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ABSTRACT

Predictability of intraseasonal oscillation (ISO) relies on both initial conditions and lower boundary

conditions (or atmosphere–ocean interaction). The atmospheric reanalysis datasets are commonly used as

initial conditions. Here, the biases of three reanalysis datasets [the NCEP reanalysis 1 and 2 (NCEP-R1 and

-R2) and the ECMWF Re-Analysis Interim (ERA-Interim)] in describing ISO were briefly revealed and the

impacts of these biases as initial conditions on ISO prediction skills were assessed. A signal-recovery method

is proposed to improve ISO prediction.

Although all three reanalyses underestimate the intensity of the equatorial eastward-propagating ISO, the

overall quality of the ERA-Interim is better than the NCEP-R1 and -R2. When these reanalyses are used as

initial conditions in the ECHAM4-University of Hawaii hybrid coupled model (UH-HCM), skillful ISO pre-

diction reaches only about 1 week for both the 850-hPa zonal winds (U850) and rainfall over Southeast Asia and

the global tropics. An enhanced nudging of the divergence field is shown to significantly improve the initial con-

ditions, resulting in an extension of the skillful rainfall prediction by 2–4 days and U850 prediction by 5–10 days.

After recovering the ISO signals in the original reanalyses, the resultant initial conditions contain ISO

strength closer to the observed, whereas the rainfall spatial pattern correlation in the ERA-Interim reanalysis

drops. The resultant ISO prediction skills, however, are consistently extended for all the NCEP and ERA-

Interim reanalyses. Using these signal-recovered reanalyses as initial conditions, the boreal summer ISO

prediction skill measured with the Wheeler–Hendon index reaches 14 days. The U850 and rainfall prediction

skills, respectively, reach 23 and 18 days over Southeast Asia. It is also found that small-scale synoptic weather

disturbances in initial conditions generally increase ISO prediction skills. Both the UH-HCM and NCEP

Climate Forecast System (CFS) suffer the prediction barrier over the Maritime Continent.
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1. Introduction

The intraseasonal oscillation (ISO) is a dominant

mode of tropical weather–climate variability with a

quasi-oscillating period of 30–60 days (Madden and

Julian 1972; Yasunari 1979; Wang and Rui 1990), which

offers an opportunity to bridge the forecasting gap be-

tween the deterministic weather prediction (;1 week)

and probabilistic climate forecast (from weeks to sea-

sons). It has been well established that weather predic-

tion is very sensitive to atmospheric initial conditions

(Lorenz 1963, 1993, 181–184), while climate forecast is

largely determined by underlying boundary conditions

(Shukla 1981, 1998; Koster et al. 2000). Therefore, the

weather prediction community has made great efforts to

generate better atmospheric initial conditions and de-

velop high-resolution models. On the other hand, the

climate community has strived to acquire better underly-

ing boundary conditions (e.g., sea surface temperature,

soil moisture, and sea ice) and develop atmosphere–

ocean–land coupled climate systems. These two com-

munities are, respectively, sponsored by World Weather

Research Program (WWRP) and World Climate Re-

search Program (WCRP) under the auspices of World

Meteorological Organization (WMO). The seamless

prediction advocated by Palmer et al. (2008) and Shukla

et al. (2009) calls for closer collaborations between these

two communities (Moncrieff et al. 2007; Toth et al. 2007;

Brunet et al. 2010; Shapiro et al. 2010; Nobre et al. 2010).

The recently launched Year of Tropical Convection

(YOTC) program aims to address the tropical multiscale

interactions that connect weather and climate together

(Waliser et al. 2009). The synergetic efforts of these two

communities in coming years are expected to speed up

the progresses in seamless weather–climate prediction

from days to weeks, months to years, to future climate

change projection beyond decades (Hurrell et al. 2009).

As a phenomenon with time scale between synoptic

weather and seasonal climate, the predictability of the

ISO is sensitive to both initial condition and underlying

boundary condition (Krishnamurti et al. 1992; Reichler

and Roads 2005; Fu et al. 2008a). In addition to the initial

condition and lower boundary condition, the large-scale

atmosphere–ocean interaction has been demonstrated to

play a critical role in the simulation and prediction of the

ISO (Fu et al. 2003; Fu and Wang 2004; Fu et al. 2007;

Woolnough et al. 2007; Vitart et al. 2007). After removing

high-frequency variability in the initial condition and

using observed intraseasonally varying SST as lower

boundary forcing, Krishnamurti et al. (1992) first dem-

onstrated that the simulated flow fields of few selected

northward-propagating ISO events over Southeast Asia

still bear some similarity with the observations, even after

one month of integration. Using NCEP seasonal forecast

system (atmosphere-only model), Reichler and Roads

(2005) carried out a suite of forecast experiments to show

that, at early lead time, ISO predictability is primarily

determined by initial condition, whose impact drops

steadily as lead time increases. While the contribution of

boundary condition on ISO predictability is secondary at

the early lead time, the effect lasts much longer than that

of the initial condition. Based on this finding, Reichler

and Roads proposed that a fully atmosphere–ocean cou-

pled model is the best approach to carry out operational

ISO prediction. Fu et al. (2007) directly compared ISO

predictability in a fully coupled model and its atmospheric

component and found that interactive atmosphere–ocean

coupling extends ISO predictability in the atmosphere-

only model by at least a week. In a follow-up study, Fu

et al. (2008a) further demonstrated that, under atmosphere-

only context, the effect of the intraseasonally varying SST

on ISO predictability is largely determined by the quality

of initial condition. Only when the atmospheric initial

condition is sufficiently accurate does the specified intra-

seasonally varying SST acts to extend ISO predictability.

Woolnough et al. (2007) showed that coupling an atmo-

spheric model to a 1D high-resolution oceanic mixed layer

model (by including the effect of SST diurnal cycle) has

longer ISO predictability than that coupled to an ocean

general circulation model. This result has been confirmed

by Vitart et al. (2007), Klingaman et al. (2008), and Vitart

and Molteni (2009).

Early assessments of ISO practical predictability in-

dicated that useful skills of global operational weather

forecast models are 5–7 days when measured with

upper-level dynamical fields (e.g., 200-hPa zonal winds),

which is much shorter than its potential predictability

(;1 month; Waliser et al. 2003a; Reichler and Roads

2005; Fu et al. 2007) and the skills of the statistical models

(Waliser et al. 2006). This unimpressive skill of dynamical

forecast is largely attributed to the failure of global

models in the realistic representation of the ISO (Chen

and Alpert 1990; Lau and Chang 1992; Hendon et al. 2000;

Jones et al. 2000; Seo et al. 2005). With improved model

physics (e.g., Sperber and Annamalai 2008; Bechtold et al.

2008) and including active air–sea coupling (Fu et al. 2007;

Woolnough et al. 2007; Kim et al. 2008; W. Q. Wang et al.

2009), some global models showed useful forecasting

skills of two weeks or longer (Seo et al. 2009; Vitart et al.

2007, 2008; Kim et al. 2009; Fu et al. 2008b; Lin et al. 2008;

Kang and Kim 2010) when measured with a multivariate

Madden–Julian oscillation (MJO) index (also called the

Wheeler–Hendon index; Wheeler and Hendon 2004).

This predictability is comparable to or even better than

the skills of current statistical models (Waliser et al. 1999;

Newman et al. 2003; Jones et al. 2004; Jiang et al. 2008).
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Prediction skill can also be affected by the accuracy of

initial conditions. Aforementioned dynamical ISO fore-

casting exercises (e.g., Hendon et al. 2000; Jones et al.

2000; Seo et al. 2005; Woolnough et al. 2007; Vitart et al.

2007; Fu et al. 2008b; Kang and Kim 2010) have used

either the National Centers for Environmental Prediction

Reanalysis-1 and -2 (NCEP-R1/R2) or the 15/40-yr Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-15/40) datasets (Kalnay

et al. 1996; Kanamitsu et al. 2002; Uppala et al. 2005) as

atmospheric initial conditions. How accurate are these

reanalyses in describing the ISO in the real world? Be-

cause of the sparseness of the upper-air sounding sites in

the active ISO region over the Indo-Pacific warm pool

and the deficiencies of the operational models in ISO

simulations (e.g., Slingo et al. 1996; Waliser et al. 2003b;

Lin et al. 2006), these reanalysis datasets unavoidably

have various biases in representing ISO (e.g., Shinoda

et al. 1999; Fu and Wang 2004; Fu et al. 2006; Tian et al.

2006). Shinoda et al. (1999) found that the ISO-related

convective activities (rainfall and OLR) in the NCEP-R1

(Kalnay et al. 1996) are 2–3 factors smaller than that in

the corresponding observations. Using updated forecast

model and data assimilation system and fixing known

problems of the NCEP-R1, Kanamitsu et al. (2002) de-

veloped an updated NCEP-R2 reanalysis. The ISO-related

humidity perturbations, however, in the NCEP-R2 (Tian

et al. 2006) and in the ECMWF analysis (Fu and Wang

2004; Fu et al. 2006) were still underestimated. The in-

creased volumes of satellite observations and improved

models/data assimilation techniques steadily improve the

quality of reanalysis datasets in representing weather and

climate variability including the ISO (e.g., Kistler et al.

2001; Andersson et al. 2005; Rienecker et al. 2009; Saha

et al. 2010). On the other hand, the lack of global wind

profiles’ observations (particularly over the vast oceans)

and an efficient constraint between the mass and flow

fields in the tropics (Zagar et al. 2005), as well as the dif-

ficulties for current data assimilation systems in handling

clouds/precipitation-affected radiance (Susskind 2007;

Weng et al. 2007), make reanalysis datasets vulnerable to

errors, particularly in the representation of tropical

weather and climate variability (e.g., Mitovski et al. 2010).

How will the biases in these reanalyses affect the ISO

prediction skills when they are directly used as atmo-

spheric initial condition? Vitart et al. (2007) found that

ISO prediction skill is higher when initialized with the

ERA-40 than that initialized with the ERA-15, because

the ERA-40 has stronger ISO than that of the ERA-15.

Vintzileos and Pan (2007) also showed that ISO pre-

diction skills initialized with the NCEP Global Data As-

similation System (GDAS) is consistently higher than that

initialized with the NCEP-R2 (Kanamitsu et al. 2002)

because of the better representation of the ISO in the

GDAS than that in the NCEP-R2. Using the NCEP-R11

as initial condition, Fu et al. (2009) found that the ISO

prediction skill in 2004 summer season is only about a week

over the global tropics (308S–308N) and Southeast Asia

(108–308N, 608–1208E) for the associated rainfall and

850-hPa zonal winds. A prototype signal-recovery ap-

proach was utilized to enhance the ISO in the initial con-

dition. When the ISO amplitudes were tripled in the

original reanalysis, the resultant prediction skills of the ISO

increased to 25 days for 850-hPa zonal winds and 15 days

for rainfall over both Southeast Asia and the global tropics.

The present study is an extension of Fu et al. (2009).

The objectives of this study are threefold: 1) document

the biases of three reanalysis datasets in describing the

ISO, 2) explore the ways to improve the representation

of the ISO in initial condition, and 3) assess the impacts

of different initial conditions on ISO prediction skills.

The present forecast experiments cover 5 summer sea-

sons from 2004 to 2008. In addition to the NCEP-R1

used in Fu et al. (2009), NCEP-R2 and ECMWF Re-

Analysis Interim (ERA-Interim; Uppala et al. 2008)

were also used to initialize the forecasts. An enhanced-

divergence-nudging method is found to generate better

initial conditions. To assess the impacts of small-scale

synoptic disturbances on ISO prediction, one set of ex-

periments that excludes synoptic disturbances in origi-

nal NCEP-R2 are also conducted. To check the possible

model dependence of our findings, the forecasts from

the NCEP Climate Forecast System (CFS; Saha et al.

2006) in 2008 summer have been compared with the

forecasts from the ECHAM4–University of Hawaii hy-

brid coupled model (UH-HCM).

This paper is structured as follows. The UH-HCM and

forecast experiment design are given in section 2. Section

3 documents the biases of three reanalysis datasets in the

description of the ISO. Section 4 assesses the impacts of

an enhanced-divergence-nudging method on initial con-

dition and ISO prediction. Section 5 examines to what

degree the signal-recovery method and synoptic distur-

bances in initial conditions affect ISO prediction. The last

section summarizes our major findings and discusses

possible future studies.

2. Model description and forecast experiment
design

The model used to carry out the forecast experiments is

a hybrid atmosphere-ocean coupled model (UH-HCM),

1 As revealed in Shinoda et al. (1999), the convective activity

(rainfall) associated with both northward- and eastward-propagating

ISO in the 2004 summer is still 2–3 factors smaller than the observed

[Fig. 1 in Fu et al. (2009)].
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developed at the International Pacific Research Center at

the University of Hawaii (Fu and Wang 2004). The at-

mospheric component is a general circulation model

(ECHAM4), developed at Max Planck Institute for Me-

teorology in Germany (Roeckner et al. 1996). The mass

flux scheme of Tiedtke (1989) is used to represent the

deep, shallow, and midlevel convection with Nordeng’s

(1995) modified closure. The ocean component is an in-

termediate tropical upper-ocean model developed at the

University of Hawaii (Wang et al. 1995; Fu and Wang

2001), which comprises a mixed layer, in which the tem-

perature and velocity are vertically uniform, and a ther-

mocline layer in which temperature decreases linearly

from the mixed layer base to the thermocline base. Both

layers have variable depth and exchange mass and heat

through entrainment and detrainment.

The global atmospheric model has been coupled to the

ocean model over the tropical Indian and Pacific Oceans

without using heat flux correction. Outside the tropical

Indian and Pacific Oceans, sea surface temperature is

specified as climatologically monthly-mean SST averaged

from the 16-yr Atmospheric Model Intercomparison

Project (AMIP) SST (1979–94). In all forecast experi-

ments, a restart file from a long-term coupled run has been

used to initialize the nudging integration, which in turn

generates initial conditions for all forecast experiments.

During the nudging integration, three reanalysis data-

sets (e.g., NCEP-R1, -R2, and ERA-Interim) are nudged

into the UH-HCM. Different nudging coefficients are

used for different variables (vorticity, divergence, tem-

perature, and surface pressure). The default coefficients

in the standard ECHAM4 AGCM are those used by

Danish Meteorological Institute (DMI),2 in which vor-

ticity is strongly nudged, but divergence is very weakly

nudged. This may be good for the midlatitude but is

problematic in the tropics (Jeuken et al. 1996). To alle-

viate this weakness of the DMI nudging, divergence

nudging strength has been increased in this study, which is

referred as enhanced divergence nudging (EDN).

A signal-recovery method has been proposed to

augment the underestimated ISO signal in the original

reanalysis (Fu et al. 2009). The procedure is as following:

first, 30–90-day variability is extracted from 1-yr original

reanalysis with harmonic analysis; second, the extracted

ISO signal is augmented by doubling its magnitude;

then, the 30–90-day variability in the original reanalysis

is replaced with augmented ISO signal. Finally, the

modified reanalysis is nudged into the UH-HCM with

the EDN nudging to generate a new product: signal-

recovered reanalysis.

In this study, most forecast experiments have tar-

geted five summer seasons (2004–08). Each year, 16

forecasts have been initiated every 10 days from 1 May

to 31 September. Ten ensembles have been executed

for each forecast. The way to generate ensemble initial

condition is the same as that used in our previous pre-

dictability study (Fu et al. 2007). Each forecast is in-

tegrated for 60 days. To measure the prediction skills,

120-day observations [e.g., Tropical Rainfall Measuring

Mission (TRMM) rainfall and 850-hPa zonal winds from

the NCEP-R2] before the initial dates have been con-

catenated to the 60-day ensemble-mean forecasts. Then,

harmonic analysis is used to extract intraseasonal signals

(30–90 day) from the merged 180-day time series and the

corresponding observations. Finally, the anomaly correla-

tion coefficients (ACC; Wilks 2005) between the forecasts

and the observations are calculated during the 60-day

forecast period, respectively, for the global tropics (308S–

308N) and Southeast Asia (108–308N, 608–1208E). As in Fu

et al. (2009), a moderate value of the ACC (0.4) was used

to measure ISO prediction skill in days (e.g., Jones et al.

2000; Fu et al. 2007). As an alternative to the aforemen-

tioned measure, the prediction skills of the Wheeler–

Hendon index (Lin et al. 2008) were also presented.

3. Biases of global reanalysis datasets in
describing the ISO

Three reanalysis datasets: the NCEP-R1, -R2, and

ERA-Interim were used to initialize our forecast experi-

ments. Although similar observational data may have

been used as input to generate these reanalysis datasets,

the different model physics and data assimilation tech-

niques will result in different reanalysis products. For

example, when observed rainfall was assimilated into the

ERA-Interim (Andersson et al. 2005; Simmons et al.

2007), the reanalysis rainfall produced in the forecast cycle

has much higher spatial pattern correlation with the ob-

servations than that without assimilating observed rainfall

(Table 1). In this study, the biases of three reanalysis da-

tasets in describing the ISO were briefly documented and

possible ways to alleviate the biases were explored.

Over the vast tropical oceans, available in situ obser-

vations are very limited. It is difficult to construct spatially

continuous ‘‘ground truth’’ based purely on in situ ob-

servations, particularly for the ISO, whose active region is

over the tropical Indo-western Pacific Oceans. Therefore,

we utilize one of the well-validated satellite retrievals,

TRMM rainfall, as ground truth to assess the quality of

three reanalysis datasets.

Figure 1 shows the spatial patterns of intraseasonal

(30–90 day) rainfall standard deviation from TRMM,

the NCEP-R1, -R2, and ERA-Interim averaged for the2 These nudging coefficients were used in Fu et al. (2009).
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2004–08 summer seasons. Both the NCEP-R1 (Figs. 1b,e)

and ERA-Interim (Figs. 1d,g) underestimate the intensity

of the observed intraseasonal variability over almost the

entire Indo-western Pacific Oceans. On the other hand,

the total intraseasonal variability in the NCEP-R2 (Figs.

1c,f) is higher than the observed, particularly over the Bay

of Bengal and the eastern Arabian Sea. Table 1 gives the

summer-mean ACCs of intraseasonal rainfall anomalies

between three reanalysis datasets and the observations

from 2004 to 2008. The 5-yr means are 0.58, 0.47, and 0.79

for the NCEP-R1, -R2, and ERA-Interim, respectively.

As expected, the ERA-Interim has the best rainfall spa-

tial pattern. It is interesting to note that intraseasonal

rainfall pattern in the NCEP-R1 is actually better than

that in the NCEP-R2 even though the latter has much

stronger variability than the former.

As for ISO prediction, the quality of near-equatorial

ISO in the reanalyses is essential because the ISO has

a significant eastward-propagating component along the

equator year-round. Even in boreal summer, the domi-

nant northward propagation of the ISO starts from the

equator. Because of the lack of an efficient constraint

between the mass and flow fields (like the quasigeo-

strophic balance in the midlatitude) and very limited

upper-air soundings, the equatorial region has been

a very difficult area for data assimilation (e.g., Zagar et al.

2005). It is imperative to take a close look of the ISO near

the equator in various reanalysis products. A brief de-

scription and statistics of seven products used in the

present study are given in Table 2. For illustration pur-

pose, Fig. 2 shows the Hovmöller diagrams of total rain-

fall and the associated intraseasonal variability along the

equator in 2004 summer from TRMM observations, the

NCEP-R2 and ERA-Interim along with the nudged R2,

nudged ERA-Interim, and signal-recovered R2/ERA-

Interim (Table 2). In the observations (Fig. 2a), 4–5 ISO

events develop in the Indian Ocean and propagate east-

ward into the western Pacific. The NCEP-R2 (Fig. 2b)

captures some of the observed features but is not as well

organized as the observed events. Too many and too

strong high-frequency westward-propagating disturbances

exist in the R2, particularly in the western Pacific. An

obvious fictitious westward-propagating ISO event exists

in July over the Indian Ocean. The correlation coefficient,

which measures the similarity of the longitude–temporal

evolutions between the reanalysis ISO rainfall anomaly

and the observations, is about 0.5. The ERA-Interim (Fig.

2c) has very similar spatial–temporal evolutions as the

observations but with the amplitude underestimated. The

correlation coefficient with the observations reaches 0.88.

After nudging the NCEP-R2 into the UH-HCM (Fig.

2d), the too strong small-scale convection presented in the

original R2 has been mitigated. The fictitious westward-

propagating ISO event in July over the Indian Ocean

disappeared. The correlation coefficient with the obser-

vations increases to 0.58. This improvement after nudging

is likely due to the better representation of convective

processes in the UH-HCM than that in the NCEP model

because the associated dynamical fields in both cases are

very similar. After doubling the intraseasonal signals in

both the NCEP-R2 and ERA-Interim and nudging into

the UH-HCM, the resultant products own stronger intra-

seasonal variability than the nudged reanalyses (Figs. 2e,f),

which are called signal-recovered NCEP-R2 and ERA-

Interim. The signal-recovered ERA-Interim, however, has

lower correlation with the observations than the original

reanalysis. The underlying reasons deserve further study.

Table 2 also shows that the ERA-Interim has the best

spatial–temporal evolutions among the 3 reanalyses with

5-yr mean correlation coefficient reaching 0.85. The

NCEP-R1 (0.58) is slightly, but consistently, better than

the NCEP-R2 (0.51) in this regard. It looks that the

quality of the NCEP-R1 in representing ISO is in be-

tween the NCEP-R2 and ERA-Interim. Therefore, most

following analyses and experiments will be done by using

the NCEP-R2 and ERA-Interim. We expected that the

results with the NCEP-R1 will also fall in between the

NCEP-R2 and ERA-Interim. After nudging the NCEP-

R2 and ERA-Interim into the UH-HCM, the correlation

coefficient increases for the R2 (from 0.51 to 0.56), but

deceases for the ERA-Interim (from 0.85 to 0.79). After

doubling ISO variability in the NCEP-R2/ERA-Interim

and nudging to the UH-HCM, the correlation coefficient

increases from 0.56 to 0.62 for the R2 but decreases from

0.79 to 0.76 for the ERA-Interim. The reasons resulting in

the decrease of correlation for the ERA-Interim will be

a future research topic.

The above assessment reveals that the spatial–temporal

evolutions of the ISO in the ERA-Interim are better than

that in the NCEP-R2, but with the amplitude under-

estimated (Figs. 1d,g, and Fig. 2c). For the R2, the quality

of the ISO after strength doubling is systematically im-

proved over that without doubling. For the ERA-Interim,

TABLE 1. Averaged daily spatial pattern correlations of intra-

seasonal (30–90 day) rainfall anomalies during boreal summer

[May–October (MJJASO)] between three reanalysis datasets and

TRMM observations over tropical Indo–western Pacific Oceans

(308S–308N, 408E–1408W).

NCEP-R1 NCEP-R2 ERA-Interim

2004 0.60 0.46 0.80

2005 0.57 0.42 0.78

2006 0.59 0.47 0.80

2007 0.56 0.50 0.78

2008 0.55 0.48 0.77

Mean 0.58 0.47 0.79
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however, the results are kind of mixing. How will these

differences in various reanalyses and their modifications

impact the prediction skills of the ISO when they are used

to initialize ISO prediction? The following two sections

aim to answer this question.

4. EDN and its impact on ISO prediction

In section 2, we have introduced two nudging methods:

the DMI and the EDN. This section will assess in what

degree different nudging methods impact the initial con-

ditions and ISO prediction skills.

Figure 3 shows the time series of daily spatial pattern

correlations between nudged rainfall and the observa-

tions in the 2004 summer. For both the NCEP-R2 and

ERA-Interim, the EDN nudging results in significantly

higher pattern correlations of daily total (Figs. 3a,b) and

intraseasonal anomaly (Figs. 3c,d) than that with the DMI

nudging. The improvements on intraseasonal compo-

nents are much more obvious (Figs. 3c,d). Figure 4 gives

FIG. 1. Spatial patterns of intraseasonal (30–90 day) rainfall standard deviation (mm day21) for (a) TRMM ob-

servations (OBS), (b) NCEP-R1, (c) NCEP-R2, and (d) ERA-Interim averaged over the 2004–08 summer seasons

(MJJASO) along with the differences of (e) NCEP-R1 2 OBS, (f) NCEP-R2 2 OBS, and (g) ERA-I 2 OBS.
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an example on 10 August 2004 for daily total rainfall

from the observations and a variety of nudging experi-

ments when the NCEP-R2 and ERA-Interim are, re-

spectively, used. Compared to the observations (Fig. 4a),

the DMI nudging produces too much rainfall in the

equatorial Indian Ocean and western Pacific ITCZ

(;108N) near the date line for both reanalyses (Figs.

4b,c), at the same time, it significantly underestimates

TABLE 2. Correlation coefficients of intraseasonal (30–90 day) rainfall anomalies during boreal summer [May–October (MJJASO)]

along the equator (averaged between 108S and 108N) between different reanalysis datasets and observations. NCEP-R1, NCEP-R2, and

ERA-Interim denote three original reanalyses; Nudg-ERAI and Nudg-R2 are products after nudging ERA-Interim and NCEP-R2 into

UH-HCM with the EDN nudging; Nudg-2xERAI and Nudg-2xR2 are products after nudging ERA-Interim and NCEP-R2 with ISO

signal doubled using the EDN nudging, which are also called signal-recovered ERA-Interim and NCEP-R2. The horizontal resolutions of

UH-HCM, NCEP-R1, NCEP-R2, and ERA-Interim are T30, T62, and T255. In above analysis, all data have been regridded onto 2.58 3

2.58 resolution.

NCEP-R1 NCEP-R2 ERA-I Nudg-ERAI Nudg-R2 Nudg-2xERAI Nudg-2xR2

2004 0.60 0.50 0.88 0.79 0.58 0.77 0.66

2005 0.64 0.49 0.86 0.80 0.60 0.75 0.65

2006 0.61 0.53 0.84 0.80 0.51 0.75 0.53

2007 0.54 0.50 0.82 0.80 0.52 0.76 0.61

2008 0.48 0.54 0.84 0.78 0.60 0.75 0.65

Mean 0.58 0.51 0.85 0.79 0.56 0.76 0.62

FIG. 2. Longitude–time evolutions of daily total rainfall (shaded) and associated intraseasonal (30–90 day) variability [contours,

contour interval (CI): 1 mm day21] averaged between 108S and 108N in the 2004 summer from (a) TRMM observations (OBS), (b)

NCEP-R2, (c) ERA-Interim, (d) Nudged NCEP-R2, (e) signal-recovered NCEP-R2, and (f) signal-recovered ERA-Interim.

2578 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



the northwest–southeast-tilted rainbelt in the western

edge of tropical Pacific. On the other hand, the EDN

nudging (Figs. 4d,e) considerably alleviates the afore-

mentioned biases: reducing rainfall in the equatorial In-

dian Ocean and shifting the western-Pacific ITCZ rainfall

westward. The resultant rainfall pattern is very similar

with the observed one (Fig. 4a). After doubling ISO sig-

nals (Figs. 4f,g), the equatorial Indian Ocean rainfall is

further reduced. The overall pattern correlations are very

similar as that with the EDN nudging (Fig. 3). This result

demonstrated that the EDN nudging produces much

better tropical rainfall in the initial conditions than that

with the default DMI nudging in the ECHAM model.

By using two different nudging methods, a total of six

sets of initial conditions are generated for the three

reanalyses: the NCEP-R1, -R2, and ERA-Interim in the

2004 summer. Six sets of forecasts have been produced

with respective initial conditions. Each set has 16 forecasts

starting every 10 days to cover an entire summer (from

1 May to 31 September); each forecast has 10 ensembles.

We calculated the prediction skill of each forecast with

10-ensemble mean, then taking the average skill of 16

forecasts to represent the skill under a specific initial

condition. The variables used to calculate the skills are

intraseasonally filtered 850-hPa zonal winds (U850) and

rainfall. As in Fu et al. (2009), forecast skills have been

assessed over the global tropics and Southeast Asia.

Figure 5 summarizes the intraseasonal prediction skills

of U850 and rainfall over two different domains under

six different initial conditions. Two features stand out:

the overall skills initialized with three reanalysis data-

sets are similar and the skills are largely separated by the

usage of different nudging methods. As we found in Fu

et al. (2009), the prediction skills initialized with the

NCEP-R1, -R2, and ERA-Interim are about a week

when the DMI nudging is used. Usually, the forecast

skills of U850 are slightly longer than that of rainfall.

The EDN nudging extends the rainfall prediction skills

FIG. 3. Pattern correlations over (308S–308N, 408E–1408W) between the nudged rainfall and the observations in

the 2004 summer: (a) daily total rainfall with the NCEP-R2 [r2_dmi used loose divergence nudging; r2_edn used the

EDN; 2*r2_edn doubled ISO signals in the original NCEP-R2 and used the EDN]. (b) Daily total rainfall with the

ERA-Interim [era_dmi, era_edn, and 2*era_edn have similar meanings as in (a), but with the ERA-Interim]. (c) As

in (a), but for intraseasonally filtered rainfall. (d) As in (b), but for intraseasonally filtered rainfall.
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by 2–4 days (Figs. 5b,d) and considerably improves the

skills of U850 (Figs. 5a,c); about a 5–10-day extension

over the global tropics and over Southeast Asia. Among

the three reanalyses, the ERA-Interim has obviously

better skills than the NCEP-R1/R2 except for rainfall

over Southeast Asia. This finding demonstrates that the

EDN nudging leads to better initial conditions, thus

improving the overall ISO prediction skill. All results

presented in remaining part of this study were obtained

with the EDN nudging.

The skills of ISO prediction, however, are not uniformly

distributed within a season, but change significantly as

FIG. 4. Spatial patterns of daily rainfall (CI: 2 mm day21) on 11 Aug 2004 from (a) the observations, (b) nudged

NCEP-R2 with loose divergence nudging (dmi), (c) nudged ERA_Interim with loose divergence nudging, (d) nudged

NCEP-R2 with EDN, (e) nudged ERA-Interim with enhanced EDN, (f) nudged NCEP-R2 with ISO signal doubled

and EDN, and (g) nudged ERA-Interim with ISO signal doubled and EDN.
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a function of initial dates. Figure 6 shows the temporal

variations of ISO prediction skills over the global tropics

in 2004 summer. The skills are highest when forecasts

started in late June/early July no matter using the NCEP-

R2 or ERA-Interim as initial conditions or measuring the

skills with U850 or rainfall. On the other hand, the pre-

diction skills are lowest when forecasts started around

21 July. What cause these large temporal variations of

prediction skills? Checking back to Fig. 2, we found that,

when initial ISO-related convection locates over the

Maritime Continent, the resultant prediction skills are

lowest. After initial ISO-related convection moves to the

east of the Maritime Continent, the prediction skills are

highest.

In what degree are the above findings model dependent?

Fully addressing this issue requires well-coordinated

multimodel intercomparisons (e.g., B. Wang et al. 2009).

To offer a preliminary answer to this question, we com-

pared the 2008 summer forecasts between the UH-HCM

and the NCEP-CFS. Figure 7 shows the prediction skills

of rainfall and U850 over the global tropics from these

two models. Both forecasts were initialized with the

NCEP-R2. Although the UH-HCM and the CFS have

very different physical schemes, the temporal varia-

tions of the skills are very similar. After checking the

Hovmöller diagram of the observed total rainfall and the

associated intraseasonal variability along the equator in

2008 summer (figure not shown), it is also found that the

lowest skills correspond to initial ISO-related convection

over the Maritime Continent, but the highest are after the

convection moving to the east of the Maritime Continent.

Similar phase dependence is also found for the ISO pre-

diction over Southeast Asia (Fig. 8). These results point

out that the Maritime Continent is a prediction barrier

for both the UH-HCM and the CFS (Vintzileos and

Pan 2007). A similar barrier has been reported for the

ECMWF forecast system, too (Vitart et al. 2007). This

prediction barrier is likely caused by both model de-

ficiencies and inadequate initial conditions. Further in-

depth studies are needed to sort this out.

FIG. 5. ISO prediction skills initialized with three nudged reanalysis datasets: The NCEP-R1, NCEP-R2, and ERA-

Interim with two different nudging methods (loose divergence nudging: dashed lines, EDN: solid line): (a) ACC of

U850 over the global tropics, (b) ACC of rainfall over the global tropics, (c) ACC of U850 over Southeast Asia, and

(d) ACC of rainfall over Southeast Asia.
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Comparison of Figs. 8a,b suggests that the overall

rainfall prediction skill in the UH-HCM is higher than

that in the NCEP CFS. Taking the prediction skill ini-

tiated on 31 August 2008 as an example, the skill of the

CFS (Fig. 8a) changes from positive to negative after

about 10 days, while the skill of the UH-HCM (Fig. 8b)

stays positive for more than 40 days. To understand the

cause of this skill difference, Fig. 9 gives the latitude–

time evolutions of the forecasted intraseasonal rainfall

anomalies averaged over 608–1208E from the CFS and

the UH-HCM along with the observations. Initially,

a north–south rainfall dipole is observed in this sector

with a wet phase near the equator and a dry phase over

Southeast Asia. The near-equatorial wet phase gradu-

ally moves northward to Southeast Asia, followed by

a northward-propagating dry phase. The northward-

propagating wet phase forecasted by the CFS (Fig. 9a) is

way too slow in comparison to the observations, which

may be due to the underestimated air–sea coupling

(W. Q. Wang et al. 2009). Too slow ISO propagations in

FIG. 6. ACC of forecasted ISO against the observations over global tropics in the 2004 summer as a function of initial dates: (a) skills of

filtered rainfall initialized with the nudged NCEP-R2, (b) skills of filtered rainfall initialized with the nudged ERA-Interim, (c) skills of

filtered U850 initialized with the nudged NCEP-R2, and (d) skills of filtered U850 initialized with the nudged ERA-Interim.

FIG. 7. ACC of forecasted ISO against the observations over global tropics in the 2008 summer as a function of initial dates: (a) skills of

forecasted rainfall by the CFS, (b) skills of forecasted rainfall by the UH-HCM, (c) skills of forecasted U850 by the CFS, and (d) skills of

forecasted U850 by the UH-HCM.
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the CFS have also been reported in long-term free in-

tegrations (e.g., Pegion and Kirtman 2008; Achuthavarier

and Krishnamurthy 2009). On the other hand, the UH-

HCM initiated with either the NCEP-R2 (Fig. 9b) or

the ERA-Interim (Fig. 9c) produces a much better

northward-propagating wet phase and the follow-up

dry phase although the southward-propagating wet

phase is overestimated.

FIG. 8. As in Fig. 7, but over Southeast Asia.

FIG. 9. Latitude–time variations of observed (shaded) and forecasted ISO rainfall anomalies (contours) averaged

over 608–1208E started on 31 Aug 2008: (a) NCEP CFS forecasts initialized with the NCEP-R2, (b) UH-HCM

forecasts initialized with the nudged NCEP-R2, (c) UH-HCM forecasts initialized with nudged ERA-Interim, and

(d) UH-HCM forecasts initialized with signal-recovered NCEP-R2.
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5. A signal-recovery method and its impact on
ISO prediction

When intraseasonal signal of the NCEP-R1 in 2004

summer was recovered to be comparable to the observa-

tions, the resultant ISO prediction skill increased accord-

ingly (Fu et al. 2009). A natural question arises: what will

happen for other years and with other reanalysis datasets?

To answer this question, extended forecast experiments

have been conducted for five continuous summers (2004–

08) initialized with signal-recovered NCEP-R2 and ERA-

Interim reanalyses. As shown in Fig. 2 and Table 2, the

quality of the ISO in the signal-recovered NCEP-R2 is

much better than that in the original reanalysis; whereas

the result of the signal-recovered ERA-Interim is a kind

of mixing. Will these so-called signal-recovered initial

conditions lead to better intraseasonal prediction skills?

The present section aims to address this question. First,

let us continue the case that was initialized on 31 August

2008. Figure 9d shows the UH-HCM forecast initialized

with signal-recovered NCEP-R2. The forecast looks bet-

ter than that initialized with the nudged NCEP-R2 (Fig.

9b). After recovering the ISO signal in the initial condi-

tions (Fig. 9d), the northward-propagating component is

strengthened and the southward component weakened.

The resultant forecast (Fig. 9d) not only well captures the

northward-propagating wet phase and the follow-up dry

phase, but also reproduces the reinitiation of a new wet

phase near the equator even after one month.

Figure 10 shows the temporal variations of ISO pre-

diction skills in the 2008 summer over the global tropics

initialized, respectively, with the nudged and signal-

recovered NCEP-R2. For both rainfall and U850, the

forecasts initialized with the signal-recovered reanalysis

(Figs. 10b,d) have obviously better skills than that ini-

tialized with the nudged reanalysis (Figs. 10a,c). The

rainfall prediction skills have been significantly ex-

tended particularly for two cases: one initialized on 21

July and the other initialized on 11 June (Figs. 10a,b).

Since these dates correspond to the periods when the

ISO moves over the Maritime Continent, the differences

between the forecasts initialized with the nudged

NCEP-R2 and that with signal-recovered NCEP-R2

suggest that ISO-related convection over the Maritime

Continent has been misrepresented in the NCEP-R2

and improved representation of the ISO over the Mar-

itime Continent extends ISO prediction skills.

Figure 11 compares the prediction skills of rainfall and

U850 over Southeast Asia in the 2008 summer initialized

with the nudged and signal-recovered NCEP-R2. The

forecasts initialized with signal-recovered reanalysis have

systematically higher skills than that initialized with the

nudged reanalysis for both rainfall and U850. Largest

extensions of ISO-related rainfall prediction skills occur

for the cases initialized on 11 and 21 July 2008 (Figs.

11a,b). The useful prediction skills initialized with the

nudged NCEP-R2 for these two cases are mostly within

5 days (Fig. 11a), being extended to more than 25 days

when the signal-recovered reanalysis is used as initial

condition. The improved skills primarily result from

faster and more coherent northward propagation of the

ISO in the later cases, as illustrated in Fig. 9.

FIG. 10. ACC of forecasted ISO against the observations over the global tropics in the 2008 summer as function of initial dates: (a) skills

of intraseasonal rainfall initialized with the nudged NCEP-R2, (b) skills of intraseasonal rainfall initialized with signal-recovered NCEP-

R2, (c) skills of intraseasonal U850 initialized with the nudged NCEP-R2, and (d) skills of intraseasonal U850 initialized with signal-

recovered NCEP-R2.
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In addition to the 2004 summer (Fu et al. 2009) and

the 2008 summer, will recovered ISO signals in initial

conditions extend its prediction skills for other years?

Figure 12 gives the ISO prediction skills over Southeast

Asia in continuous 5 yr (2004–08) initialized with the

nudged NCEP-R2, spatially smoothed NCEP-R23 and

with signal-recovered NCEP-R2 and ERA-Interim

along with the CFS forecasts in the 2008 summer.

Overall, the forecasts initialized with spatially smoothed

NCEP-R2 have the lowest prediction skills. This result

suggests that small-scale synoptic disturbances in initial

conditions generally act to extend ISO prediction. Fu-

ture in-depth study is needed to reveal the underlying

physical processes. The forecasts initialized with signal-

recovered reanalysis consistently outperform that ini-

tialized with the nudged reanalysis. The skills initialized

with signal-recovered NCEP-R2 and ERA-Interim are

very similar. In the 2008 summer, initially the skill of

U850 in the NCEP-CFS is obviously higher than that in

the UH-HCM, but the resultant prediction skills are al-

most the same. On the other hand, rainfall prediction skill

in the NCEP-CFS is much lower than that in the UH-

HCM, which is due to the too slow northward propaga-

tion of the ISO in the NCEP-CFS (Fig. 9a).

Figure 13 presents 5-yr prediction skills of ISO-

related U850 and rainfall over the global tropics. Similar

as that over Southeast Asia, the forecasts initialized

with signal-recovered NCEP-R2 and ERA-Interim

have consistently higher prediction skills than that ini-

tialized with the nudged NCEP-R2. In the 2008 summer,

the prediction skill of U850 in the NCEP CFS is slightly

higher than that in the UH-HCM initialized with the

nudged NCEP-R2, but still being consistently shorter

than that initialized with signal-recovered NCEP-R2 and

ERA-Interim. Although the rainfall prediction skill of

the CFS over Southeast Asia is much shorter than that of

the UH-HCM (Fig. 12b), the skill of the CFS and the UH-

HCM over the global tropics are actually very similar,

likely due to both models suffering from prediction bar-

rier over the Maritime Continent.

The 5-yr mean (2004–08) prediction skills of U850 and

rainfall initialized with the nudged and signal-recovered

reanalyses over the global tropics and Southeast Asia

are summarized into Fig. 14. Over the global tropics, the

prediction skills of U850 and rainfall are 14 and 7 days

when initialized with the nudged NCEP-R2 and in-

crease to 20 and 10 days when initialized with the signal-

recovered NCEP-R2 and ERA-Interim. Over Southeast

Asia, the forecast skills of U850 and rainfall are 19 and

11 days when initialized with the nudged NCEP-R2 and

increase to 23 and 18 days when initialized with the signal-

recovered NCEP-R2 and ERA-Interim. These results

indicate that signal-recovered reanalysis extends the pre-

diction skills of that initialized with the nudged reanalysis

by 3–6 days over the global tropics and 4–7 days over

Southeast Asia. It is also noted that the ISO skill mea-

sured with OLR is consistently shorter than that measured

with rainfall (Figs. 14b,d) in the UH-HCM model.

In addition to the anomaly spatial pattern correlations

used in the above, we also measured the intraseasonal

prediction skills with the Wheeler–Hendon index as used

in Lin et al. (2008) and Gottschalck et al. (2010). Model-

forecasted OLR and zonal winds at 850 and 200 hPa

have been used to construct the Wheeler–Hendon index.

FIG. 11. As in Fig. 10, but over Southeast Asia.

3 Variability with horizontal scale smaller than 108 has been fil-

tered out in the original NCEP-R2 reanalysis before nudging into

the UH-HCM.
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Figure 15 summarizes our results. If the intraseasonal

prediction skill is defined as the lead time when ACC

drops to 0.5, the skills of the UH-HCM model are 7 and

14 days, respectively, with nudged NCEP-R2 and ERA-

Interim as initial conditions. When signal-recovered

reanalyses were used as initial conditions, the skills show

consistently increases for both the R2 and the ERA-

Interim. The skill for the R2 has been doubled to 14 days.

The skill increase for the ERA-Interim, however, is

only about 1 day. This may suggest that a better signal-

recovery method is needed for the ERA-Interim or the

skill has matured for our model. Further research is

needed to address this issue.

6. Conclusions and prospectus

In this study, we have shown that three reanalysis

datasets (NCEP-R1, -R2, and ERA-Interim) under-

estimated the intensity of equatorial eastward-propagating

ISO. When they are directly used to initialize the forecasts,

the intraseasonal prediction skills do not reach the op-

timum, particularly for the R1 and R2. One idea of

signal recovery has been proposed to improve the de-

scription of the ISO in these reanalyses. At the same

time, EDN is introduced to improve initial conditions.

When both signal-recovery method and EDN are used

to produce initial conditions, the prediction skills of the

ISO are consistently extended over the global tropics

and Southeast Asia for the recent 5 summers (2004–08).

It is also found that including small-scale synoptic dis-

turbances in the initial conditions generally extends the

ISO prediction skills (Figs. 12 and 13).

Among the three reanalysis datasets, the NCEP-R2 has

the largest ISO variability but lowest spatial correlations

with the observations (Fig. 1 and Table 1). Too much

small-scale and westward-propagating disturbances ex-

ist in the NCEP-R2 (Fig. 2b). Nudging NCEP-R2 to the

UH-HCM, in some degree, alleviates these problems.

The ERA-Interim has the highest spatial–temporal

correlations with the observations (Fig. 2c and Table 1),

FIG. 12. ACC of (a) U850 and (b) precipitation over Southeast Asia forecasted by the UH-HCM in the 2004–08 summer seasons

initialized with the nudged NCEP-R2 (thin gray solid lines), spatially smoothed NCEP-R2 (thin gray dashed lines), signal-recovered

NCEP-R2 (black solid lines), and signal-recovered ERA-Interim (black dashed lines). The ACC of NCEP CFS forecasts (dash–dot lines)

initialized with the NCEP-R2 was also given for the 2008 summer.
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largely attributing to the assimilation of observed sur-

face rain rate (Andersson et al. 2005). However, the

magnitudes of intraseasonal variability in the ERA-

Interim are underestimated (Figs. 1 and 2). After dou-

bling the ISO signals in the original reanalyses, then

nudging into the UH-HCM, the resultant products (also

called signal-recovered reanalyses) have much improved

description of the ISO, particularly for the NCEP-R1 and

-R2 (Figs. 2e,f and Table 2). For the ERA-Interim, the

overall ISO intensity has been increased, but correlations

with the observations have dropped. This result suggests

that different signal-recovery methods should be ex-

plored for different reanalysis datasets.

The impacts of different initial conditions on ISO

prediction skills are assessed in this study. Although three

reanalyses (NCEP-R1, -R2, ERA-Interim) have differ-

ent biases, the resultant seasonal-mean ISO forecast skills

targeting the 2004 summer are similar (Fig. 5) when de-

fault nudging strength in the ECHAM4 model is used.

Sensitivity experiments suggested that the default nudg-

ing strength of divergence in the ECHAM4 model is too

weak, resulting in fictitious rainfall over the equatorial

Indian Ocean (Fig. 4). After increasing the divergence

nudging strength to the value used in Jeuken et al. (1996),

the nudged initial conditions are consistently better than

that using default divergence nudging (Figs. 3 and 4), as

are the ISO prediction skills (Fig. 5). The resultant ex-

tension of the intraseasonal U850’s prediction skill reaches

10 days over Southeast Asia. In this case, the skills using

ERA-Interim as initial conditions are consistently higher

than that using NCEP-R1 and -R2 except for rainfall over

Southeast Asia (Fig. 5).

Preliminary analysis suggests that both the UH-

HCM and NCEP CFS suffer prediction barrier over the

Maritime Continent. The forecasts with initial ISO-

related convection over the Maritime Continent have

the lowest skills. The highest skills usually appear after

initial convection moves to the east of the Maritime

Continent. The ISO prediction skills of the UH-HCM

and NCEP CFS in the 2008 summer [i.e., the target year

of YOTC and the Asian Monsoon Year (AMY; 2007–

12); the details of AMY can be found online at http://

www.wcrp–amy.org/] have been compared (Figs. 7 and

8). It is found that the UH-HCM has much better rainfall

prediction skill over Southeast Asia than the CFS (Figs. 8

and 12b), because the northward-propagating ISO is too

FIG. 13. As in Fig. 12, but over the global tropics.
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slow in the CFS4 (Fig. 9; also see W. Q. Wang et al. 2009;

Achuthavarier and Krishnamurthy 2009). Over the global

tropics, both the UH-HCM and NCEP-CFS have similar

prediction skills (Fig. 13) and suffer prediction barrier

over the Maritime Continent.

The forecasts initialized with signal-recovered re-

analyses have consistently higher skills than that ini-

tialized with the nudged reanalyses in a continuous 5-yr

period (2004–08; Figs. 12, 13, 14, and 15). With the EDN

introduced in this study, 5 summer-mean prediction

skills of U850 and rainfall over Southeast Asia reaches

19 and 11 days even when initialized with the nudged

NCEP-R2. When initialized with signal-recovered

NCEP-R2 and ERA-Interim, prediction skills extend to

23 and 18 days for U850 and rainfall. The corresponding

skills for global tropics are relatively shorter, which are 14

and 7 days when initialized with the nudged NCEP-R2

and increase to 20 and 10 days when initialized with

signal-recovered NCEP-R2 and ERA-Interim. When

measured with the Wheeler–Hendon index, the intra-

seasonal prediction skills are 7 and 14 days, respectively,

for the nudged and signal-recovered R2. The skills are 14

and 15 days for the nudged and signal-recovered ERA-

Interim (Fig. 15).

The present results demonstrated that by taking ad-

vantage of a model with relatively high-quality simula-

tions of the ISO (Fu and Wang 2004) and initialized with

the nudged ERA-Interim and signal-recovered R1 and

R2, we can achieve useful ISO prediction skills of 2–

3 weeks for Southeast Asia and about 2 weeks for the

global tropics. Considering the strong modulations of the

ISO on tropical cyclones, midlatitude extreme weather, as

well as the wet and dry spells of global monsoon systems

(e.g., Bessafi and Wheeler 2006; Maloney and Hartmann

2000; Hong et al. 2010; Higgins and Shi 2001; Jones 2000;

Yasunari 1979; Annamalai and Slingo 2001; Chen and

Weng 1999; Goswami et al. 2003; Sun and Chen 1994,

etc.), knowing the phase of the ISO 2–4 weeks ahead

offers a reliable source for probabilistic assessments on

FIG. 14. The 5-yr (2004–08) mean ACC of UH-HCM forecasts initialized with the nudged NCEP-R2 (dash–dot

lines), signal-recovered NCEP-R2 (solid lines), and signal-recovered ERA-Interim (dash lines): (a) for U850 over the

global tropics, (b) for rainfall (thick lines)/OLR (thin lines) over the global tropics, (c) for U850 over Southeast Asia,

and (d) for rainfall (thick lines) /OLR (thin lines) over Southeast Asia.

4 Recently, a new version of the CFS has been implemented at

NCEP Climate Prediction Center (CPC), which shows improved

simulations of the ISO (Weaver et al. 2010). The possible impacts

on ISO prediction skills are under assessment at NCEP CPC.
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the occurrences of these extreme events (e.g., Gottschalck

et al. 2010). This information has great socioeconomic

value particularly for those weather-sensitive sectors (e.g.,

water management, agriculture, disaster prevention, etc.;

Wang 2006; Brunet et al. 2010).

The present study is a step toward this direction. To

ensure steady progress in the advancement of ISO pre-

diction, synergetic efforts between weather and climate

communities are needed at least in three fronts: (i) to

improve the representations of multiscale convective

systems and their interactions with large-scale circula-

tions in atmospheric models, which are key processes of

the observed ISO; (ii) to advance the coupling processes

among atmosphere, ocean, and land that are crucial to the

realistic simulations of the ISO; and (iii) to acquire better

initial conditions, through deploying new observations

and developing new data assimilation techniques, for the

atmosphere–ocean–land coupled forecast systems.

Recently, great efforts have been made at the National

Oceanic and Atmospheric Administration (NOAA) NCEP

and the National Aeronautics and Space Administration

(NASA) Goddard Space Flight Center (GSFC) to pro-

duce two new reanalysis datasets: Climate Forecast System

Reanalysis (CFSR) and the Modern Era Retrospective

Analysis for Research and Applications (MERRA; Saha

et al. 2010; Bosilovich 2008; Rienecker et al. 2009). It is

expected that the CFSR and MERRA have better quality

than the NCEP-R1 and -R2 in describing tropical weather

and climate variability. Future studies will be conducted to

evaluate the ISO in the CFSR and MERRA and to assess

the ISO prediction skills when the CFSR and MERRA are

used as initial conditions.
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