (Lin et al. 1983; Chen and Sun 2002),

the Yongsei University planetary boundary-layer scheme

(Noh et al. 2003), the Betts-Miller-Janjic cumulus param-

eterization (Janjic 2000), the Dudhia (1989) scheme for

shortwave radiation, the rapid radiative transfer model for

long-wave radiation (Mlawer et al. 1997), and Noah’s land-

surface model (Chen and Dudhia 2001).

Four reanalysis datasets were used as the large-scale

forcing fields: NCEP-R2 (Kanamitsu et al. 2002), ERA-40

(Uppala et al. 2005), ERA-IN (Dee et al. 2011), and JRA-

25 (Onogi et al. 2007). The LB forcing fields were
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geopotential height, air temperature, specific humidity, and

horizontal winds. The width of the buffer zone in our

model was set to be 10 grid points, where the prognostic

variables of WRF model were nudged toward the reanal-

ysis fields following the method of Davies and Turner

(1977) with Newtonian nudging and horizontal diffusion

within the RCM buffer zones. The initial state consisted of

surface and sea-level pressures, 2-m-height moisture and

temperature, 10-m-height horizontal winds, soil moisture

and temperature, and skin temperature. The skin tempera-

ture over the ocean was considered the sea-surface tem-

perature. The land-use and soil-type data in the land-

surface component were obtained from the US Geological

Survey and the Food and Agriculture Organization of the

United Nations, respectively.

The water vapor path (WVP) of the Hamburg Ocean

Atmosphere Parameters and Fluxes from Satellite Data

(HOAPS-3) (Andersson et al. 2007) was used as the

observed training data to validate the humidity fields of the

reanalysis datasets in the BMA method. The Special Sensor

Microwave Imager (SSM/I)-based WVP of HOAPS-3 is a

twice-daily gridded data product (1� 9 1�). The gauge-

based Monsoon Asia Analysis precipitation (resolution

0.5� 9 0.5�) dataset, constructed by the Asian Precipita-

tion–Highly–Resolved Observational Data Integration

Towards Evaluation of the Water Resources project (Yat-

agai et al. 2009), was used to verify the simulated precip-

itation over land. The Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP) dataset (Xie and

Arkin 1996) was used as the observation over ocean.

Because the spatial resolution of the monthly CMAP

dataset is 2.5� 9 2.5�, we interpolated model precipitation

to the grid of CMAP through bilinear scheme. The simu-

lated circulation was verified with the corresponding large-

scale forcing reanalysis datasets.

3 Experimental designs

The model domain covered the EASM region centered on

25�N and 115�E, from the middle of the Tibetan Plateau in

the west to the western North Pacific in the east (Fig. 1).

The low-level jet stream crossing the Bay of Bengal sup-

plies abundant moisture to the EASM region. The western

North Pacific subtropical high residing in the southeast

dominates the evolution of monsoon precipitation vari-

ability. The model grid had an *50-km horizontal reso-

lution with 101 west–east grid points, 92 south–north grid

points, and 31 vertical sigma levels up to 50 hPa.

Four sensitivity experiments named Exp-R2, Exp-40,

Exp-IN, and Exp-25 were initially designed and respec-

tively forced by the NCEP-R2, ERA-40, ERA-IN, and

JRA-25 datasets. The control experiment (CTL) was driven

by the equal-weight ensemble mean of the four reanalysis

datasets. To investigate the BMA method, we designed

another sensitivity experiment the same as the CTL except

that the ensemble mean of the humidity fields was based on

the BMA method; we referred to it as Exp-BMA.

Generally, the reanalysis datasets NCEP-R2, ERA-40,

and JRA-25 are available at 6-h intervals with a horizontal

resolution of 2.5� on an identical grid. To keep all sensi-

tivity experiments and the CTL in the same framework, we

interpolated the ERA-IN from its original 1.5� grid to the

2.5� grid of the other reanalysis datasets using a bilinear

scheme.

Because the NCEP-R2 and ERA-40 datasets have only

17 pressure levels, we used the same levels from the ERA-

IN and JRA-25 to maintain the same number of vertical

levels for all large-scale forcing. Different from the ERA-

40 and JRA-25, the surface data of ERA-IN and NCEP-R2

are 1.5� and 1.85� respectively, and these datasets were

interpolated to a 2.5� grid using a bilinear scheme. The

initial conditions of experiments Exp-R2, Exp-40, Exp-IN,

and Exp-25 were taken from the NCEP-R2, ERA-40, ERA-

IN, and JRA-25 reanalysis datasets, respectively. The same

initial conditions of CTL and Exp-BMA were from the

equal-weight ensemble mean of the four reanalysis data-

sets. The physical parameterizations and model configu-

ration were uniform for all experiments.

Fig. 1 Simulation domain (enclosed by solid blue lines: 5–45�N,

90–140�E) and topography (color shading in units of meters).

Topographic contours of 1,500, 4,000, and 5,000 m are highlighted.

The satellite-observed training data HOAPS-3 are located at the blue
points outside the simulation domain. Analysis areas over land

enclosed by dashed lines refer to South China (20–26�N, 103–122�E),

the Yangtze River Basin (26–32�N, 103–122�E), and North China

(32–40�N, 103–122�E). Analysis areas over ocean enclosed by

dashed lines refer to the South China Sea (10–18�N, 110–118�E) and

the western North Pacific (12–30�N, 127–135�E)
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All experiments were started from 00Z on 22 April and

ended at 18Z on 31 August 1998. The days before 1 May

were considered as a spin-up period (Giorgi and Mearns

1999), and the model output from 1 May to 31 August was

analyzed.

4 Systematic biases forced by individual reanalysis

datasets

The four sensitivity experiments forced by individual

reanalysis datasets yielded different biases in simulations

of the June–July–August (JJA) mean low-level circula-

tions. Figure 2a–d show the biases in 850-hPa circulations

produced by Exp-R2, Exp-40, Exp-IN, and Exp-25,

respectively. The biases were defined by the deviation of

the RCM simulations from each corresponding forcing.

The bias in Exp-R2 (Fig. 2a) was a notable anticyclonic

high-pressure bias over southeastern China and the

adjoining oceanic region. Exp-40 produced a bias (Fig. 2b)

much larger than that in Exp-R2 but with an opposite sign:

a cyclonic low-pressure bias occupied almost the entire

850-hPa level. Exp-IN (Fig. 2c) had a bias pattern similar

to Exp-40, but the range was smaller. Exp-25 (Fig. 2d)

generated a high-pressure bias mainly over the Philippine

Sea, the South China Sea, the Indochina Peninsula, and its

associated circulations. These different biases reflected the

large uncertainties in experiments driven by individual

reanalysis datasets. The location and strength of the wes-

tern North Pacific subtropical high directly influences the

EASM. Therefore, these discrepancies would have marked

effects on the monsoon precipitation in regional dynamic

downscaling of the EASM.

The differences among simulations were observed not

only in low-level circulation but also in seasonal mean

precipitation. Compared with Exp-R2 and Exp-25, Exp-40

and Exp-IN produced much more precipitation over the

Indo-China peninsula and the oceanic region in simulation

domain. Exp-40 produced more (less) precipitation in the

eastern (western) Yangtze River Basin than Exp-IN. Exp-

25 simulated more precipitation over the Philippines and

adjoining ocean than Exp-R2 (figures not shown).

Model skills in simulating seasonal precipitation are

shown in Table 1, which presents the spatial correlation

coefficient (R) and spatial root mean square error (RMSE)

between the simulation and the rain-gauge observation in

three regions over land in China (i.e., North China, the

Yangtze River Basin, and South China in Fig. 1), and in

(a) (b) (c)

(d) (e) (f)

Fig. 2 The model biases of geopotential height (shading in units of

meter) and horizontal winds (vector in units of 5 ms-1) at 850 hPa in

summer (JJA) mean. Respectively, a–f are the biases simulated with

lateral boundary conditions derived from a NCEP/DOE reanalysis 2

(NCEP-R2), b ECMWF 40-year reanalysis (ERA-40), c ECMWF

reanalysis INTERIM (ERA-IN), d the Japanese 25-year reanalysis

(JRA-25), e the equal-weight ensemble mean of the four reanalysis

datasets, and f the Bayesian model averaging (BMA) ensemble mean

of the four reanalysis datasets. All the biases are defined by the

departure of RCM simulations from the corresponding large-scale

forcing. White zones are the missing value masked by the topography
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two regions over ocean (i.e., the South China Sea and the

western North Pacific). Among the sensitivity experiments

forced by individual reanalysis datasets, Exp-25 had the

largest R of 0.72, while Exp-40 had the smallest R of 0.60

over North China. Over the Yangtze River Basin, all sen-

sitivity experiments forced by individual reanalysis data-

sets showed different Rs, but generally the Rs were small.

Over South China, Exp-R2 had the largest R of 0.42,

whereas Exp-IN had the smallest R of 0.12. Over the South

China Sea, Exp-40 had the largest R of 0.84, whereas Exp-

R2 had a small negative R of -0.05. Over the western

North Pacific, Exp-R2 had the largest R of 0.65, while Exp-

40 had the smallest R of 0.30.

In terms of RMSE, the results of sensitivity experiments

forced by individual reanalysis datasets were also different.

Exp-25 had the smallest RMSE, while Exp-R2 had the

largest RMSE over North China. Over both the Yangtze

River Basin and South China, the smallest (largest) RMSEs

were observed from Exp-R2 (Exp-IN). But generally, the

RMSEs over the Yangtze River Basin and South China

were larger than those over North China, which means that

tropical rainfall is difficult to simulate. Over both the South

China Sea and the western North Pacific, Exp-25 had the

smallest RMSEs, while Exp-IN showed the largest RMSEs.

Table 1 also shows the temporal correlation coefficient

(Rt) of daily precipitation averaged over North China, the

Yangtze River Basin, and South China between the simu-

lation and the observation. Exp-R2 performed best in South

China. Exp-25 performed best in both North China and the

Yangtze River Basin.

With the same configuration, the aforementioned dif-

ferences among the sensitivity experiments forced by

individual reanalysis datasets could only be caused by the

different initial and LB conditions. Our extra sensitivity

experiments, in which the initial conditions of Exp-R2,

Exp-40, Exp-IN, and Exp-JRA were replaced by the

averaged initial conditions of themself, showed that com-

pared with the biases induced by both initial and LB con-

ditions, the biases that was solely induced by the initial

condition were minor, which indicates that the biases were

mainly determined by the LB forcing. As in the findings in

Wang and Yang (2008) and Yang et al. (2011), here, the

uncertainties in humidity fields of the LB forcing might

also be the most important cause of the discrepancies. An

analysis in detail is presented in the next section.

5 The source of the biases

To determine the forcing field most likely to result in the

large discrepancies in the last section, we investigated the

relative differences among the forcing fields: horizontal

wind speed, geopotential height, absolute humidity, and

temperature of the four reanalysis datasets. We used the

spatial average of noise-to-signal ratio (NSR; the spatial

average of the inverse of signal-to-noise ratio), on each

side of the LBs from 1,000 mb up to 100 mb in JJA to

present the relative differences of a variable among the four

reanalysis datasets. For instance, the temperature mean of

the four reanalysis datasets is a signal that indicates tem-

perature quantity. Temperature deviation from the mean is

a noise that indicates spread among the individual reanal-

ysis dataset from their mean. The relative differences can

be expressed as the ratio of noise to signal.

Table 2 shows that absolute humidity had the largest

NSRs on all LBs, which means that the differences in

absolute humidity were most likely to be the key factor

resulting in the large discrepancies in the experiments

forced by individual reanalysis datasets. Different from the

western, eastern, and southern LBs, although the NSR

value (0.17) was large at the northern boundary, the rela-

tive difference was not necessarily large, because the

spatial average of the mean absolute humidity (i.e., an

approximation of the signal in NSR) was minimal (i.e.,

2.66). Thus, the uncertainties in the humidity field at the

western, eastern, and southern boundaries were the major

sources of the large discrepancies.

To determine where the humidity field had the largest

differences, the standard deviation of the JJA mean abso-

lute humidity of the four reanalysis datasets at the western,

Table 1 Spatial correlation coefficients (R) and spatial root mean

square error (RMSE, in unit of mm d-1) of seasonal precipitation

between the observation and Exp-R2, Exp-40, Exp-IN, Exp-25, CTL,

and Exp-BMA in land of North China (NC), the Yangtze River Basin

(YZ), South China (SC), and over ocean of the South China Sea

(SCS) and the western North Pacific (WNP). Rt is the temporal

correlation coefficient of daily precipitation averaged over land of

NC, YZ, and SC between the observation and the simulations

R/RMSE/Rt NC YZ SC SCS WNP

Exp-R2 0.71/1.65/0.49 0.26/4.04/0.38 0.42/4.97/0.67 -0.05/2.21 0.65/2.88

Exp-40 0.60/1.47/0.25 0.18/4.38/0.31 0.20/6.42/0.30 0.84/4.82 0.30/3.32

Exp-IN 0.64/1.37/0.45 0.08/4.54/0.11 0.12/7.79/0.39 0.32/6.83 0.45/3.61

Exp-25 0.72/1.34/0.63 0.33/4.14/0.57 0.41/5.28/0.49 0.55/2.08 0.56/2.84

CTL 0.68/1.53/0.40 0.10/4.96/0.39 0.43/6.70/0.62 0.30/3.06 0.55/3.62

Exp-BMA 0.78/1.07/0.42 0.02/3.76/0.44 0.48/4.63/0.52 0.64/2.16 0.51/2.65
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southern, and eastern LBs below 300 hPa were examined

(Fig. 3). The large humidity differences at the western

boundary were observed at the boundary layer and the

middle atmosphere over the Bay of Bengal. At the southern

boundary, the large humidity differences existed on the east

side of the boundary. At the eastern boundary, large

humidity differences existed in the boundary layer and the

low-level atmosphere over the Philippine Sea. Although

the vertical distribution of the humidity differences varied

from place to place, it was clear that almost all of the large

differences of humidity were pronounced over the ocean,

which agrees with the findings in Wang and Yang (2008)

and Yang et al. (2011). We reduced the large uncertainties

in humidity field of the LB forcing over ocean using the

BMA method as described in the next section.

6 Application of BMA ensemble method

In this study, we applied the BMA method to the humidity

field of the LB forcing in dynamic downscaling of the

EASM with WRF model. The approach is briefly described

as follows.

Because the models used for the reanalysis datasets

depict the atmospheric behaviors, the WVPs (the vertical

integration of humidity) of the four reanalysis datasets are

the estimations of the true WVP. The posterior probability

pðMw
k jOwÞ is the conditional probability of the WVP sim-

ulated by the k-th reanalysis model on the observed WVP,

which reflects how well the reanalysis dataset mimics the

observed WVP in the given places (locations indicated by

the blue points in Fig. 1). The sum of those posterior

probabilities is equal to one, thus they can be used as a set

of weights to measure the skills of reanalysis models.

Because WVP is the vertical integration of humidity, the

weights obtained from two-dimensional WVP could be

used for weighting humidity in three dimensions. Then the

probability of BMA ensemble mean of the humidity near

the whole LB region was the weighted sum of the proba-

bility of the humidity from the four reanalysis datasets:

pðhÞ ¼
X4

k¼1

wkpðhjMkÞ;

where h is the BMA ensemble mean of humidity field,

pðhjMkÞ is the probability of simulated humidity based on

the k-th reanalysis model, the weight wk is the posterior

probability pðMw
k jOwÞ.

The observed training data was the WVP of HOAPS-3

twice daily from 00Z on 22 April through 18Z on 31

August 1998 at the locations indicated by the blue points in

Fig. 1. The data captured WVP near the LB over the Bay of

Bengal, the South China Sea, the Philippine Sea, and the

western North Pacific, where the humidity fields differed

greatly among reanalysis datasets and led to the large

discrepancies in dynamic downscaling of EASM.

To calculate the weights (posterior probabilities), the

humidity fields of reanalysis datasets were horizontally

interpolated to the points in 17 levels that geographically

overlaid the blue points in Fig. 1. Then the interpolated

humidity fields were vertically integrated to obtain the

WVP that was comparable to the observation. We calcu-

lated the weights using the Expectation–Maximization

algorithm (details in Raftery et al. 2005 and Duan et al.

2007). To ensure the distribution of the WVP approximated

Table 2 Spatial average of noise-signal ratio (NSR) of large-scale

wind speed (WS), geopotential height (z), absolute humidity (a), and

air temperature (T) at the western, eastern, southern, and northern

lateral boundaries

NSR/mean WS z a T

West 0.07 0.00 0.17/5.53 0.00

East 0.04 0.00 0.12/5.94 0.00

South 0.06 0.01 0.14/7.00 0.00

North 0.04 0.00 0.17/2.66 0.00

The spatial average of the signal (mean, in unit of g m-3) of absolute

humidity is also shown

(a) (b) (c)

Fig. 3 The standard deviation (g m-3) of JJA mean absolute humidity of the large-scale reanalysis forcing of NCEP-R2, ERA-40, ERA-IN, and

JRA-25 at the western, southern, and eastern lateral boundaries below 300 hPa. Black color represents topography
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normality, a Box–Cox transformation (Box and Cox 1964)

was used to preprocess the WVP of the observation and the

four reanalysis datasets before utilizing the Expectation–

Maximization algorithm. This power transformation takes

the following form:

z ¼
yb�1

b ; b 6¼ 0

logðyÞ; b ¼ 0
;

�

where y is the observation or reanalysis datasets and z is the

transformed variable. The same transformation parameter

b for the observation and reanalysis datasets was inferred

from the maximum likelihood method.

Figure 4a shows the weights of the four reanalysis

datasets with the same temporal resolution of HOAPS-3 in

12 h at 00z and 12z. The weights for one reanalysis dataset

on all the LB points at the same time are equal. The

weights at 06z (18z) took their former values at 00z (12z)

because of the necessity of the 6-h interval of the LB

forcing. The weights of ERA-IN had the greatest chances

of being the largest, which means that the WVP of ERA-IN

were closest to that of HOAPS-3 among the four reanalysis

datasets, while the weights of NCEP-R2 had the greatest

chances of being the smallest.

Figure 4b and c show the comparison of the WVP

between the equal-weight ensemble mean and the BMA

ensemble mean of the four reanalysis datasets based on the

observation. Relative to HOAPS-3, the Rs of WVP of the

BMA ensemble mean are higher than that of the equal-

weight ensemble mean at almost all the times, and the

RMSEs of WVP of the BMA ensemble mean are

significantly reduced compared with those of the equal-

weight ensemble mean at almost all the times. Forced by

the BMA ensemble mean whose WVP were closer to

HOAPS-3 than those of the equal-weight ensemble mean,

what happened in the WRF model is analyzed in the next

section.

7 Improved simulation with BMA ensemble method

It is well known that the ensemble climate prediction of

global models from different centers yield better results

than any individual prediction (e.g., Kalnay and Ham 1989;

Krishnamurti et al. 1999; Shukla et al. 2000; Wang et al.

2004), because the multi-model ensemble (MME) reduces

the uncertainties in the models’s physical parameterization.

Similarly, using multi-reanalysis ensemble mean as the LB

forcing, RCM produces better results than most experi-

ments forced by individual reanalysis dataset (Wang and

Yang 2008 and Yang et al. 2011).

In this study, the equal-weight ensemble means of hor-

izontal winds, geopotential height, temperature, and

humidity from the NCEP-R2, ERA-40, ERA-IN, and JRA-

25 reanalysis datasets were used as the LB forcing in the

CTL experiment. Another sensitivity experiment Exp-

BMA was similar to the CTL, but the ensemble mean of

humidity field was based on the BMA method. The setup of

these experiments was the same as the former.

The superiorities of CTL and Exp-BMA experiments

were observed in low-level circulation. Figure 2e and f

(a)

(b)

(c)

Fig. 4 a The Bayesian model

averaging (BMA) weights of the

water vapor path (WVP) of

NCEP-R2 (red), ERA-40

(green), ERA-IN (blue), and

JRA-25 (black) calculated from

satellite-observed training data

HOAPS-3 at the locations

indicated by the blue points in

Fig. 1b and c are the correlation

coefficients (R) and root mean

square error (RMSE, in unit of

kg m-2) of WVP of equal-

weight ensemble mean (black)

and BMA ensemble mean (red),

respectively, of the four

reanalysis datasets relative to

HOAPS-3
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shows that compared with the experiments forced by

individual reanalysis datasets in Fig. 2a–d, the CTL

experiment (Fig. 2e) dramatically reduced circulation bia-

ses. The results of the CTL experiment only slightly

underestimated the geopotential height over the East China

Sea (with a cyclone wind bias) and western South China,

and they only overestimated the geopotential height in

Laos. The improvement in the CTL forced by the equal-

weight ensemble forcing agrees with the findings in Wang

and Yang (2008) and Yang et al. (2011). Surprisingly, the

Exp-BMA (Fig. 2f) significantly decreased the underesti-

mated biases of geopotential height in the CTL even fur-

ther. The underestimated geopotential height (\-3 m)

exists only over several small areas without organized

patterns of wind biases, although the area of overestimated

geopotential height slightly increased over the Indo-China

peninsula. Compared with the CTL, the further improve-

ment in Exp-BMA was the result of the benefit from the

BMA ensemble method applied to the LB humidity field.

Thus, constrained by the observed humidity even in 2

dimensions over the ocean, the LB forcing forced the

model results with much less bias.

Improvements were also observed in seasonal precipi-

tation. Table 1 shows that the CTL had a larger R

(R = 0.68) than those of Exp-40 (R = 0.60) and Exp-IN

(R = 0.64) in North China. In South China, the CTL had

larger R (R = 0.43) than those of all experiments forced by

individual reanalysis datasets. Exp-BMA had the largest Rs

in all experiments in both North China (R = 0.78) and

South China (R = 0.48). In the Yangtze River Basin,

almost all experiments had little accuracy in terms of R,

which was probably caused by the pattern shift of precip-

itation. Over the South China Sea, the CTL did not have a

good skill in R, while Exp-BMA was better than most

experiments forced by individual reanalysis datasets except

Exp-40. Over the western North Pacific, although both the

CTL and Exp-BMA did not achieve the highest score in

terms of R, they were better than the averaged R (0.49) of

experiments forced by individual reanalysis datasets. Over

all, the CTL was not as good as we expected, but the Exp-

BMA performed better than expected.

In terms of RMSE, the CTL had relatively lower accu-

racy than most experiments forced by individual reanalysis

datasets in both North China and South China, and it per-

formed worse than all experiments forced by individual

reanalysis datasets in the Yangtze River Basin and the

western North Pacific, while Exp-BMA had the best per-

formance in terms of RMSE in all experiments in four

regions: North China, RMSE = 1.07; Yangtze River

Basin, RMSE = 3.76; South China, RMSE = 4.63; and

western North Pacific, RMSE = 2.65. Exp-BMA was only

slightly worse than Exp-25 in the South China Sea. Rela-

tive to the CTL, the better performance of Exp-BMA in

simulating seasonal precipitation can be attributed to the

BMA ensemble mean of humidity in the LB forcing.

Table 1 also shows the temporal correlation coefficient

(Rt) of daily precipitation between simulation and obser-

vation averaged over North China, the Yangtze River

Basin, and South China. The CTL had better performance

than Exp-40 in North China, and only performed worse

than Exp-25 in the Yangtze River Basin and Exp-R2 in

South China. Although Exp-BMA did not perform well

compared with some experiments, it performed better than

the CTL in both North China and the Yangtze River Basin.

The results in precipitation simulation suggest that the

CTL forced by the equal-weight ensemble forcing might

not reduce the biases in some aspects of the simulations;

sometimes it was worse than the experiments forced by

individual reanalysis datasets. But the BMA ensemble

forcing was able to further reduce the biases in RCM

simulations: over land, Exp-BMA outperformed not only

the experiments forced by individual reanalysis datasets

but also the CTL, except the daily precipitation in which

the Exp-BMA was comparable to the CTL; over ocean,

Exp-BMA outperformed the CTL and the most experi-

ments forced by individual reanalysis datasets, except in

the western North Pacific where its correlation coefficient

was slightly lower than that of CTL but higher than the

averaged correlation coefficient of the experiments forced

by individual reanalysis datasets.

8 Summary

Simulations of the 1998 East Asian summer monsoon

(EASM) were carried out using the WRF model forced by

four reanalysis datasets (i.e., NCEP-R2, ERA-40, ERA-IN,

and JRA-25), their equal-weight ensemble mean, and their

BMA ensemble mean. There were large discrepancies in

seasonal circulation at 850 hPa, seasonal precipitation, and

daily precipitation (Fig. 2 and Table 1) in the experiments

forced by individual reanalysis datasets. Diagnostic anal-

ysis of the spatial average of noise-to-signal ratio revealed

that the differences in moisture fields of the large-scale

forcing at the eastern, western, and southern boundaries

over the ocean were responsible for the large discrepancies.

The largest moisture uncertainties were found over the Bay

of Bengal, which agrees with the findings of Wang and

Yang (2008) and Yang et al. (2011).

As expected, the experiment (control) forced by the

equal-weight ensemble forcing significantly reduced the

biases in the simulated low-level circulation, while it only

reduced the biases in simulated precipitation compared

with some experiments forced by individual reanalysis

datasets. These results suggest that the use of equal-weight

ensemble forcing may not reduce the biases in all cases,
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which agrees with the findings in Yang et al. (2011) that

the use of equal-weight ensemble forcing systematically

reduces the biases in RCM simulations in most of the years,

but not in all years. The reason might be that the quality of

the equal-weight ensemble forcing highly relied on the

choice of the ensemble members when ensemble size is

small, and low-performance members might make the

ensemble mean unreliable.

The experiment (Exp-BMA) forced by the BMA

ensemble forcing reduced the simulation biases not only in

low-level circulation field but also in most cases in pre-

cipitation compared to the CTL and the experiments forced

by individual reanalysis datasets. In the LB forcing of Exp-

BMA, the weights of humidity field were determined by

how well the reanalysis datasets mimicked the observed

water vapor path (WVP) over ocean where the uncertain-

ties in humidity field of the LB forcing were the leading

factor that induced the large discrepancies in experiments

forced by individual reanalysis datasets. Those weights

changed with time according to the temporal variations of

the quality of individual reanalysis dataset based on the

observation. Thus, the BMA ensemble forcing was able to

minimize the biases across time; therefore its quality was

guaranteed (Fig. 4b, c).

Limited by availability of three-dimensional observa-

tion, this preliminary study was only carried out for sim-

ulations of the 1998 EASM and only relied on the two-

dimensional observed WVP data to determine the weights

using the BMA method. This type of study should be

repeated under different circulation regimes with varying

LB locations and different dynamic core and physical

parameterizations of the WRF model to validate the BMA

ensemble forcing in reducing the biases in regional climate

downscaling. However, as long as the humidity fields of

LB forcing have large uncertainty, RCM solutions would

have large uncertainties. Our additional studies show that a

climatological large uncertainty pertaining to moisture

among the four reanalysis datasets existed in a large area

around the LB location of our model domain (figure not

shown). Thus, changing the LB location or the model setup

would only change our results quantitatively. Even

changing the simulation year would uncommonly change

our results qualitatively. The biases produced there are

expected to be further reduced by using three-dimensional

satellite data including not only humidity but also other

fields as the training base of the BMA method.
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