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ABSRACT 

Data from the Long-Range Lightning Detection Network (LLDN), the Tropical 

Rainfall Measuring Mission (TRMM) satellite, and reconnaissance aircraft are used to 

analyze the frequency and location of cloud to ground lightning outbreaks in the eyewalls 

of Hurricanes Rita and Katrina.  Each hurricane produced eyewall lightning outbreaks 

during the period of most rapid intensification, during eyewall replacement cycles, 

and during the period that encompassed the maximum intensity for each storm. 

The strike density (number of strikes per (100 km)2) ratio between the eyewall 

region (0 – 50 km) and the outer rainband region (175 – 300 km) was 6:1 for Hurricane 

Rita, and 1:1 for Hurricane Katrina.  This result is in contrast to those of previous 

remote lightning studies, which found that outer rainbands dominated the lightning 

distribution.  The differences are shown to be at least in part the result of the more limited 

range of the National Lightning Detection Network (NLDN) data. 

Within the effective range of the aircraft radar, maxima in eyewall strike density 

were collocated with maxima in radar reflectivity.  High lightning strike rates were also 

reliably associated with TRMM low brightness temperatures and large Precipitation Ice 

Concentration (PIC) product.  The differences in storm structure and lightning strike 

morphology between Hurricanes Rita and Katrina are documented.  The implications of 

the results for the use of LLDN lightning data to remotely examine changes in hurricane 

intensity and structural evolution are discussed. 
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CHAPTER 1.  INTRODUCTION 

It has been shown that the convective structure of the eyewall of a mature hurricane 

can provide valuable information about changes in storm intensity (Jorgensen 1984; 

Black et al. 1986, 1994; Marks 1985; Heymsfield et al. 2001).  Marks (1985) showed that 

intensification of a hurricane could be represented by a contraction of the eyewall, as well 

as by an increase in the strength of the convection within the eyewall.  Black et al. (1994) 

also witness a strengthening and deepening of the convection contained with in the 

eyewall of Hurricane Emily (1987) as the hurricane intensified.  Heymsfield et al. (2001) 

also showed that the development of mesoscale regions of intense convection within the 

eyewall of a mature hurricane could cause significant intensity changes.  Thus, it has 

become of interest to hurricane forecasters and researchers alike, to develop various 

methods that would allow the continuous examination of the structural evolution of the 

eyewall within hurricanes.   

The lightning flash rates produced by a convective system are positively correlated 

with the convective strength of that system (Orville and Vonnegut 1974; Orville et al. 

1983; Williams et al. 1992).  The earlier study by Orville and Vonnegut (1974) examined 

scanned photographs of lighting flashes provided by Defense Meteorological Satellite 

Program (DMSP) in order to derive the lightning flash frequencies of specific convective 

systems.  The more recent studies by Orville et al. (1983) and Williams et al. (1992) both 

used a network of direction finding sensors that were able to detect the cloud to ground 

lightning strikes produced by convective systems.  Williams et al. (1992) also analyzed 

the individual convective systems using vertical reflectivity profiles provided by a ground 

based radar; concluding that as convective systems become more vigorous, their cloud to 
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ground strike rates increase.  These findings have been further supported by various other 

studies and therefore it has been suggested that it is possible to examine the development 

and evolution of a convective system by examining its lightning strike morphology 

(Orville et al. 1983; Williams et al. 1992).  Thus the examination of eyewall convection 

with the use of remote lightning data would be possible.  

Molinari et al. (1994, 1999) examined the convective structure of hurricanes through 

the use of remote lightning detection.  The study also looked for links between eyewall 

structure, inferred from the remote lightning data, and changes is storm intensity.    

Molinari et al. (1999) used lightning data provided by the National Lightning Detection 

Network (NLDN) to examine the hourly cloud to ground lightning evolution in nine 

Atlantic hurricanes, three of which were previously studied by Lyons and Keen (1994).  

He concluded that mature TCs could be divided into three regions with respect to 

lightning strike density (defined as the number of measured cloud to ground strikes per 

unit area per time).  The greatest strike density was contained within the outer rainband 

region, beginning ~140 km from storm center and continuing outward.    The eyewall 

region, 0 - 60 km from storm center, contained a secondary maximum in strike density, 

which was approximately 3 to 6 times less than that of the outer rainband region.  The 

minimum in strike density was found in the inner rainband region, this region was 

defined as 60 - 140 km outward from storm center.  These three regions defined by 

lightning strike density in Molinari et al. (1999) are comparable with the three convective 

regions of a mature TC described by Jorgensen (1984); in particular, (i) the eyewall 

region, an area of outward-sloped convection that surrounds the eye and contains 

moderate vertical velocities (~ 4 - 6 m s-1), (ii) the stratiform region, which is located just 
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outward of the eyewall and contains little active convection and weak vertical velocities, 

and (iii) the rainband region, which is characterized by the variable nature of the 

reflectivity and vertical velocity profiles. 

Molinari et al. (1999) also concluded that moderate and intense hurricanes  

(maximum sustained winds > 41 m s-1) contained less cloud to ground eyewall lightning 

when compared to weak hurricanes (maximum sustained winds 32 – 35 m s-1).  Moderate 

and strong hurricanes contained < 30 strikes day-1 within 60 km of storm center, with 

eyewall lightning only occurring in 7% of hourly periods and never occurring for longer 

than a 5-h period.  Molinari et al. (1999) also showed that eyewall lightning outbreaks 

frequently accompany eyewall replacement cycles, as well as periods of intensification. 

 Cecil et al. (1999) conducted a study of three TCs using lightning data provided by 

the Optical Transient Detector (OTD) aboard the polar orbiting satellite Pegasus.  Cecil et 

al. (2002a, b) used the TRMM mounted Lightning Imaging Sensor (LIS) to study 261 

TRMM satellite overpasses of 45 TC’s.  The OTD and LIS instruments were able to 

detect the total number of lightning flashes (defined as both intra-cloud lightning flashes 

and cloud to ground strikes), and operated with a detection efficiency of 60% and 90% 

respectively.  Cecil et al. (1999, 2002a, b) found a radial distribution similar to Molinari 

et al. (1999), in which there were lightning flash density (defined as, the total number of 

lightning flashes per area per time) maxima in the eyewall region and outer rainband 

region, with a distinct flash density minima located within the inner rainband region.  

However, Cecil et al. (1999, 2002a,b) found that the ratio of flash densities between the 

eyewall region and outer rainband region was closer to 1:1, not 1:3-6 as found by 

Molinari et al. (1999).   
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The detection efficiency of the NLDN is very sensitive to the distance of a lightning 

strike from the network sensors; as the distance increases the detection efficiency 

decreases.  As a result previous researchers using NLDN data limited their analysis of 

lightning data to times when TCs centers were within 400 km of at least two direction-

finding (DF) sensors (e.g., Molinari et al. 1994, 1999; Samsury and Orville 1994). This 

limitation made it impossible to examine any lightning data while the TCs of interest 

were located over the open ocean, and may have resulted in inaccurate conclusions about 

the spatial evolution of cloud to ground lightning strikes produced by TCs. 

In this study, data from the Long-Range Lightning Detection Network (LLDN) are 

compared with convective precipitation and precipitable ice derived from aircraft radar 

and TRMM data in the eyewall regions of two category five hurricanes.  The overarching 

goal of this work is to determine the utility of continuous LLDN data to remotely infer 

the evolution of the convective structure of hurricane eyewalls. 
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CHAPTER 2.  BACKGROUND 

2.1 Charge Separation 

 The theories regarding the various methods of charge separation within the 

atmosphere are still very exploratory.  While different methods of charge separation are 

known to occur, their order of importance for inducing cloud electrification is not well 

understood.  There are two main methods of charge separation; inductive (IC) and non-

inductive charge separation (NIC).   

 

2.1.1 Inductive Charge Transfer 

 IC can only occur when there is a background electric field within the region of 

cloud in which the transferring particles are located.  There are two main methods of IC 

transfer, drop breakup and particle rebound.  The Earth’s natural electric field causes a 

dominant initial electric field within the cloud that is usually positive above negative at 

all altitudes above the freezing mark.  This electric field causes the bottom of a droplet to 

become positive and the top of the droplet to become negative.  Drop breakup IC occurs 

when the environmentally induced charge separation within a droplet is redistributed 

when the droplet breaks up. The cause of the droplet breakup is usually due to the 

collision and coalescence process occurring within clouds.   

Particle rebound takes place when a smaller particle collides with the bottom of a 

larger particle due to differential fall velocities.  A portion of the positive charge on the 

bottom of the large droplet will be lost and transferred to the smaller droplet.  For both 

drop breakup and particle rebound the charge separation within the cloud comes as a 

result of the redistribution of the differing charged particles via gravitational separation 
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(Beard 1986).  The smaller particles have slower fall velocities, and as a result are carried 

higher into the cloud.  This causes the top of the cloud to become positively charged 

while the larger, negatively charged particles collect at the bottom of the cloud causing it 

to become negatively charged. 

 

2.1.2 Non-Inductive Charge Transfer 

 NIC transfer does not need a pre-existing environmental electric field in order to 

operate.  There are three main methods of NIC transfer, thermoelectric effect, contact 

potential effect, and freezing drop breakup (Pruppacher and Klett 2000). 

 The thermoelectric effect states that a collision by two particles of different 

temperatures will cause a temperature gradient across the particles.  This temperature 

gradient causes an ion gradient and a resultant electric field across the particles.  Large 

objects, such as hail will be frozen, while smaller particles may remain in liquid phase 

(i.e. supercooled water).  A collision between the two would tend to cause the colder 

particle to acquire a negative charge, while the small particle would acquire a positive 

charge. 

 Contact potential effect requires the collision of two particles, which have 

differing electric surface potential.  The difference in surface potential of the two 

particles would then attempt to equalize by transferring charges between particles.  

Contact potential varies such that it becomes more negative with as temperature 

decreases, and riming increases.  Thus a collision between a rimed ice particle and ice 

crystal would cause negative charge transfer to the rimed particle and positive charge to 

the smaller ice crystal (Saunders 1995). 
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  When a droplet begins to freeze the outer ice shell of the droplet is positively 

charged, while the main inner core is negatively charged.  If the droplet fractures during 

freezing, the main core of the particle will remain negatively charged, and the ice 

splinters associated with the outer shell will remain positively charged.  For all 3 of the 

NIC mechanisms, separation of the unlike charged particles by gravity and or updrafts 

and downdrafts, create the electric field within the cloud.  The smaller particles tend to 

acquire a positive charge and the larger particles acquire a negative charge, therefore the 

bottom of the cloud becomes negatively charged, and the top becomes positively charged. 

 

2.2 Cloud to Ground Lightning 

 When charge separation occurs within a cloud it creates an electric field.  The 

structure of the electric field can change drastically for various reasons, however the most 

commonly understood electric field that occurs in most thunderstorms is a vertical dipole.  

This occurs when charge particles become vertically separated by gravity, updrafts 

downdrafts, for example, and create a volume of one charge above another volume of 

opposing charge.  It has now been measured that thunderstorms that contain extremely 

high vertical velocities can have electric fields that are tri- or quad-poles (Black and 

Hallett 1999).  Besides the electric field that is created within the thunderstorm, there is a 

dipole induced between the lower part of the cloud and the ground.  When the strength of 

the dipole between the cloud and ground reaches a limit, a value known as dielectric 

breakdown, it is possible for a cloud to ground lightning strike to occur.  Uman (1987) 

showed that each cloud to ground lightning strike requires a charge separation of ~ 10 

coulombs per strike, or several strikes and lower tens of coulombs. 
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2.3 Hurricane Electrification 

Charge separation and the resulting dipole orientation depend on many different 

characteristics of the convective system of interest, such as updraft strength, liquid and 

ice water concentrations, and temperature.  Therefore it is a good idea to discuss the 

electrification of hurricanes in particular and not just convection in general. 

Black and Hallett (1999) examined the electrification and hydrometeor 

characteristics within Hurricane Claudette (1991) and Hurricane Tina (1992) using an 

array of field mills mounted on the WP-3D aircraft.  As the aircraft penetrated through 

the TCs, the field mill array was able to measure the strength and the polarity of the 

electric field at that particular flight level.  Detailed measurements of hydrometeor size, 

concentration, and state (liquid or solid) were also recorded along the flight path using 

two-dimensional optical array probes, a forward scattering-spectrometer, and a liquid 

water meter.  Radial flight penetrations were completed at various altitudes between 4.5 

km and 7 km.  All flight levels recorded a positive vertical electric field (no charge or 

positive charge below the aircraft with negative charge above the airplane) nearly all the 

time, with negative (negative charge below the aircraft with no charge of positive charge 

above the airplane) vertical electrical fields recorded only while the plane passed through 

weak downdrafts around the melting level.  The strongest vertical electric fields 

measured within the eyewall measured ~ 17 - 24 kV m-1, and were approximately 3-5 

times weaker than those measured in continental thunderstorms (Marshall et al. 1995).  

The peaks in electric field within the eyewall were collocated with strongest updraft 

velocities and highest super-cooled water concentration.  Black and Hallett (1999) 

concluded that the large amount of ice produced within the eyewall of a mature hurricane 
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would act to nucleate and freeze much of the liquid water content (LWC) that is present 

above the 0°C isotherm.  This process would result in little super-cooled water droplets 

within the eyewall, which are needed for charge separation within clouds (Ziv and Levin 

1974; Takahashi 1978; Saunders et al 1991).  Therefore Black and Hallett (1999) suggest 

that lightning outbreaks within the eyewall are rare, especially when compared to 

continental convection.  

 

2.4 Previous Lightning Studies 

2.4.1 Lightning Flash Density and Environmental Instability 

Lightning strike rates for a particular convective system are closely related to the 

magnitude of the updrafts and the vertical development of the convective system, as well 

as the concentration of ice-phase precipitation produced by the convective system 

(Williams et al. 1992). These three properties of a convective system can be largely 

dependent on the amount of convective available potential energy (CAPE) within the 

environment of a convective system.  Williams et al. (1992) concluded that higher CAPE 

values resulted in more intense convection, as denoted by greater radar reflectivity values 

extending above the melting level, which signify greater concentrations of ice-phase 

precipitant.   These high concentrations of ice-phase precipitant are needed in order to 

separate enough charge in order to produce lightning within the storm (Ziv and Levin 

1974).  Thus, intense convection that is formed within high CAPE environments will also 

produce more lightning strikes per area when compared to weaker convection (Williams 

et al. 1992).   
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2.4.2 Lightning Flash Density and Cloud Condensation Nuclei  

The concentration of ice-phase precipitant is also dependent on the concentration of 

cloud condensation nuclei (CCN) present within the environment.  CCN aid in the 

formation of ice-phase precipitant through heterogeneous nucleation processes, therefore 

atmospheric environments which contain higher concentrations of CCN also usually 

contain higher concentrations of ice-phase precipitant (Sherwood, 2002).  Toracinta and 

Cecil (2001) determined that continental regions contained the highest concentrations of 

CCN, with the lowest concentrations found over open ocean regions.  This variance in 

microphysical structure has been shown as one cause for higher concentrations of ice-

phase precipitant over continental regions and lower concentrations over open ocean 

regions (Sherwood 2002).  This variance in ice-phase precipitant between continental 

regions and open ocean regions were also speculated as one of the reasons lightning flash 

densities are generally higher over continental regions (Cecil et al. 2002a, b). 

 

2.4.3 TRMM Measured Lightning Correlations 

Cecil et al. (2002a, b) and Nesbitt et al. (2000) used the Tropical Rainfall Measuring 

Mission (TRMM)-based microwave imager (TMI) and lightning imaging sensor (LIS) to 

examine the intensity of convective areas; they found that the greatest lightning flash 

densities are recorded over continents, consistent with the fact that solar heating of the 

land produces higher values of CAPE.  Convective systems over the open ocean are 

usually weaker than their continental counterparts because of lower CAPE values (Zipser 

and LeMone 1980; Jorgensen et al. 1985; Jorgensen and LeMone 1989), and as a result 
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yield much lower lightning flash rates (Zipser 1994; Cecil and Zipser 1999; Cecil et al. 

2002 a and b; Nesbitt et al. 2000). 

 

2.5 In-situ Hurricane Studies 

Gray (1965), Jorgensen et al. (1985), and Black et al. (1994) used aircraft-measured 

vertical velocities to study the size and intensity of convective cores within the eyewall of 

mature hurricanes.  A study of three mature hurricanes concluded that the mean vertical 

velocity within the eyewall was 4 m s-1 with an average updraft and downdraft diameter 

of 2.5 km (Gray 1965).  Jorgensen et al. (1985) recorded vertical velocities during a total 

of 115 aircraft penetrations of 4 mature hurricanes, finding the average updraft velocity to 

be ~ 4 - 5 m s-1 at 5 km.  Black et al. (1994) found similar results for Hurricane Emily of 

1987; however Black et al. (1994) measured strong updrafts (> 20 m s-1) during a time 

when Hurricane Emily underwent a period of rapid intensification.  Using aircraft 

Doppler radar to derive vertical velocities in hurricanes, Black et al. (1996) found that 

70% of the hurricane eyewall penetrations contained updrafts < 2 m s-1, with ~5% 

containing vertical velocities >5 m s-1.  The typical vertical velocities found in the 

eyewalls of a mature hurricanes are therefore relatively weak when compared to 

continental thunderstorms, which can have updrafts >30 m s-1.  These small updraft 

velocities have been related to the lack of CAPE within the eyewall region of mature 

hurricanes (Bogner et al. 2000; Emanuel 1986).  As a result, lightning outbreaks within 

the eyewall of mature hurricanes should be a rare event compared to continental 

convective systems.  However, strong convective updrafts, which may occur during rapid 
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intensification events, as studied by Black et al. (1994), could contain vertical velocities 

that are strong enough to produce eyewall lightning outbreaks. 
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CHAPTER 3.  DATA AND METHODS 

3.1 LLDN 

The lightning data used in this study were obtained from the archives of the long-

range National Lightning Detection Network (LLDN) operated by the Vaisala 

Thunderstorm Group (Cummins et al., 1998, 1999; Cramer and Cummins 1999; 

Demetriades and Holle 2005).  First implemented in 1996, the LLDN initially comprised 

all the sensors in the U.S. National Lightning Detection Network (NLDN) (Orville et al. 

2002).  In 1998, the coverage, detection efficiency, and location accuracy were all 

improved with the addition of sensor information from the Canadian Lightning Detection 

Network (CLDN).  At the time of the two hurricanes used in this study (2005), the LLDN 

comprised 187 sensors (Cummings, 2006).  

The LLDN detects very low frequency (VLF) electromagnetic waves reflected from 

the ionosphere to determine lightning strike locations.  The range of the LLDN data used 

in this study is an order of magnitude greater than that of the NLDN data used in previous 

hurricane studies (Samsury and Orville 1994; Molinari et al. 1994, 1999), allowing for a 

more complete documentation of the lightning evolution in Hurricanes Rita and Katrina.  

As a result of the reversal of the polarity of the signal with each ionospheric reflection, 

this method of detection makes it impossible to determine the strike polarity.  The 

network also suffers in a small region just north of Cuba, where linear bands of false 

strikes appear.  These linear patterns were also observed in previous lightning studies 

(Molinari et al. 1994, 1999) and are explained in more detail by Molinari et al. (1999).   

The detection efficiency of the network depends on the strike strength, its distance 

from the network, and time of day (Cummins 2006) (Fig. 1).  Strong strikes (greater than 
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30-kA peak current) and strikes that are close to the network are detected more 

efficiently.  Also, there is a diurnal variation in detection efficiency as a result of the VLF 

detection method and ionospheric dynamics, with the detection efficiency being greater 

during nighttime hours. Given the tracks of Hurricanes Rita and Katrina, the detection 

efficiency values ranged from ~75% to 95% (Fig. 1).  This study does not explicitly 

account for variations in detection efficiency, but in objective applications of lightning 

data, such as data assimilation into numerical weather prediction models, the variations in 

detection efficiency need to be taken into account.  For this purpose modeled detection 

efficiency can be used (Cummins, 2006).  

Cramer and Cummins (1999) conducted a location accuracy study within the NLDN, 

using both NLDN and LLDN detection methods. They concluded that median location 

accuracy of the LLDN detected strikes is ~ 5 km.  The vertical sections of lightning bolts 

provide the strongest signal for the NLDN and LLDN to detect.  The location of the 

lowest couple of kilometers of each strike is often vertical, whereas the higher portions of 

the lightning bolt may be more horizontal in orientation.  Therefore, the lateral 

displacement of each strike from its cloud origin is not exactly known, but will likely fall 

within the radius of the median displacement accuracy. 

 

3.2 TRMM 

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a 

passive radiometer sensor that receives radiation in nine wavelengths.  Brightness 

temperatures from the vertically polarized 85 GHz channel are used in this study (TRMM 

product 1B11).  Also, the hydrometeor profile product is used to estimate the horizontal 
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and vertical distribution of precipitation-sized ice (for details on algorithm 2A12 see 

http://disc.sci.gsfc.nasa.gov).  The algorithm generates vertical profiles of hydrometeors 

for 14 levels by combining TMI brightness temperature data with dynamical cloud 

models.  For both the vertically polarized 85 GHz channel and the Hydrometeor Profiler, 

the scan width is 878 km wide and the ground resolution is 5 km.  

 

3.2.1 85 GHz 

Passive microwave brightness temperatures at 85 GHz have been used in various 

studies to determine the vertical development and related strength of convective systems 

(e.g., Mohr et al. 1999; Cecil and Zipser 1999; Nesbitt et al. 2000; Cecil et al. 2002a,b; 

Lee et al. 2002).  The 85 GHz channel brightness temperature is sensitive to radiation 

scattering by precipitation sized ice particles.  The brightness temperature decreases with 

deeper vertical distributions, and greater density of these hydrometeors.  Nesbitt et al. 

(2000) and Cecil et al. (2002a, b) also concluded that the frequency of lightning flashes 

was higher for convective systems in the tropics with lower 85 GHz temperatures. 

 

3.2.2 Precipitation Ice 

The TMI hydrometeor profile product is able to calculate precipitation-sized ice 

concentrations (g m-3) for various vertical levels.  After examining all vertical levels 

above 5 km, it was determined that level 12 (corresponding to 8 - 10 km elevation) 

showed the greatest contrast between images taken during times of high strike density 

and images taken with little or no lightning present. When comparing images from 

different times and days, as well as comparing different areas within the same image, 



 

 16 

stronger convection produces greater precipitation ice concentration (PIC).  The greater 

PIC values are also lifted higher into the atmosphere as a result of the enhanced vertical 

velocities within the area of active convection; therefore, contrasts were most pronounced 

at higher levels, which warranted the uses of level 12.  Similar contrasts were also seen at 

level 10 (5 - 6 km) and level 11 (6 - 8 km), however they were less pronounced than 

those at level 12.  A study by Fiorino (2006) examined the accuracy of the TRMM PIC 

product by comparing TRMM derived PIC values with in-situ aircraft PIC measurements.  

Finding that with in level 12 the TRMM PIC product tended to slightly underestimate 

actual values by ~ 20%.  When comparing the lower level values of TRMM derived PIC 

found in Hurricanes Rita and Katrina it is seen that these values are close to the in-situ 

radar derived values in the hurricane studies by Black (1990) and Gamache et al. (1993).  

 

3.3 Aircraft  

The flight level and radar data were collected by the National Oceanic and 

Atmospheric Administration (NOAA) WP-3D aircraft during numerous flight missions 

through both TCs.  The data used in this study were then obtained from the Hurricane 

Research Division (HRD).  

  

3.3.1 Radar  

Plane Position Indicator (PPI) images were provided by the lower fuselage (LF) 

radar (5.59 cm wavelength).  The radar is a 360˚ horizontally scanning fan beam radar 

with a vertical beam width of 4.1˚, and a horizontal width of 1.1˚.  The full scan period of 

the radar is ~ 30-seconds (The National Oceanic and Atmospheric Administration 
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Aircraft Operations Center website).  The LF radar is affected from both inadequate beam 

filling as well as attenuation, however during hurricane missions measurement errors as a 

result of inadequate beam filling are more significant (Marks 1985).  Inadequate beam 

filling occurs when the pulse volume of the radar beam is not filled with homogenous 

precipitation; when this happens there is a reduction in the strength of the return signal, 

and a reduction of the actual value of the highest reflectivities contained within the radar 

pulse volume.  The beam width increases as its distance from the radar increases, so the 

pulse volume becomes larger, increasing the effect inhomogeneous precipitation has on 

the strength of the return signal.  The reduction of return signal as a result of inadequate 

beam filling during hurricane missions was examined as a function of LF radar altitude 

and radar distance from target (Marks 1985).  At an altitude of 1500m (3000m) at a range 

of 75 km, mean signal loss was ~3 dBZ (~5dBZ).  The PPI images used throughout this 

study are single scans, at various altitudes from 1500 to 2800 m, taken while the P-3 

aircraft was within storm center.  The analysis within this study focuses on the eyewall 

regions of both hurricanes, which are always < 70 km from the radar. 

 Vertical reflectivity profiles (VRP) used in this study are composite images 

created by the Hurricane Research Division (HRD) from data recorded by the tail 

mounted Doppler (TA) radar aboard the P-3.  The TA radar has a 3.22 cm wavelength, 

and operates using a 2.07˚ aft beam width and a 2.04˚ fore beam width.  The radar 

operates in range height indicator mode (RHI) and the scan period can be adjusted from  

0 - 10 revolutions per minute.  The TA also suffers from inadequate beam filling, 

however as a result of the shorter wavelength the effect of attenuation is more of a 

problem during hurricane missions.  Attenuation is a weakening of the radar beam, as the 
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energy of the beams is lost due to scattering and absorption by hydrometeors.  The TA 

radar experiences a sharp attenuation of the signal just below the radar, while it is 

pointing downward, which is then poorly interpreted by the composite computer program 

at the HRD (Gamache, Hurricane Research Division 2006, personal correspondence).  

The sharp attenuation of the radar is seen in the VRP as the vertical discontinuity of 

reflectivity values at and below the altitude of the radar.  The highest altitude radar flight 

used in this paper is ~ 3000 m, thus the altitudes of interest (> 5 km) will not be affected 

at all by this attenuation problem.  The VRPs used in this study are comprised of             

~ 20 – 30 minutes of TA radar data gathered during radial passes through eyewall by the 

P-3 aircraft.  These data are then processed at the HRD into a single, storm relative, VRP.   

 

3.3.2 In-situ 

 Vertical and horizontal wind speeds are measured along the aircraft flight path 

with a sampling rate of 1 Hz.  The vertical wind is measured by adding the vertical speed 

of the aircraft relative to the earth and the vertical wind speed relative to the aircraft.  The 

aircraft vertical speed is calculated using an inertial navigation system, which measures 

the vertical acceleration of the aircraft (Jorgensen 1984).  The vertical wind speed relative 

to the aircraft is computed using the true air speed of the aircraft as well as the attack, 

pitch, roll, and sideslip angles of the aircraft.  Once these are summed together the 

vertical wind speeds are resolved with an accuracy of ± 0.5 m s-1, within a range of  

± 20 m s-1 (National Oceanic and Atmospheric Administration’s Aircraft Operations 

Center website).  The environmental horizontal wind speeds are also calculated using the 
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aircraft true air speed and attack, pitch, roll, and sideslip angles, along with the inertial 

navigation calculated aircraft track.  The horizontal wind speeds are then accurate to  

± 1 m s-1, with a range of ± 212 m s-1 (National Oceanic and Atmospheric 

Administration’s Aircraft Operations Center website).  The aircraft position via global 

positioning system is also included in the 1-second data supplied by HRD, and is used 

throughout this study to give the aircraft position relative to the hurricanes. 

 

3.4 G.O.E.S. 

The GOES-12 satellite area files were obtained from the National Environmental 

Satellite, Data, and Information Service (NESDIS).  The files were processed into 

standard 4 km resolution infrared images using the Man computer Interactive Data 

Access System (McIDAS-X) imaging software.  Lightning strike data were then overlaid 

onto the satellite images using the same software. 
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CHAPTER 4.  RESULTS  

Hurricanes Rita and Katrina were very similar storms in terms of genesis region, 

track, and mature lifetime.  Hurricanes Rita and Katrina were also two of the most intense 

hurricanes in the historical record, attaining minimum central pressures of 895 mb and 

902 mb respectively (Knabb et al. 2005, 2006). 

 
4.1 Rita 
 

The density of cloud-to-ground lightning strikes produced within the eyewall of 

Hurricane Rita was the largest ever detected by the NLDN or LLDN.  Molinari et al. 

(1999) recorded the radial distribution of lightning strikes for 20 km radial bins, in units 

number of strikes per 100 km X 100 km per day = (100 km)-2 day-1.  The study first 

normalized all radial bin totals by (100 km)2; because the total number of hours of 

lightning data varied for each storm, the totals were then normalized by 24 hours.  

Molinari et al. (1999) found the highest eyewall region (0 – 40 km) strike count of       

225 strikes (100 km)-2 day-1 in a marginal hurricane (Hurricane Bob of 1985).  The most 

intense hurricane examined was Hurricane Andrew (minimum surface pressure of 922 

mb), with the eyewall region (0 - 40 km) only producing 140 strikes (100 km)-2 day-1.  

For comparison the eyewall region (0 – 50 km) of Hurricane Rita produced                  

986 strikes (100 km)-2 day-1.  Although similar data sets are being compared, Molinari et 

al. (1999, NLDN) and the LLDN used in this study, differences in detection efficiency 

(DE) must be taken into account.  However, these DE differences are not large enough to 

explain the observed differences in the eyewall flash rates.  
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Lightning data discussed for Hurricane Rita begins on 21 September at 0000 UTC 

and ends just prior to landfall on 23 September at 2300 UTC.  Lightning data were 

divided hourly into 25 km annular rings beginning at storm center and continuing 

outward to 300 km.  Following Molinari et al. (1999) the radial bins were grouped into 

three main regions, the eyewall (0–50 km), inner rainband (75 - 175 km) and outer 

rainbands (r > 175 km).  The strike density maximum for Hurricane Rita was contained 

within the eyewall region, not in the outer rainband region (Fig. 2).  The 0 – 25 km bin of 

Rita contained a total of 5608 strikes (100 km)-2, which is ~7 times larger than any one of 

the outer rainband bins.   

 Three eyewall outbreaks occurred during the 71 h period beginning at 0000 UTC 

on 21 September 2005 (Fig. 3).  The first outbreak reached a maximum at 1600 UTC on 

21 September, during a period of rapid intensification (as defined by a 15 m s-1 increase 

in maximum sustained winds in 24 hours), where the central pressure of the TC dropped 

68 mb in 22.5 h.  A second outbreak occurred at the end of the period of rapid 

intensification, between 2300 UTC on 21 September and 0700 UTC on 22 September 

during the time Rita reached maximum intensity.  A final outbreak at 1800 UTC on 22 

September was much smaller than the first two both in intensity and duration.   

 

4.1.1 Rapid Intensification Eyewall Lightning Outbreak 

The first eyewall lightning outbreak contained the highest strike rate in this study, 

producing a maximum hourly strike density of 474 strikes (100 km)-2.  The outbreak 

began at 1400 UTC, 10 hours after the TC begun to rapidly intensify, and lasted ~ 5 h. 
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The eye had begun contracting earlier in the day (Knabb et al. 2005) and now was ~ 40 

km in diameter (as measured by PPI radar in Fig. 4). 

During the time of this outbreak, aircraft-measured reflectivity shows that the eye 

was completely enclosed and relatively axisymmetric in structure (Fig. 4). However, 

reflectivity values varied around the eyewall, with the northwest and southeast containing 

the highest reflectivity values (> 40 dBZ).  During this outbreak lightning strikes were 

detected in every region of the eyewall.  However, strike density maxima is located in the 

northwestern and southeastern regions of the eyewall coinciding with higher reflectivity 

values. This asymmetric pattern in strike density lasts for the duration of this outbreak.  

For all PPI images lightning strike locations are overlaid throughout the entire image to 

further display the lightning distribution within the two Hurricanes.  Because of effects of 

attenuation and inadequate beam filling previously discussed, each of the aircraft PPI 

radar images contain a 70 km range ring demarcating the nominal effective range of the 

LF radar.  Therefore the qualitative correlation between aircraft PPI radar reflectivity and 

lightning strike locations will only be accounted for within the 70 km range ring (Marks 

1985). The fact that an overwhelming majority of the strikes were detected within 5 km 

of maximum eyewall reflectivities in Fig. 4 is consistent with the known relationship 

between high lightning rates and enhanced convective precipitation, whereas it also acts 

to verify the location accuracy of the LLDN.  

 The TA VRP images at various locations around the eyewall show a well-

developed outward tilt of the eyewall (Fig. 5).  At this time Hurricane Rita displays 

relatively deep convection for a mature hurricane eyewall region (Figs. 5a,c, d), 

containing reflectivities of 30 dBZ above the melting level, with a gradual decrease of 
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reflectivity with height. The attenuation correction problem previously discussed is very 

evident in all the images in Fig. 5.  The marked discontinuities at flight-level (~ 3000 m), 

with decreased values below the aircraft make the use of any data below 3000 m 

impossible.  However, all the data above the aircrafts flight level are not affected at all by 

this severe attenuation problem, and it is within reason to evaluate those data at and 

above ~ 4000 m.  

Flight-level updraft velocities in the eyewall are substantial, with maximum 

velocities measuring > 4.5 m s-1 for each eyewall penetration (Fig. 5).  The northern 

eyewall pass recorded the strongest eyewall updraft for any radial pass for either storm, 

with a peak velocity of 16.5 m s-1.  Within this updraft, vertical velocities > 7.5 m s-1 

were observed over a distance of 2 km (Fig. 5a).  This radial leg also contained the 

greatest number of lightning strikes, with 16 strikes detected in the range of 12 to 28 km 

from the center of Rita.   

The minimum in strike density within the inner rainbands is a feature Hurricane Rita 

shares with previously studied TCs.  This region of minimum strike density in Hurricane 

Rita was due to the stratiform nature of the cloud development in that region, as seen in 

previous studies (Molinari et al., 1994, 1999).  All of the VRPs contain a region 50 to 90 

km outward of the eyewall characterized by a stratiform reflectivity and a bright-band 

signature with almost no vertical development. These bright-band cells outward of the 

eyewall are the result of frozen particles falling and melting in the presence of weak 

vertical updrafts (Szoke 1986; Yuter and Houze 1995).  These bright band cells reside in 

the inner rainband region and coincide with the strike density minimum measured in this 

study. 
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 The TRMM image shown in Figure 6 was taken just minutes prior to the time of 

the detected maximum eyewall strike rate. More than 150 cloud-to-ground strikes were 

detected within the eyewall region from 1520 UTC to 1600 UTC (Fig. 6a). The entire 

eyewall contained brightness temperatures < 200 K, with most of the eyewall colder than 

170 K.  According to the study by Cecil et al. (2002a) 85 GHz brightness temperatures    

<170 K are extremely cold and are rarely found within the eyewall of a hurricane.  A 

frequency study of 261 TRMM overpasses of mature hurricanes concluded that 85 GHz 

temperature pixels measuring < 170 K are in the 95th percentile of all the mature 

hurricane eyewalls.  

There is a lower strike density in the western region of the eyewall during this time 

that coincides with warmer brightness temperatures in that area.  However, during this 

outbreak, lightning data do not show an eyewall region void of detected lightning strikes 

when viewed for periods on the order of ~1 h. 

 The eye is completely surrounded by PIC > 0.6 g m-3 at this level, (Fig 6b). The 

highest PIC observed, 0.7 g m-3, is in the northeastern region of the eyewall, and 

corresponds to an area of enhanced strike density during the time of the image.  PIC 

reaches a maximum in the eyewall, with values dropping off quickly as you move 

radially outward (Figs. 5a and 6b).  The maximum PIC occurred just outward of aircraft 

measured maximum radar reflectivity and vertical velocity (Fig. 5a).  This 4 – 5 km 

outward displacement of the PIC maximum from reflectivity maximum can be attributed 

to advection and the outward tilt of the eyewall with height. 
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4.1.2 Minimum Central Pressure Eyewall Lightning Outbreak  

The second eyewall lightning outbreak was the longest of the three outbreaks, lasting 

~ 8 hours.  During this period the eyewall produced a strike density of                        

1234 strikes (100 km)-2, with a maximum hourly density of 169 strikes (100 km)-2.  This 

outbreak coincided with NHC estimated maximum intensity reached at 0300 UTC on 22 

September, and with a minimum eyewall diameter of ~29 km (Knabb et al. 2006).   

However, the second outbreak was not as well sampled as the other two, with no aircraft 

data available and only one TRMM pass toward the end of the period at 0810 UTC. 

 Eyewall lightning strikes during this time are co-located with the coldest 

brightness temperatures, located in the north and northwestern part of the eyewall  

(Fig. 7a).  During the time of this image, Hurricane Rita was moving to the west-

northwest and had begun to weaken, after reaching maximum intensity ~ 5 hours earlier. 

The 40 minutes of lightning data included in the image took place during the end of the 

eyewall outbreak, and included only 20 eyewall strikes. At this time the 200 K brightness 

temperature contour is no longer symmetric about the eye.  The brightness temperatures 

within most of the southern quadrant of the eye have risen to ~ 225 K. However, this 

TMI recorded a brightness temperature of 139 K, which is the coldest 85 GHz 

temperature measured throughout these two days.  

 During this time the PIC that completely surrounded the eye dropped from 0.6 g 

m-3 to  ~ 0.4 g m-3 (compare Figs. 6b and 7b).  However, Fig. 7b also contains the highest 

PIC values recorded during the two days, with several values > 0.8 g m-3.  The low PIC 

content in the southern portion of the eyewall is most likely associated with the lack of 

convective updrafts within that region of the eyewall, resulting in the inability to support 
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a high amount of precipitation-sized ice in 8 – 10 km layer (Fig. 7b).  The early 

developments of the outer eyewall is seen in Fig. 7b, as a large band of relatively high 

PIC ~75 km west of the center of the TC, and it is shown to become circular and more 

organized in Fig. 10 (further evolution of the eyewall replacement cycle is shown in Figs. 

12 and 13).  

After 0700 UTC 22 September the eyewall strike density steadily decreased until it 

reached zero at 1200 UTC.  Eyewall strike rate remained low for most of the following 

24 hours, with 10 or more eyewall lightning strikes occurring in only 2 of those hourly 

periods.  The low eyewall strike density observed during this period is consistent with 

results found for previous mature or weakening hurricanes (Molinari et al. 1999).  

 An aircraft eyewall penetration occurred during a time when the strike density was 

less than 7 eyewall strikes per hour, with only 1 detected eyewall lightning strike during 

the included 20-minute period (Fig. 8).  This lone strike was located in the northwestern 

region of the eyewall, which contained the highest flight level (~2.4 km) reflectivities at 

the time.  The convective asymmetry in the inner eyewall is clearly seen in Fig. 8, and 

when contrasting the two VRP images (Fig. 9). Figure 9b contains no reflectivity values 

> 25 dBZ within the decaying inner eyewall region (10 - 20 km).  Note that Figure 9b 

does not contain PIC data because there was not a corresponding TRMM pass at that 

time.  For both images the inner eyewall region lies in the region 10 – 25 km from the 

center of the image (Figs. 9a and b). Figure 9a contains higher inner eyewall reflectivities 

at all levels, with a maximum reflectivity of 35 dBZ well below the melting height.  Inner 

eyewall vertical velocities for figure 9a are double that of 9b, showing 7.5 m s-1 and 3.5 

m s-1 respectively. 
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The reflectivities in the eyewall at this time were weaker than the reflectivities 

recorded on the previous day (Compare Figs. 9 and 5).  Figure 9 shows maximum 

reflectivity values below the melting level, and reflectivity values falling off rapidly with 

height above the melting level.  This type of vertical reflectivity profile is consistent with 

weak convection that is associated with little or no cloud to ground lightning (Szoke et al. 

1986; Zipser and Lutz 1994).   

The 85 GHz image indicates the lack of convective development within the inner 

eyewall during this time (Fig. 10a).  No inner eyewall strikes were detected within 15 

minutes from the time of this TRMM TMI image.  Approximately 60% of the inner 

eyewall region contains brightness temperatures warmer than 200 K.   

PIC within the inner eyewall region has also decreased since the last TMI pass 

(compare Figs 10b and 9b).  The southern section of the inner eyewall contains PIC 

values < 0.2 g m-3, with the more convective northern section producing a maximum 

value of 0.8 g m-3.  The western half of the outer eyewall has contracted since the last 

TRMM pass, however it still contains no PIC values > 0.5 g m-3, and no lightning strikes 

detected during this time. 

 

4.1.3 Inner Eyewall Lightning Outbreak 

The third and final eyewall outbreak took place over 2 hours, occurring prior to the 

completion of the eyewall replacement cycle.  The outer eyewall can be seen in Figs. 11 

and 12. The outer eyewall seen in Fig. 11 displayed as an enclosed ring of high 

reflectivity ~ 50 km from the center of Hurricane Rita.  The outer eyewall is also clearly 

seen in Fig. 12a as the secondary area of high reflectivity (< 40 dBZ) 40 – 50 km from 
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storm center.  During this time the inner eyewall flash density was 72 strikes (100 km)-2, 

with a maximum hourly strike density of 36 strikes (100 km)-2.   

A large majority of detected strikes were within the northern region of the inner 

eyewall.  At this time, the convection within the north and western regions of the inner 

eyewall was the most intense measured by aircraft radar during the past two days.  Both 

radial passes contain inner eyewall reflectivity values exceeding 30 dBZ above the 

melting level (~ 5 km).  The northern eyewall pass shows 35 dBZ reflectivities above 9 

km, and a maximum reflectivity value > 40 dBZ around 2 km (Fig. 12a).  During the time 

of the outbreak, this convective area included approximately 30% of the entire inner 

eyewall, extending continuously around the eye from 195o to 015o azimuth.  This area of 

convection lasted for at least 5 hours, and remained present in the last aircraft eyewall 

penetration on the 22 September at 2202 UTC.  Although this outbreak was collocated 

with convection that was notably more intense than that sampled during the first 

outbreak, the one-hour peak strike rate produced by this outbreak was only 8% of that 

produced by the first outbreak. 

Later in the day, ~ 2 h after the images in Figs. 11d and 12a were taken, the WP-3D 

aircraft penetrated the core of Hurricane Rita it measured a secondary maxima in 

tangential wind speed associated with the developing outer eyewall (Fig. 13).   

 

4.2 Katrina 

Lightning data for Hurricane Katrina include all hours from 0000 UTC 27 August to 

0900 UTC 29 August.  Data collected prior to 0000 UTC 27 August were not included in 

this study, because of detection errors associated with the geometry of the LLDN over 
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Florida.  Like Rita, Hurricane Katrina also contained an unusually large amount of 

eyewall lightning.   The eyewall (0 – 50 km) of Hurricane Katrina produced at total of 

1684 strikes (100 km)-2 over the examined period, which equates to a strike density of 

709 strikes (100 km)-2 day-1.  The total strike density maximum was detected within the 

0-25 km radial bin, containing 2973 strikes (100 km)-2 during the 57-hour period (Fig.14).  

Similar to Rita, a minimum in strike density occurs within the inner rainband region, and 

the secondary maximum in the outer rainband region (Fig. 14).  

 Hurricane Katrina contained 2 major lightning outbreaks in the eyewall during the 

two-day period, along with a period of intermittent eyewall lightning (Fig. 15).  The first 

outbreak reached a maximum at 0300 UTC 27 August and, similar to Hurricane Rita, this 

outbreak occurred in the middle of a period of rapid intensification.  Also very similarly 

to Rita, the second eyewall outbreak occurred during the time when maximum intensity 

was reached, between 1300 UTC and 2200 UTC on 28 August.  The third and final 

period to be examined is a time of intermittent eyewall lightning outbreaks occurring 

from       1700 UTC 27 August to 0000 UTC 28 August.  

 

4.2.1 Rapid Intensification Eyewall Lightning Outbreak 

Hurricane Katrina’s first lightning outbreak displayed the greatest hourly strike 

density, containing 287 strikes (100 km)-2.  However, this outbreak was short-lived, 

lasting < 2 h.  The outbreak occurred ~ 3 hours prior to the end of the first of two periods 

of rapid intensification (RI). At this time Katrina was moving west-southwest at 3.5 m s-1, 

with maximum sustained surface winds of 45 m s-1 located in the southeastern quadrant 

(Knabb et al. 2005). 
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Unlike Hurricane Rita this eyewall lightning outbreak was asymmetric, with the 

majority of strikes detected in the southeastern quadrant of the eyewall (Fig. 16b).  Figure 

16a show less than 10 eyewall strikes contained within the TRMM image, catching the 

tail end of the short-lived outbreak.  However, the convective feature and asymmetry of 

the eyewall are still clearly visible in the 85-GHz image, with the area still containing 

brightness temperatures < 200 K.  PIC, in 8-10 km layer is also shows a maximum in the 

southeastern quadrant of the eyewall, with TRMM PIC values > 0.62 g m-3  

(Fig. 17).  

 

4.2.2 Inner Eyewall Lightning Outbreak 

The next time period examined is later in the day on the 27 August, during this time 

Hurricane Katrina was moving due west at 3 m s-1, with estimated maximum sustained 

surface winds of 51 m s-1.  Between 1635 UTC August 27 and 1705 UTC August 27 the 

WP-3D aircraft made a southeast to northwest pass through the inner core of the 

hurricane at ~ 3000m (Fig. 18).  The aircraft recorded a double maximum in tangential 

wind indicating that Hurricane Katrina was undergoing an eyewall replacement cycle.  

The flight-level peak wind was measured in the southeast pass of the newly forming 

eyewall at 49 m s-1 at 16:44:40.  Lightning within the eyewall during this time became 

intermittent; with hourly strike rates varying from 0 to 50 strikes (100 km)-2.  This period 

of intermittent eyewall lightning began at ~1700 UTC 27 August in the middle of what 

appears to have been an eyewall replacement cycle and lasted approximately 10 hours.  

 The remnants of the inner eyewall are seen as the area of highest reflectivity 

within the newly formed eyewall (Fig. 19a).  The image Fig. 19a was taken in the middle 
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of a 2-hour period (1730 - 1930 UTC 27 August), during which only two strikes were 

detected within the eyewall region.  However, between 1630 UTC and 1730 UTC on 27 

August 26 eyewall strikes were detected in the southeastern region encompassing the 

remnant eyewall rainband.  During the entire 10 hours of intermittent eyewall lightning  

> 80% of strikes detected were emanating from the region of the remnant inner eyewall 

band (Fig. 19c).  The near absence of eyewall lightning in Figs. 19a and b reflects the 

observation that these smaller eyewall outbreaks were intermittent and short-lived.   

All of the detected eyewall strikes for the period of 1930 UTC - 2030 UTC 27 

August occurred between 1930 UTC and 1940 UTC 27 August; therefore no lightning 

occurred during the time of Fig. 19b.  However, the GOES-12 IR image (Fig. 19c) shows 

that most of the eyewall strikes occurred in the southwest region of the eyewall. In fact, 

during the entire 10 hours of intermittent eyewall lightning over 80% of strikes detected 

were in the southeastern quadrant of the storm.  The absence of eyewall lightning in these 

images also suggests that these smaller eyewall outbreaks were intermittent and short-

lived. 

 At ~2100 UTC Hurricane Rita had a new slowly contracting eyewall and 

sustained winds of ~50 m s-1.  There were no eyewall strikes within a 40-minute period 

centered on the time of the images in Fig. 20.  The 85-GHz image shows temperatures < 

200 K were located throughout the eastern and northeastern region, with the coldest 

eyewall brightness temperatures in the eastern region of the eyewall (Fig. 20a).  PIC is 

also at a maximum in the eastern region of the eyewall (Fig. 20b).  However, the 

maximum values of PIC in the eyewall have dropped slightly, with only 3 TRMM values 

above 0.6 g m-3 (compare Figs. 20b and 17).  After this image was taken, 56 eyewall 
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strikes were detected from 2200 to 2230 UTC 27 August, with all but 2 of the strikes 

detected in the southeastern region of the eyewall.  

As Katrina begins to undergo the second of its two periods of rapid intensification, 

further organization of the eyewall is seen, displaying deeper, more symmetrical 

convection (Fig. 21 and 22).  Excluding a small section in the northern region of the 

eyewall, the entire eyewall contains PIC values > 0.45 g m-3 (Fig. 21b).  

The low brightness temperatures (<150 k) and high ice values (> 0.8 g m-3) in Fig. 21 

are upshear from the area of highest strike density on the northeast side of the eyewall. 

The pixel nearest to the group of lightning strikes shown at 25.2N 86.1W measured the 

highest value at this vertical level for either storm at 0.9 g m-3.   

A sharp gradient in brightness temperatures is located near the concentration of 

strikes, with a much weaker gradient upwind of the strikes.  Examination of a rapid scan 

loop of GOES-IR images overlaid with lightning data (not shown) during the time of this 

TRMM image (Fig. 21), shows a localized lightning outbreak moving cyclonically 

around the eastern region of the eyewall, presumably moving along with a convective 

tower.  It is suggested that ice particles ejected upward from the convective tower would 

trail upwind of the convection due to decreasing tangential wind speed with height.  

However, it is difficult to prove this hypothesis in the absence of continuous in-situ 

aircraft reflectivity and tangential wind data. 

   

4.2.3 Minimum Central Pressure Eyewall Lightning Outbreak 

Hurricane Katrina attained maximum intensity at 1800 UTC on 28 September, with 

estimated minimum central pressure of 902 mb and maximum sustained surface winds of 
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77 m s-1 (Knabb et al. 2005).  The third and final eyewall outbreak started at 1300 UTC 

on 28 September and continued for approximately 9 hours, reaching a maximum strike 

density of 128 strikes (100 km)-2 h-1 at 1800 UTC.  This outbreak was more symmetrical 

than the previous two, with strikes detected in every azimuth of the eyewall.  During the 

9-h period this outbreak produced an average strike density of 64 strikes (100 km)-2. 

Figure 22a shows that reflectivity values in the eyewall do not vary greatly 

throughout different sections of the eyewall.  However, slightly higher reflectivities were 

observed in southeastern and northern region of the eyewall, and these regions also 

contained higher strike densities.  This asymmetric pattern of active convection and the 

maxima in strike density both remained stationary relative to storm center for the 

remainder of the outbreak, with the strike density increasing in the south-southeastern 

region of the eyewall as the outbreak came to an end (Figs. 22b and c). 

VRP’s show that northeast and southwest regions of the eyewall contained maximum 

reflectivities below the melting level (~5 km), with 25 dBZ observed above 7 km  

(Figs. 23 a and b).  These two azimuths both contain relatively little lightning during the 

time of the pass, with lightning detected cyclonically downwind of each.  The airplane 

pass through the northwest region of the eyewall recorded reflectivities that decrease 

rapidly with height above the melting level, which is characteristic of weak convection 

(Fig. 23c).  This radial pass also contains the least amount of lightning when compared to 

the other passes through the eyewall. Downwind of the northwest eyewall pass, the 

western and southwestern regions of the eyewall contain the least lightning during the 

outbreak.   
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The deepest convection measured within the eyewall during this outbreak period was 

in the 180o azimuth (Fig. 23d).  This radial pass was flown approximately 5 hours after 

maximum intensity was reached, at the time when Katrina had begun to weaken.  

Reflectivities of 30-dBZ were measured above 8 km, with 20 dBZ extending to ~ 11 km.  

The flight level updraft for this part of the eyewall contained positive vertical velocities 

continuously for 15 km along the flight path.   This azimuth also contains the greatest 

strike density, consistent with the strike distribution seen in Fig. 22c. 

The peak values of PIC for both the 315˚ and 180˚ are both approximately 0.6 g m-3 

(Figs. 23c and d).  Therefore, in this case there is no obvious correspondence between 

PIC and strike density and higher reflectivity between these two azimuths, as the 180˚ 

section contained a much higher strike density throughout the outbreak.  It is suggested 

that this lack of correspondence is due to the vertical shear of the horizontal wind with 

respect to the area of active convection.  The wind advects the ice concentrations 

cyclonically around the storm, whereas the area of active convection remains stationary 

relative to storm center (Figs. 22b, c).  The tangential wind speed ~ 25 – 30 km from 

storm center, at the PIC level 12 (8 – 10 km) are ~ 55 m s-1 (Fig. 25).  Taking the value of 

the diameter of the eyewall at this time to be ~ 90 km, ice particles advected upward to a 

height of 8-10 km would be displaced 90˚ cyclonically around the eyewall from the 

stationary convective source in only 20 minutes.  The slightly higher values for the 

northwestern eyewall region could be because of its position downwind from more 

intense convection in the northern region of the eyewall.  

 On very small time and spatial scale there can be discrepancies found in the 

correlation between lightning strike density and PIC/Brightness temperatures.  For 
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example, it is not apparent from the lightning strike locations in Figs 24a, b that detected 

lightning strikes coincide well with low brightness temperatures and highest PIC values. 

This image only contains lightning from 2102 -2142 UTC, during which time there was a 

brief reduction in eyewall strike density just before a last local maximum was reached at 

2300 UTC (shown in Fig. 15).  However these two images do correlate well with the 

spatial distribution of strike density that was present for most of the 9-h outbreak (Figs. 

22 and 24c).  The lowest 85 GHz brightness temperatures were located in the 

southeastern and northern regions of the eyewall, with the western eyewall region void of 

temperatures < 225 K. The PIC values are also highest in the southeastern and northern 

regions of the eyewall, with both of these eyewall regions containing TRMM pixel values 

> 0.73 g m-3, while the western region contained very little lightning during the 9-h 

period, values < 0.4 g m-3. 
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 

Data collected by the National Long-Range Lightning Detection Network (LLDN), 

along with TRMM and reconnaissance aircraft data have been used to investigate the 

morphology of lightning outbreaks in the eyewalls of Hurricanes Rita (2005) and Katrina 

(2005).  The LLDN network is one of few observing systems, outside geostationary 

satellite-based instruments, that provide continuous real-time data throughout a synoptic-

scale coverage area over the open ocean.  Given the small sample size in the analysis of 

only two hurricanes presented, some of the conclusions of this research are necessarily of 

a qualitative rather than a quantitative nature.  Nevertheless, the correspondence of the 

lightning outbreaks with strong reflectivity and high precipitable ice concentrations 

inferred from aircraft and TRMM data, show that the LLDN data stream holds promise 

for future applications to assess hurricane convective structure and evolution. 

 

5.1 Comparison between Hurricane Rita and Katrina 

 Both Hurricanes Rita and Katrina produced their greatest hourly eyewall strike 

density during their respective periods of rapid intensification.  However, the morphology 

of these two outbreaks and their associated convective structures proved to be very 

different.  Hurricane Rita’s eyewall outbreak lasted ~ 3 hours, and was quasi-symmetric 

about the eye, with cloud to ground lightning strikes detected in every azimuthal section 

of the eyewall.  In contrast, Hurricane Katrina’s outbreak was asymmetric, with the all 

the eyewall strikes detected in the southeastern region of the eyewall.  The bulk of the 

eyewall strikes occurred during ~ 20 minutes from 0325 UTC to 0345 UTC 27 August, a 

period much shorter than that of Hurricane Rita’s outbreak.  Rita was a stronger storm 
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than Katrina at the time of its burst of eyewall lightning, and the symmetric character of 

the observed convection may have prevented wind shear from dissipating the electric 

field built-up by the convection, helping to prolong the outbreak.   

During the eyewall replacement cycles the eyewall region produced brief periods 

of cloud to ground lightning.  Hurricane Rita produced one outbreak, which lasted less 

than 2 hours, while Katrina produced multiple sub-hourly eyewall outbreaks.  The hourly 

strike density of these outbreaks for both storms were ~ 50 strikes (100 km)-2.  Aircraft 

radar data showed that the lightning outbreaks were produced by the decaying inner 

eyewall, and not by the developing outer eyewall in both storms.   

 One of the most intriguing results is that Hurricanes Rita and Katrina both 

contained a long-lived eyewall outbreak centered on the time when maximum intensity 

was reached.  The eyewall strike densities during these periods of maximum storm 

strength were comparable, with hourly strike densities between 140 – 175 strikes (100 

km)-2 for each storm.  Hurricane Katrina’s eyewall outbreak reached a maximum within 

the same hour as minimum central pressure was reached (as estimated by the NHC).  

While the eyewall of Hurricane Katrina was completely enclosed and circular, eyewall 

strike density values were not quite symmetric about the eye, showing higher values in 

the southeast region of the eyewall.  

 

5.2 Lightning, Radar Reflectivity, and TRMM 

Aircraft radar reflectivities showed the best spatial correlation with lightning strikes.  

When areas of high strike density within the eyewall were detected they were invariably 

co-located with areas of high reflectivity (i.e. Figs. 4, 8, 11, and 20).  The strength and 



 

 38 

vertical development of convection was also correlated with high strike density.  Areas of 

eyewall convection that contained 30 dBZ reflectivities at higher altitudes (i.e. > 7 km), 

along with reflectivity values that decreased slowly with height above the freezing level 

contained greater lightning strike densities. 

 The TRMM 85 GHz and PIC product both displayed spatial and temporal 

correspondence with the eyewall lightning.  Low 85 GHz brightness temperatures and 

high PIC were not always indicative of the presence of eyewall lightning; however, when 

significant amounts of eyewall lightning were detected, low brightness temperatures and 

high PIC were always recorded within close proximity of the strikes.  Moreover, the 

differences in location were consistent with advective processes.  Two PIC eyewall 

averages were taken for Hurricane Rita at 3 different levels, one average for a time when 

there was high eyewall strike density, and the other when there were no detected eyewall 

strikes (Fig. 26).  The period when the eyewall contained lightning strikes, higher PIC 

values were recorded at all levels when compared to the time of no lightning.  The 

percent difference was greatest at level 12 (8-10 km), the level chosen for presentation 

throughout this study. 

 Fitting with the high intensity of these two hurricanes, the 85 GHz brightness 

temperatures within their eyewalls were also historically low when compared to the 

previous hurricane study by Cecil et al. (2002a,b).  Cecil et al. (2002) found that less than 

5% (10%) of eyewall pixels sampled measured values < 150 K (175 K).  The eyewalls of 

Hurricane Rita and Katrina contained more than 20% (75%) of their eyewall pixels < 

150K (175 K). 
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Maximum vertical velocities observed in flight-level data in the eyewalls of Rita and 

Katrina varied from 3 m s-1 to 16.5 m s-1.  The single highest vertical velocity (16.5 m s-1) 

was measured during the time of highest eyewall strike density, however a more general 

correlation was not found.  It is suggested that the lack of correlation is the result of 

limited sampling in rapidly evolving convection and the healthy tendency for 

reconnaissance pilots to avoid convective cores.   
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CHAPTER 6.  DISCUSSION 

6.1 Impact of a Coastal Proximity Limitation 

 Using the NLDN data, M99 was forced to limit the analysis of lightning data to 

times when TCs centers were within 400 km of at least two direction finding (DF) 

sensors.  However, the use of the LLDN in this study allowed continuous monitoring of 

Hurricanes Rita and Katrina, and did not require the implementation of the coastal 

proximity limitation (CPL) used in M99.  It is of interest to see if the results presented 

here would differ if the same CPL restriction was applied (Table 1). 

In contrast to the results presented in M99, eyewall lightning represented a 

dominant contribution of the lightning distribution of these two hurricanes.  In fact 

eyewall cloud to ground strikes were detected more often then not during these two 

Hurricanes.  When the CPL is used we see that the percent of hourly observations 

decreases dramatically for Rita, while it remains nearly unchanged for Katrina.  

 M99 concluded that intense hurricanes, those of the intensity of Rita and Katrina, 

would likely contain less eyewall lightning than hurricanes of weaker intensity.  

Hurricane Andrew (1994), a storm of similar intensity to Hurricanes Rita and Katrina was 

sampled by M99, and contained an eyewall flash density of 140 strikes (100 km)-2 day-1.  

If M99 CPL had been used in the study of Hurricane Rita, a very similar 145 strikes (100 

km)-2 day-1 would have been recorded.  However, the actual lightning data shows that the 

eyewall strike density for Hurricane Rita is 986 strikes (100 km)-2 day-1, which is nearly 

an eight-fold difference.  Hurricane Katrina also contains much more eyewall lightning 

than any of the hurricanes studied in M99; however unlike Hurricane Rita, when the CPL 

is implemented for Hurricane Katrina the eyewall strike density increases.  It is possible 
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for Hurricane Katrina’s strike density to increase with the implementation of the CPL 

because the eyewall strikes category is not the total number of eyewall lightning strikes 

recorded during the period; rather it is the total number of eyewall lightning strikes 

recorded during the period which is then normalized by one day.  Therefore, while the 

total number of eyewall strikes decreased with the implementation of the CPL, the 

average number of eyewall strikes per day actually increased; representing that a 

Hurricane Katrina’s eyewall was most lightning active while the storm was within  

400 km from the coastline.  

The length of lightning outbreaks also change significantly with the 

implementation of the CPL. The longest continuous eyewall lightning episode (defined as 

one or more detected lightning strikes in each hourly period) documented by M99 was 5-

hours in duration.  In contrast, the longest eyewall lightning episodes for Hurricane Rita 

and Hurricane Katrina lasted for 31 and 22 hours, respectively.  Implementing the CPL 

reduces the longest continuous eyewall outbreak down to 12 hours for Katrina, and Rita’s 

longest is reduced down to only 4 hours.  

 The eyewall lightning produced by Hurricane Rita was more impressive than that 

of Hurricane Katrina, that is to say that Hurricane Rita had greater eyewall strike 

densities, and the highest single hour strike density (compare Figs. 3 and 14).  The 

eyewall of Hurricane Rita also produced the longest lightning episode, with eyewall 

lightning lasting continuously for more than 24 h.  However, if CPL is implemented, the 

conclusions would have been reversed, and eyewall lightning in Hurricane Katrina would 

have appeared to be the more significant of the two.  In summary, the differences in the 

results produced by artificially restricting the data coverage to that of the NLDN 
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highlight the value of the LLDN data stream for remotely observing lightning in tropical 

storms. 

 

6.2 Implications of Lightning Morphology 

Hurricanes Rita and Katrina both contained nearly symmetric eyewall lightning 

outbreaks during the period when maximum intensity was reached.  During the time of 

maximum intensity the eye diameter for both Hurricane Rita and Katrina had reached a 

minimum, and radar and TRMM data showed evidence of enhanced convection.  It is 

likely that vertical motion associated with the convection was also enhanced, thus 

promoting elevated rates of charge separation within the eyewall.  The resulting strong 

symmetric electric field would not be prone to dissipation by wind shear effects and 

mixing prevalent in mature hurricanes (Black and Hallett 1994).  The symmetric 

character of the charge separation process made it possible for the eyewall to sustain 

strong electric fields for extended periods of time and produce the recorded high strike 

densities. 

In contrast, lower than expected strike densities can accompany very deep eyewall 

convection, if that convection is asymmetric about the eyewall, as observed in Hurricane 

Rita (i.e., Figs. 11 and 12).  The large vertical shear of the horizontal winds within the 

eyewall of mature hurricanes can cause locally enhanced charge separation created by 

intense asymmetric convection to be mixed out.  This differential horizontal mixing 

would cause a rapid reduction in electric field strength and diminish cloud to ground 

strike density. 
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6.3 Applications of LLDN Lightning Data to Hurricanes 

The possibility of using ground-based lightning detection to forecast intensity and 

structure change in hurricanes has been proposed in previous studies (Molinari et al. 

1994, 1999; Samsury and Orville 1994).  The results of this thesis provide additional 

evidence that changes in eyewall lightning morphology reflect changes in convective 

structure within the eyewall, and this evolution can be continuously monitored with the 

LLDN.   

The strongest eyewall lightning outbreaks in both storms analyzed here occurred 

after the intensification period began, and thus provided no warning that the storm would 

intensify.  However, outbreaks, which were centered on the time of maximum intensity, 

began ~ 4 – 5 h before maximum intensity was reached, a phenomenon also documented 

in M99.  The specific dynamics associated with these eyewall outbreaks are still not 

understood, but their occurrence may provide forecasters with additional evidence that 

the storm is nearing maximum intensity. 

Past investigators have capitalized on the correlation between convective rainfall 

and lightning rates to improve numerical forecasts of storms by assimilating latent 

heating rates derived from lightning data (Alexander et al. 1999; Chang et al. 2001; 

Papadopoulos et al. 2004; and Pessi et al. 2004).  Similar correlations have been found 

between lightning rates and precipitable ice, which is less sensitive to the microphysical 

character of the air mass.  Also, this thesis has added further support to the mean location 

accuracy of 5 km, which was concluded by previous LLDN location accuracy studies.  

Therefore, there is an opportunity to assimilate the LLDN data stream over data sparse 

regions to provide an important correction in the core of modeled tropical storms. 
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An example of how one could use LLDN lightning data to quantitatively examine 

the evolution of a hurricane’s convective structure is illustrated in Fig. 27.  By examining 

a time series of the radial distribution of lightning strike density, it is possible to show the 

eyewall contraction that took place as Hurricane Rita underwent rapid intensification.  

From 0300 UTC 21 September to 1200 UTC 21 September it is shown that most eyewall 

lightning took place in the 25 – 50 km radial bin.  At ~ 1300 UTC the eyewall maximum 

began to switch to the 0 – 25 km eyewall bin, and by 1500 UTC the inner eyewall 

contained a lightning strike density twice that of the 25 – 50 km bin. 

In summary, although only two storms are documented in this study, the results 

show promise for the use of continuous LLDN data to remotely infer the temporal 

evolution of hurricane convective structure.  It is the hope of the author that this thesis 

will spur interest in the application of LLDN data to the challenges presented by tropical 

cyclones. 
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Tables 

 Molinari et al. (1999) Rita Katrina Rita (CPL) Katrina (CPL) 

Percent of Eyewall 
Lightning 

7% 70%(52%) 82%(60%) 45%(8%) 81%(10%) 

Eyewall strikes  
(10-4 km-2 day-1) 

140 (Andrew 1994) 986(1895) 709(1252) 145(15) 849(2,153) 

Longest Duration of 
Continuous Eyewall 
Lightning 

5 hours 31Hours 
(25 Hours) 

22 Hours 
(14 Hours) 

4 Hours (1Hour) 12 Hours 
(12 Hours) 

 

Table 1.  Comparing the results found by Molinari et al. (1999), with the results found in 

this study.  All of Molinari et al. (1999) eyewall results were calculated using the radial 

bin 0 – 40 km from storm center.  Percent of eyewall lightning is the percent of the total 

hourly observations which contained at least one single eyewall strike.  Longest Duration 

of Continuous Eyewall Lightning is longest continuous period in which at least one 

eyewall strike was detected.  Eyewall flashes for Molinari et al. (1999) is for the most 

intense storm sampled out of the nine studied.  Percent of eyewall lightning and Longest 

Duration of Continuous Eyewall Lightning for Molinari et al. (1999) are both taken from 

the maximum value recorded of all nine storms examined.  For Hurricanes Rita and 

Katrina the eyewall is defined as 0 – 50 km and (0 – 25 km).  The middle column 

represents totals for the entire time period examined within this study, while the right-

hand column only included data while the hurricanes were within 400 km from the 

coastline. 

 



 

 46 

Figures 

 

 

Fig. 1 Model derived detection efficiency contours (%) for the Gulf of Mexico region  

a) daytime b) nighttime (after Cummins, 2006).  Hourly storm tracks for both 

Hurricane Rita and Katrina are displayed using hourly interpolations of best-

track 6-h data obtained from National Hurricane Center.  Strom track during 

times of local day (night) are represented by the black (grey) lines. 
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Fig. 2 Radial distribution of lightning strike density for Hurricane Rita between 20 

September 1800 UTC and 23 September 0900 UTC.  Strike totals normalized 

by the total number of strikes (100 km)-2. 
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Fig. 3 Time series containing the number of cloud-to-ground strikes within 50 km of 

the center of Hurricane Rita (blue line), and hourly track of minimum central 

pressure (red line).  Pressure values are linear interpolations of best-track 6 h 

data obtained from National Hurricane Center.  Times when TRMM data (blue 

line) and aircraft data (green shading) were available are also indicated. 
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Fig. 4 NOAA P-3 lower fuselage radar reflectivity taken on 21 September while 

aircraft was located within the center of Hurricane Rita, at an altitude of 2,700 

m. The nominal effective range of the LF radar is shown using the 70 km range 

ring (white circle).  Superimposed onto each image is 20 minutes of lightning 

data (black circles) centered on the time of the image. a) Reflectivity at 1523 

UTC, with strike locations from 1513 UTC to 1533 UTC. b) Reflectivity at 

1602 UTC, with strike locations from 1552 UTC to 1612 UTC.  
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Fig. 5 Vertical reflectivity profile (VRP) composites created by the NOAA P-3 aircraft 

tail radar during radial eyewall cross-sections flown between  

1506 UTC and 1617 UTC 21 September, aircraft altitude of 2,600 – 2,800 m. 

Overlaid onto each cross-section is flight level vertical velocity measured along 

the corresponding flight path (heavy solid line), along with radial lightning 

strike locations (red bars) during the time of the radial flight. a) 000˚, with radial 

distribution of level 12 (8 – 10 km) PIC values (dotted line) obtained from the 

21 September at1540 UTC TRMM data.  b) 090˚, c) 170˚ and d) 270˚. 



 

 51 

 

Fig. 6 TRMM data collected as the satellite passed over the center of Hurricane Rita at 

1540 UTC, lightning strike locations (circles) from 21 September 1530 UTC to 

1550 UTC.  a) 85-GHz TMI image with lightning (red circles).  

b) Level 12 (8 -10 km) PIC image with lightning (black circles). 

 

Fig. 7 TRMM data collected as the satellite passed over the center of Hurricane Rita at 

0810 UTC, with lightning strike locations (circles) from 22 September 0750 

UTC to 0830 UTC.  a) 85-GHz TMI image with lightning (red circles).  

b) Level 12 (8 -10 km) PIC image with lightning (black circles).
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Fig. 8  As in Figure 4, but at an altitude of 2,700 m with a radar reflectivity for 22 

September 1452 UTC. Superimposed the image is 20 minutes of lightning data 

(black circles) centered on the time of the image. 
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Fig. 9 As in Figure 5, but with data collected between 1435 UTC – 1638 UTC, 22 

September.  Aircraft altitude varied 2,600 – 2,800 m during each pass. 

Image a) contains level 12 (8 – 10 km) PIC values (thin line) obtained from the 

1442 UTC TRMM pass.  a) 225˚, b) 135˚. 
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Fig. 10 As in Figure 6, but with TRMM data for 1442 UTC 22 September.  a) 85-GHz 

TMI, b) Level 12 (8 -10 km) PIC.  Note: no lightning strikes were detected 

within 30 minutes of the time of the image. 
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Fig. 11 As in figure 4, but reflectivity for a) 1720 UTC, altitude of 2,100 m b) 1751 

UTC, altitude of 2,300 m c) 1806 UTC, altitude of 1,600 m and d) 

912UTC,altitude of 2,300 m. 
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Fig. 12 VRPs constructed from aircraft data collected from Hurricane Rita between 

1702 UTC and 1818 UTC 22 September.  Each image contains radial lightning 

strike locations (red bars) during the time of the corresponding radial flight leg.  

a) 000˚, at an altitude 2,000 – 2,200 m and b) 270˚, at an altitude 1,600 – 1,800 

m.  
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Fig. 13  Aircraft Derived Tangential winds as measured at flight level( 2,800 – 3,000 m).  

Measurements were taken for a 30-minute period beginning at 2033 UTC 

September 22.  The flight entered the northeast core of Hurricane Rita at ~ 30˚ 

and exited the eye eastbound at ~ 90˚. 
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Fig. 14 Radial distribution of the total number of detected lightning strikes for 

Hurricane Katrina between 27 August 1800 UTC and 29 August 0900 UTC.  

Strike totals normalized by the total number of strikes (100 km)-2. 
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Fig. 15 Time series containing the number of cloud-to-ground flashes within 50 km of 

the center of Hurricane Katrina (blue line), and hourly track of minimum central 

pressure (red line).  Pressure values are linear interpolations of best-track 6 h 

data obtained from National Hurricane Center. Times when TRMM data (blue 

line) and aircraft data (green shading) were available are also indicated. 
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Fig. 16 (a) 85-GHz TRMM image taken of Hurricane Katrina at 0420 UTC 27 August, 

overlaid with lightning strike locations (black circles) from 0400 UTC to 0440 

UTC. (b) GOES-12 infrared satellite image taken at 0345 UTC 27 August, 

overlaid with lightning strike locations (red dots) from 0300 UTC to 0400 UTC.  
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Fig.17 TRMM layer 12 (8 – 10 km) PIC image of Hurricane Katrina for 0420 UTC 27 

August, overlaid with lightning data (black circles) from 0400 UTC – 0440 

UTC. 
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Fig. 18 Aircraft measured tangential winds in the Hurricane Katrina for a 30 minute 

period beginning at 1635 UTC 27 August.  The inner core pass entered the eye 

from the southeast at ~ 135˚ and exited to the northwest at ~ 315˚ direction, with 

flight level 2,900 - 3000 m. 
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Fig. 19 As in Fig. 4 but with radar reflectivity for Hurricane Katrina for 27 August  

a) 1759 UTC b) 2007 UTC.  (c) GOES-12 infrared satellite image of Hurricane 

Katrina taken at 1945 UTC 27 August, overlaid onto the image are lightning 

strike locations (red dots) from 1900 UTC to 2000UTC.  The black circle is a  

70 km range ring from storm center (black “x”). 

 

 

Fig. 20 As in Fig. 6, but for Hurricane Katrina 2053 UTC 27 August, with lightning 

strike locations (circles) from 2033 UTC to 2113 UTC. a) 85-GHz TMI image 

with lightning strike locations (red circles).  b) Layer 12 (8 – 10 km) PIC values 

with lightning strike locations (black circles). 
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Fig. 21 As in Fig. 6, but for Hurricane Katrina at 0324 UTC 28 August, with lightning 

strike locations (circles) from 0302 UTC – 0344 UTC. a) 85-GHz TMI image 

with lightning strike locations (red circles).  b) Layer 12 (8 – 10 km) PIC values 

with lightning strike locations (black circles). 
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Fig. 22 NOAA P-3 lower fuselage radar reflectivity taken of Hurricane Katrina on 28 

August while the aircraft was near storm center, at an altitude of ~ 2,300 m. The 

nominal effective range of the LF radar is shown using the 70 km range ring 

(white circle).  Overlaid onto these images are lightning strike locations (black 

circles) for a 20-m time period centered on the time of the image.  a) 1752 UTC, 

b) 2036 UTC, and c) 2324UTC. 
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Fig. 23 As in Fig. 5, but for hurricane Katrina from 1725 UTC – 2400 UTC 28 August. 

Radial passes were made at an altitude 2,400 -2,600 m.  c) and d) contain the 

radial distribution of precipitation ice concentration values (thin solid line) 

obtained from the 28 August 2122 UTC TRMM image. a) 045˚, b) 225˚, c) 315˚ 

and d) 180˚. 
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Fig. 24 (a) and (b), As in Fig. 6 but for Hurricane Katrina at 2122 UTC 28 August.  

Each image is overlaid with lightning strike locations from 2102 UTC – 2142 

UTC.  a) 85-GHz TMI image with lightning strike locations (red circles).  b) 

Layer 12 (8 – 10 km) precipitation ice content image with lightning strike 

locations (black circles).  c) GOES-12 Infrared satellite image taken of 

Hurricane Katrina at 2045 UTC 28 August, overlaid onto the image are 

lightning strike locations (red dots) from 2000 UTC – 2100 UTC. 
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Fig. 25 A vertical profile of the tangential wind of a radial pass through the northwest 

eyewall at ~ 315˚.  The image is a composite made with data from the aircraft 

tail radar for ~ 30 minute period beginning at 1900 UTC 28 August.  
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Fig. 26 Precipitation ice content pixel values for two separate TRMM passes during 

hurricane Rita.  Average pixel values were calculated for 1˚ x 1˚ latitude 

longitude box centered on the eye, for 3 different TRMM determined levels for 

both days.  All TRMM pixels within the eye were omitted from the average. 
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Fig. 27 Volume plot of the radial distribution of lightning strike density in Hurricane 

Rita from 0300 UTC – 2100 UTC 21 September. 



 

 71 

References  

Alexander, G. David, Weinman, James A., Karyampudi, V. Mohan, Olson, William S., 

Lee, A. C. L. 1999: The Effect of Assimilating Rain Rates Derived from Satellites 

and Lightning on Forecasts of the 1993 Superstorm. Monthly Weather Review: Vol. 

127, No. 7, pp. 1433-1457.  

Beard, K.V.K., and H. T. Ochs., 1986: Charging mechanisms in clouds and 

thunderstorms, in the earth's electrical environment, pp. 114-130, National 

Academy Press, Washington D.C. 

Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of 

tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 

53, 1887-1909. 

Black, R. A., 1990: Radar reflectivity-ice water content relationships for use above the 

melting level in hurricanes. J. Appl. Meteor., 29, 955 – 961. 

_____, H. B. Bluestein, M. L. Black, and J. Hallett 1994:  Unusually strong vertical 

motions in a Caribbean hurricane. Mon. Wea. Rev., 122, 2722-2739. 

_____, and J. Hallett, 1986:  Observations of the distribution of ice in hurricanes. J. 

Atmos. Sci., 43, 802-822. 

____, and ___, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 2004-2028. 

Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear 

for six hurricanes over the atlantic ocean. Weather and Forecasting., 15, 192 – 207. 

Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and 

satellite-based indicators of inner core convection: 85-GHz ice-scattering signature 

and lightning. Mon. Wea. Rev., 127, 103-123. 



 

 72 

____, ___, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning 

characteristics of hurricane eyewalls and rainbands. Part I: quantitative description. 

Mon. Wea. Rev., 130, 771-784. 

___, ___, and ___, 2002: Reflectivity, ice scattering, and lightning characteristics of 

hurricane eyewalls and rainbands. Part II: intercomparison of observations. Mon. 

Wea. Rev., 130, 785-801. 

Chang, Dong-Eon, Weinman, J. A., Morales, C. A., Olson, William S. 2001: The Effect 

of Spaceborne Microwave and Ground-Based Continuous Lightning Measurements 

on Forecasts of the 1998 Groundhog Day Storm. Monthly Weather Review: Vol. 

129, No. 8, pp. 1809-1833.  

Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical 

wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 

366-376. 

___, Molinari, J., M. L. Black, 2005: The Structure and Evolution of Hurricane Elena 

(1985). Part I: symmetric intensification. Mon. Wea. Rev., 133, 2905-2921. 

Cramer, J. A., and K. L. Cummins, 1999: Long-Range and Trans-Oceanic Lightning 

Detection, Proceedings of the 11th International Conference on Atmospheric 

Electricity, Guntersville, AL, June 7-11. 

Cummins, K. L., 2006: Vaisala long-range lightning network: Progress report. Preprints, 

19th international lightning detection conference, Tucson, AZ, April 24-25. 

___, M. J. Murphy, E. A. Bardo, W. L. Hiscoz, R. D. Pyle, and A. E. Pifer, 1998: A 

combined TOA/MDF technology upgrade of the U.S. National Lightning Detection 

Network. J. Geophys. Res., 103, 9035-9044. 



 

 73 

___, R. B. Pyle, and G. Fournier, 1999: An Integrated North American Lightning 

Detection Network, Proceedings of the 11th International Conference on 

Atmospheric Electricity, Guntersville, AL, June 7-11. 

Demetriades, N. W., and R. L. Holle, 2005: Long-range lightning applications for 

hurricane intensity.  Preprints, Conf. Meteorological Applications of Lightning 

Data, San Diego, CA, Amer. Meteor. Soc., P2.8. 

___, and R. L. Holle, 2006: Long range lightning nowcasting applications for tropical 

cyclones. Preprints, 2nd Conf. Meteorological Applications of Lightning Data, 

Atlanta, GA, Amer. Meteor. Soc., P2.15. 

Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: steady-

state maintenance. J. Atmos. Sci., 43, 585 – 605. 

Fiorino, S. T., and E. A. Smith., 2006: Critical assessment of microphysical assumptions 

within TRMM radiometer rain profile algorithm using satellite, aircraft, and surface 

datasets from KWAJEX. J. Appl. Meteor., 45, 754 – 786. 

Gamanche, J. F., R. A. Houze., and F. D. Marks Jr., 1993: Dual-aircraft investigation of 

the inner core of Hurricane Norbert. J. Atmos. Sci., 50, 3221 – 3243. 

Gray, W. M., 1965: Calculations of cumulus vertical draft velocities in hurricanes from 

aircraft observations. J. Appl. Meteor., 4, 463-474. 

Jorgensen, D. P., 1984: Meso-scale and convective scale characteristics of mature 

hurricanes. Part I: general observations by research aircraft. J. Atmos. Sci., 41, 

1268-1285. 

___, and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. 

Atmos. Sci., 46, 621-640. 



 

 74 

___, E. J. Zipser,, M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. 

Sci., 42, 839-856. 

Lee, T. F., F. J. Turk, J. Hawkins, and K. Richardson, 2002: Interpretation of TRMM 

TMI images of tropical cyclones. Earth Interactions., 6, 

Lyons, W. A., and C. S. Keen, 1994: Observations of lightning in convective supercells 

within tropical storms and hurricanes. Mon. Wea. Rev., 122, 1897-1916. 

Knabb, R. D., D. P. Brown., and J. R. Rhome., 2006: Hurricane Rita. Nat. Hurricane. 

Center., 1 – 33.  

____, J. R. Rhome., D. P. Brown, 2005: Hurricane Katrina. Nat. Hurricane. Center., 1- 

42. 

Marks F. D., Jr, 1985: Evolution of the Structure of Precipitation in Hurricane Allen 

(1980). Mon. Wea. Rev.,113, 909–930. 

___, and R. A. Houze Jr, 1987: Inner core structure of Hurricane Alicia from airborne 

Doppler radar observations. J. Atmos. Sci., 44, 1296–1317.  

Marshall, T. C., W. D. Rust, and M. Stolzenburg, 1995: Electrical structure and updraft 

speeds in thunderstorms over the southern Great Plains. J. Geophys. Res., 100, 

1001-1016. 

Mohr, K. I., Famiglietti, J. S., and E. J. Zipser, 1999: The contribution to tropical rainfall 

with respect to convective system type, size, and intensity estimated from the 85-

GHz ice-scattering signature.  J. App Meteor., 38, pp. 596–606. 

Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, Saljoughy, 1994:  Cloud-to 

ground lightning in hurricane Andrew. J. Geophys. Res., 99, 16 665-16 676. 



 

 75 

___, P. Moore, V. Idone, 1999: Convective structure of hurricanes as revealed by 

lightning locations. Mon. Wea. Rev., 127, 520-534. 

Nesbitt, S. W., E. J. Zipser, D. J. Cecil, 2000: A census of precipitation features in the 

tropics using TRMM: radar, ice scattering, and lightning observations. J. Climate., 

13, 4087-4106. 

Orville, R. E., and B. Vonnegut, 1974: Lightning detection from satellites. Electrical 

Processes in Atmospheres, H. Dolezalek and R. Reiter, Eds., Steinkopff Verlag, 

Darmstadt, 750 – 753. 

____,R. W. Henderson, L. F. Bosart, 1983: An east coast lightning detection  

network. Bull. Amer. Meteor. Soc., 64, 1029 – 1037. 

____, G. R. Huffines, W. R. Burrows, R. L. Holle, K. L. Cummins, 2002: The North 

American Lightning Detection Network (NALDN)—first results: 1998–2000. Mon. 

Wea. Rev., 130, 2098-2109. 

Papadopoulos, A., T. Chronis and E. N. Anagnostou, 2004: Improving Convective 

Precipitation Forecasting Through Assimilation of Regional Lightning 

Measurements in a Mesoscale Model, Monthly Weather Review (in review). 

Pessi, A.T., S. Businger, T. Cherubini, K. L. Cummins, and T. Turner, 2005: Toward the 

assimilation of lightning data over the Pacific Ocean into a mesoscale NWP model. 

85th Annual AMS Meeting held in San Diego, CA. 

Petersen, W. A., and S. A. Rutledge., 2001: Regional variability in tropical convection: 

observations from TRMM. J. Climate., 14, 3566–3586 

Pruppacher, H.R., and J. D. Klett., 2000: Microphysics of clouds and precipitation, pp. 

792-852, Kluwer Academic Publishers, Norwell, Mass. 



 

 76 

Samsury, C. E., and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: a 

study of hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 1887-

1896. 

Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The influence of liquid water 

on thunderstorm charging. J. Geophys. Res., 96, 11 007- 11 017. 

____, 1995: Thunderstorm electrification, in Handbook of Atmospheric Electrodynamics, 

Volume I, pp. 61-92, CRC Press, Inc., Boca Raton. 

Sherwood, S. C., 2002: Aerosol and ice particle size in tropical cumulonimbus. J. 

Climate., 15, 1051 – 1063. 

Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in 

mesoscale systems in GATE. Par I: Vertical profile statistics and comparison with 

hurricanes. J. Atmos. Sci, 43, 182-197. 

Takahashi, T., 1978: Riming electrification as a charge generation mechanisms in 

thunderstorms. J. Atmos. Sci., 35, 1536-1548.  

Uman, M. A., 1987: The Lightning Discharge. International Geo- physics Series, Vol. 39, 

Academic Press, 377 pp 

Williams, E. R., S. A. Rutledge, S. G. Goetis, N. Renno, E. Rassmussen, T. Rickenbach, 

1992: A radar and electrical study of tropical “Hot Towers”. J. Atmos. Sci., 49, 

1386-1395. 

Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical 

cyclones. J. Atmos. Sci., 47, 242-264. 



 

 77 

Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical 

evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, 

downdrafts, and precipitation. Mon. Wea. Rev., 123, 1921-1940. 

Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without 

lightning. Mon. Wea. Rev., 122, 1837-1851. 

___, and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: 

Synthesis and model core structure. J. Atmos. Sci., 37, 2458-2469. 

___, K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: a 

strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 

1751-1759. 

Ziv, A., and Z. Levin, 1974: Thundercloud electrification: cloud growth and electrical 

development. J. Amos. Sci., 31, 1652-1661. 

 

 

 

 

 

 


