Review of sulfur dioxide to sulfate aerosol chemistry at Kīlauea Volcano, Hawai‘i

Andre K. Pattantyusa,b,*, Steven Busingera, Steven G. Howella

a University of Hawai‘i at Mānoa, Honolulu, HI, USA
b Army Research Laboratory, White Sands Missile Range, NM, USA

\textbf{A B S T R A C T}

Sulfur dioxide emissions from the Kīlauea Volcano on the island of Hawai‘i and the subsequent formation of sulfate aerosols have caused a public health hazard across the state of Hawai‘i since the volcano began erupting continuously in 1983. The University of Hawai‘i at Mānoa began to forecast the trajectory and dispersion of emissions in 2010 to help mitigate the hazards to public health. In this paper a comprehensive review of potential conversion reactions is presented with the goal of more accurately representing the sulfur dioxide chemistry in the dispersion model.

Atmospheric sulfur dioxide chemistry and major process responsible for sulfate formation are well documented in urban and industrial settings. The atmosphere in the vicinity of Kīlauea Volcano on the island of Hawai‘i differs from that in previous investigations by virtue of being far removed from both urban and industrial settings in a remote, tropical marine atmosphere. Additionally, the combination of the high rate of sulfur dioxide emissions and trace gases and metals from Kīlauea Volcano creates a unique circumstance that requires a new look at potential conversion pathways to determine the dominant reactions.

The theoretical analysis suggests that the dominant reaction in clear air will be between sulfur dioxide and the hydroxyl radical (0.01–5% h−1) and the dominant reaction in cloudy air involves hydrogen peroxide (3–50% s−1). Moreover, given the high SO\textsubscript{2} emissions from the Halema‘uma‘u Crater vent, the oxidation of sulfur dioxide by these reactants is limited by their rate of production.

1. Introduction

Since 1983, Kīlauea volcano has been continuously erupting from the Pu‘u ‘ō‘o vent, or East Rift vent, emitting large amounts of sulfur dioxide (SO\textsubscript{2}). The rate of SO\textsubscript{2} emissions has ranged from less than 50 tons per day (t d−1) to more than 10,000 t d−1 (Elias and Sutton, 2007). In 2008, a second vent opened up in the Halema‘uma‘u Crater, or summit vent, with a typical emission rate of \(\approx 1000–3000\) t d−1 estimated from ground-based remote sensing observations (Elias and Sutton, 2012). This leads to annual SO\textsubscript{2} emissions between 0.3 and 1.1 million tons. In comparison, the 50 dirtiest power plants in the United States emit between 0.04 and 0.2 million tons of SO\textsubscript{2} annually (Environmental Integrity Project, 2007).

Given the persistent northeast trade winds in tropical North Pacific, emissions from Kīlauea cause frequent episodes of poor air quality in the form of volcanic smog, or vog, over downwind and leeward communities on the island of Hawai‘i. Vog is composed of sulfur dioxide gas, the primary pollutant emitted by the volcano, and sulfate aerosols, a secondary pollutant that forms from the oxidation of sulfur dioxide. Between 2007 and 2010, it is estimated that Kīlauea volcano was responsible for 6% of global sulfate load (Elias and Sutton, 2012). Due to their size, sulfate aerosols are considered a dominant component of fine particulate matter smaller than 2.5 micrometers (PM\textsubscript{2.5}) and can impact human health and reduce visibility. Communities in close proximity to the volcano, such as the village of Volcano, are especially susceptible to episodes of poor air quality from SO\textsubscript{2} pollution (Fig. 1), some of which have reached levels high enough that evacuations were ordered.

While the lifetime of sulfur dioxide in the atmosphere is generally found to be on the order of 1–3 days (Rotstayn and Lohmann, 2002), the lifetime of sulfates can be much longer. The lifetime of SO\textsubscript{2} is limited by ubiquitous photochemical sinks whereas the lifetime of sulfate is limited by a relatively slow rate of dry deposition and the erratic nature of wet deposition. Due to longer residence times, sulfate impacts can become pervasive. Hand et al. (2012) showed that long range transport of sulfates from Asia impact air quality in the Pacific Northwest. It has also been demonstrated that Hawai‘i is affected by Asian aerosols from March to May that includes measurable sulfate (Shaw, 1980; Perry et al., 1999; Holben et al., 2001).

* Corresponding author. University of Hawai‘i at Mānoa, Honolulu, HI, USA.

\textit{E-mail addresses:} andre.k.pattantyus.ctr@mail.mil, akp4221@hawaii.edu (A.K. Pattantyus).

https://doi.org/10.1016/j.atmosenv.2018.04.055

Received 11 July 2017; Received in revised form 24 April 2018; Accepted 29 April 2018

Available online 02 May 2018

1352-2310/ © 2018 Elsevier Ltd. All rights reserved.
Fig. 1. Days per year when EPA 1-hr SO₂ concentration exceeded the National Ambient Air Quality Standard of 75 ppb. HOVE stands for Hawaiian Ocean View Estates and HAVO OB stands for Hawai‘i Volcanoes Observatory.

Given the variety of negative impacts from sulfate aerosols (Businger et al., 2015), it is important to determine the rate of sulfate formation from sulfur dioxide emitted naturally and by industry. There are a number of active volcanoes worldwide that degas sulfur dioxide (http://so2.gsfc.nasa.gov/), leading to sulfates that regularly impact the air quality of a number of communities including those in Iceland, Nicaragua, Italy, and the Caribbean. Coal-burning power plants and industrial smelters also produce large amounts of sulfur dioxide and sulfates. The rapid expansion of coal power plants in China and India has led to hazardous air quality impacting local communities, neighboring countries, and locations far downwind (e.g., Hand et al., 2012).

Many attempts have been made to measure sulfur dioxide loss rates from volcanic emissions, including some in the lower troposphere or planetary boundary layer (McGonigle et al., 2004; Rodriguez et al., 2005; Oppenheimer et al., 1998; Porter et al., 2002; Kroll et al., 2015). Generally, little care is taken during these experiments to attribute SO₂ loss to a particular process because the goal is only to determine if SO₂ flux measurements from correlation spectrometers are reliable proxies for source emissions of ash free tropospheric plumes (McGonigle et al., 2004). The loss rate of SO₂ is important for evaluating the uncertainty of volcanic emissions. If a significant portion of SO₂ is lost between emission and measurement then fluxes would not be representative of the real emission rate. Loss rates (s⁻¹), k, are calculated using an exponential decay equation

\[\Phi = \Phi_0 e^{-kt} \]

(1)

where \(\Phi \) and \(\Phi_0 \) represent SO₂ fluxes estimated from transects with correlation spectrometers taken at various distances downwind separated by some time, t. An implicit assumption in equation (1) is that loss rates are a first order process with respect to SO₂ concentrations. A brief summary of previous SO₂ loss rate estimates at volcanoes found in the tropics are presented in Table 1. McGonigle et al. (2004) found moderate loss rates at Mayasa volcano, Nicaragua. A majority of this loss rate was later attributed to plume dispersion caused by accelerated wind speeds between observation sites suggesting a very slow loss rate via gaseous conversion (Nadau, 2006). Comparatively, Rodriguez et al. (2005) estimated loss rates at Soufrière Hills volcano, Monserrat, British Virgin Islands that ranged from relatively slow conversion (5%) to nearly total depletion of SO₂ (95%) over the course of an hour. Oppenheimer et al. (1998) found rates an order of magnitude greater than Rodriguez et al. (2005) at Soufrière Hill, but noted that the plume was entrained into orographic clouds. There is a large difference in the conversion rates that can be explained by the various oxidation pathways responsible for the conversion. The implicit assumption is that most lost SO₂ is converted to sulfate aerosols. Oppenheimer et al. (1998) caution that their observations of the rapid loss of volcanic SO₂ in-cloud could lead to a global underestimation of volcanic SO₂ and subsequently underestimate tropospheric sulfate and its impacts on climate.

Estimates of sulfate production from Kilauea calculated using ground-based remote sensing methods imply a rate between 7 and 18% an hour (Porter et al., 2002). This assumes no primary sulfate being emitted, which may be incorrect based on near-vent measurements by Mather et al. (2012) who found approximately 1% sulfate relative to SO₂ emissions during the early eruptive period of Halema‘uma‘u in 2008. This observation suggests a co-emitted catalyst (e.g., Fe²⁺) may cause significant sulfate formation as SO₂ exits the vent, inflating conversion rates estimated further downwind. Such reactions have been implied previously (Eatough et al., 1984).

Kroll et al. (2015) measured ground-level sulfur dioxide and sulfate aerosols downwind of Kilauea simultaneously. They found SO₂ oxidation by OH to be the likely conversion pathway but the conversion rate was much slower than previous estimates likely due to OH depletion from high SO₂ emissions.

Conversion rates and processes observed in other locales may not apply at Kilauea given its unique features. Unlike many other volcanoes in the tropics that emit into the free troposphere, Kilauea emits SO₂ into the marine boundary layer. The isolation of Kilauea from major pollution sources within the tropical marine boundary layer results in a unique set of environmental conditions not previously documented. Ozone (O₃) and nitrogen oxides (NOₓ) are found at much lower concentrations in the remote marine boundary layer than the oft-studied power plant plumes. The Hawai‘i Department of Health (2013) estimated all anthropogenic sources of SO₂ on Hawai‘i Island account to less than 0.5% of the annual SO₂ emissions from Kilauea. The high SO₂ emission rate at Kilauea is at least an order of magnitude greater than those observed at other volcanoes that SO₂ loss rates have been estimated (McGonigle et al., 2004; Nadau, 2006; Oppenheimer et al., 1998). Large, periodic volcanic eruptions can be orders of magnitude larger, such as the 1984 eruption of Mauna Loa (Sharma et al., 2004) or 2014–2015 eruption of the Bárðarbunga volcanic system in Iceland (Gauthier et al., 2016), Sharma et al. (2004) estimated the total SO₂ load from Mauna Loa to be 1.0 ± 0.2 Mt in less than one month. Gauthier et al. (2016) estimated the SO₂ flux was 4–10 times the current flux at Kilauea but lasted for less than a year. The persistent abundance of SO₂ at Kilauea could deplete typical reactants rapidly, limiting conversion rates and increasing the likelihood that additional trace gases and/or metals either emitted or in the ambient environment could become important reactants themselves.

Chemical kinetic theory and observations have shown differences in the efficiency between cloud-free, gas phase oxidation of sulfur dioxide and aqueous, in-cloud oxidation. There are a number of variables that are thought to influence these processes. Among them are solar insolation, atmospheric mixing, temperature, relative humidity (RH), pH of cloud droplets, and species’ concentrations (Eatough et al., 1994).

In this study, two dominant reaction pathways have been identified for the oxidation of sulfur dioxide in Hawai‘i. The gas phase pathway is via reaction with the hydroxyl radical, OH. The aqueous phase pathway...
is via reaction with hydrogen peroxide, H2O2. Given chemical kinetic theory, what range of conversion rates can one expect in the presence of SO2 emissions from Kilauea volcano? This will be addressed through a detailed examination of the reaction kinetics of SO2 with the hydroxyl radical and hydrogen peroxide, including determinations of important variables that influence SO2 to sulfate conversion. Theoretical conversion rates are then estimated with locally observed quantities and compared with past research. Lastly, the uncertainty of theoretical conversion rates is discussed to highlight the difficulty in estimating the quantity and provides a baseline for conversion rate estimates from observations.

It is the goal of this research to quantify the conversion rate of sulfur dioxide to sulfate aerosol downwind of Kilauea volcano on the island of Hawai‘i. Several measurement campaigns found sulfur dioxide loss rates, but the distinction between the gas phase and aqueous phase conversion has not been made clear in many instances resulting in large uncertainty in loss rates. Observations during these campaigns suggest that sulfur dioxide emissions intersecting with clouds or fog produce substantially more sulfate aerosols than through processes in clear air. It is the clear-air gas conversion that will impact ground-level concentrations of SO2 and sulfate aerosols regularly and is of great interest here. Furthermore, only Porter et al. (2002) quantified sulfate production rates from volcanic emissions by measuring sulfur dioxide and aerosols simultaneously.

Kilauea is situated close (350 km) to large population centers (greater Honolulu –population ~1 million) than most effusive volcanoes making the persistent eruptions an ongoing public health issue. The application of this work is to improve forecasts for ground level SO2 and SO4 by of the University of Hawai Vog Model (Businger et al., 2015). Preliminary model evaluation revealed poor forecast skill in both species at intermediate distances downwind. The goal is to improve forecast skill by replacing a constant SO2 to SO4 conversion rate, representative of bulk conversion at daily to monthly timescales, with first order conversion rates representative of gas and aqueous phase oxidation. A conversion scheme that follows the first-order conversion pathways is anticipated to improve forecast skill at timescales on the order of an hour and spatial scales on the order of kilometers while not resulting in a significant increase in computation time or resources that may delay forecast delivery to the public.

This paper will be organized into three sections. Sulfur chemistry in the gas phase is presented in section two. Aqueous phase sulfur chemistry is discussed in section three. Section four provides a summary of the dominant sulfur dioxide reaction pathways around Kilauea Volcano.

2. Gas phase

Past research has determined that only the hydroxyl radical, OH, is important for the oxidation of sulfur dioxide to sulfate aerosol in the gas phase during daytime (Rattigan et al., 2000; Eatough et al., 1994 and references therein). The latest data from the Jet Propulsion Laboratory (JPL) shows that most reactions can be discounted based on their reaction rate constants (Table 2) (Buckholder et al., 2015). Oxidation via the Criegee intermediates can also be discounted because the requisite reactants to make Criegee radicals are absent.

The hydroxyl radical is formed through photolytic reactions and therefore has diurnal and seasonal cycles. OH is considered the most important oxidizing agent in the atmosphere because it is extremely reactive and able to oxidize most chemicals found in the atmosphere (ESPERE Climate Encyclopedia, 2006). Despite being highly reactive, OH concentrations remain relatively constant at timescales of days to weeks (~1.0 part per trillion or ppt), meaning production and loss rates are in quasi-steady state. Ozone (O3) is considered the main precursor for OH formation while in the remote marine boundary layer OH is removed through reactions with carbon monoxide (CO) and methane (CH4). At longer time scales, ozone concentrations follow an annual cycle, with near surface concentrations nearly doubling from austral winter to summer in Fiji (Takashima and Shiotani, 2007). This implies an annual cycle in OH formation. Eatough et al. (1994) further suggest that OH formation is humidity dependent (via ozone), which will cause spatial and temporal variability on the scale of synoptic to mesoscale weather systems.

Once OH is formed the main reaction pathway with SO2 is:

\[\text{OH} + \text{SO}_2 \rightarrow \text{HOSO}_2 \]
\[\text{HOSO}_2 + \text{O} \rightarrow \text{HOSO}_3 + \text{H} \]
\[\text{SO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 \]

A significant fraction of HOSO2 eventually becomes H2SO4. Reaction 2, between OH with SO2, is known to be the rate-limiting step in the oxidation of sulfur dioxide to sulfate aerosol. The formation rate of sulfate aerosol, S, can be solved via

\[S = k_c [\text{SO}_2][\text{OH}] \]

where \(k_c \) is the conversion rate constant (cm^3 molecules^{-1} s^{-1}), and [SO2] and [OH] are species concentrations (molecules cm^-3) (Rae et al., 1992; Simpson, 2010).

Many values have been obtained for \(k_c \) at different reference temperatures. The uncertainty of \(k_c \) according to Atkinson et al. (1989), is of the order of a factor 2\(\log(k) = ± 0.3 \). Based on this uncertainty, Rae et al. (1992) used a range of \(k_c \) values from \(4.5 \times 10^{-13} \) to \(2.4 \times 10^{-12} \) cm^3 molecules^{-1} s^{-1} to determine model sensitivity. They found that model results match smog chamber results for a range of values from \(7.8 \times 10^{-13} \) to \(1.0 \times 10^{-12} \) cm^3 molecules^{-1} s^{-1}. For comparison, the JPL recommended value for \(k_c \) is \(1.6 \times 10^{-12} \) cm^3 molecules^{-1} s^{-1} at a temperature of 300 K (Sander et al., 2011) falls within the range of estimates by Rae et al. (1992).

The reaction represented by equation (2) is thought to be a function of temperature and relative humidity (via OH production). Eatough et al. (1994) developed two equations to incorporate the moisture and temperature dependence into calculations for the first order rate coefficient, \(k_c \). The moisture dependence is described by the dewpoint temperature, \(T_D \), which is a function of temperature and relative humidity (via ozone), which will cause spatial and temporal variability on the scale of synoptic to mesoscale weather systems. The temperature dependence was found through a linear regression fit of 109 \(k_c \) values to 1/T (K) (Eq. (6)). The temperature dependence was found through a linear regression fit of 109 \(k_c \) values to 1/T (K) (Eq. (6)). This fit was performed by normalizing all values to 50% RH. The conversion rate at any temperature, \(T \), calculated from equation (7) can be converted to any RH using the JPL recommended value for \(k_c \) is \(1.6 \times 10^{-12} \) cm^3 molecules^{-1} s^{-1} at a temperature of 300 K (Sander et al., 2011) falls within the range of estimates by Rae et al. (1992).

The reaction represented by equation (2) is thought to be a function of temperature and relative humidity (via OH production). Eatough et al. (1994) developed two equations to incorporate the moisture and temperature dependence into calculations for the first order rate coefficient, \(k_c \). The moisture dependence is described by the dewpoint temperature, \(T_D \), which is a function of temperature and relative humidity (via ozone), which will cause spatial and temporal variability on the scale of synoptic to mesoscale weather systems. The temperature dependence was found through a linear regression fit of 109 \(k_c \) values to 1/T (K) (Eq. (6)). The temperature dependence was found through a linear regression fit of 109 \(k_c \) values to 1/T (K) (Eq. (6)). This fit was performed by normalizing all values to 50% RH. The conversion rate at any temperature, \(T \), calculated from equation (7) can be converted to any RH using the JPL recommended value for \(k_c \) is \(1.6 \times 10^{-12} \) cm^3 molecules^{-1} s^{-1} at a temperature of 300 K (Sander et al., 2011) falls within the range of estimates by Rae et al. (1992).

The result shown in equation (8) is a unitless value. In order to use \(k_c \) in

<table>
<thead>
<tr>
<th>Table 2: Potential gas-phase SO2 reactions. All values from Buckholder et al. (2015).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>OH + SO2 -> HOSO2</td>
</tr>
<tr>
<td>O + SO2 -> SO3</td>
</tr>
<tr>
<td>NO + SO2 -> NO2 + O2</td>
</tr>
<tr>
<td>HO2 + SO2 -> products</td>
</tr>
<tr>
<td>NO2 + SO2 -> products</td>
</tr>
<tr>
<td>NO3 + SO2 -> products</td>
</tr>
<tr>
<td>CH3O2 + SO2 -> products</td>
</tr>
<tr>
<td>CH3OO + SO2 -> products</td>
</tr>
<tr>
<td>anti-CH3CHOH + SO2 -> products</td>
</tr>
<tr>
<td>sym-CH3CHOH + SO2 -> products</td>
</tr>
<tr>
<td>ClO + SO2 -> Cl + SO3</td>
</tr>
</tbody>
</table>
A.K. Pattantyus et al.

Temperature (°C) 21.9 17.1
Relative humidity (%) 79 100
SO2 (molecules cm\(^{-3}\)) 2.46 × 10\(^{11}\) 2.46 × 10\(^{11}\)
k (molecules cm\(^{-3}\) s\(^{-1}\)) 5.58 × 10\(^{-13}\), 4.04 × 10\(^{-13}\)
OH (molecules cm\(^{-3}\)) 1 × 10\(^3\), 2 × 10\(^2\)
Conversion rate (% h\(^{-1}\)) 2 0.03
Conversion rate range (k uncertainty) (% h\(^{-1}\)) 0.8-5 0.01-0.07

Table 3

Quantities used to calculate range of theoretical gaseous conversion rates.

Previous measurement campaigns have also found nocturnal OH concentrations in the range 2 × 10\(^3\) to 10\(^6\) molecules cm\(^{-3}\) (Brown and Stutz, 2012). Given that tradewinds are persistent near Halema‘uma‘u Crater, we assume that a persistent supply of OH is advected into the region of the plume for reaction with emitted SO2. The subsequent k values calculated from equations (6) and (7) were 4.04 × 10\(^{-13}\) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\) and 5.58 × 10\(^{-13}\) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\) for night and day, respectively. The difference in k values is approximately 30%, given the relatively small ΔT (4.8 °C) and ΔRH (21%). If one assumes 100% conversion, this results in SO2 to sulfate conversion rates of 1.98 × 10\(^3\) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\) and 1.37 × 10\(^3\) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\) for night and day, respectively. That works out to 7.13 × 10\(^3\) molecules cm\(^{-3}\) h\(^{-1}\) and 4.9 × 10\(^3\) molecules cm\(^{-3}\) h\(^{-1}\) for night and day, respectively. By percentage of SO2 concentration for each time period that works out to a rate of 0.03% h\(^{-1}\) and 2% h\(^{-1}\) for nighttime and daytime.

These rates of sulfate formation are similar to those of Kroll et al. (2015) and lower than those found by Porter et al. (2002) but are within the range of values for SO2 loss found elsewhere (McGonigle et al., 2004; Rodriguez et al., 2005). The uncertainty in k, resulting from the temperature dependence represented in equation (7), results in a range from 2.29 × 10\(^{-13}\) to 1.42 × 10\(^{-12}\) molecules cm\(^{-3}\) s\(^{-1}\) during the day and 1.64 × 10\(^{-13}\) to 1.06 × 10\(^{-12}\) molecules cm\(^{-3}\) s\(^{-1}\) at night. The corresponding conversion rate range is 0.8–5% h\(^{-1}\) during the day and 0.01–0.07% h\(^{-1}\) at night. A more thorough treatment of the uncertainty in the conversion rate would take into account the variability in OH concentrations as well, however even when considering uncertainty in OH a majority of theoretical conversion rates will fall within the range of values found above which were calculated with the extreme values of OH concentration measured during INTEX-B.

It is important to note that theoretical conversion rate coefficients are meant to represent standard atmospheric conditions. A typical atmospheric concentration of SO2 is in the range of 1–100 ppt (2.46 × 10\(^7\) molecules cm\(^{-3}\) to 2.46 × 10\(^9\) molecules cm\(^{-3}\)), much lower than the concentration used above (10 ppb). SO2 concentrations can easily exceed 100 ppm (2.46 × 10\(^{15}\) molecules cm\(^{-3}\)) above Halema‘uma‘u Crater vent (Andrew Sutton, personal communication). Given such high concentrations of SO2, eight to nine orders of magnitude greater than OH, the reaction rate would be limited by OH concentrations and how rapidly OH can be produced.

Because the concentration of OH is considered steady state, the environmental formation rate can be approximated by the loss rate via carbon monoxide (CO) and methane (CH\(_4\)). CO and CH\(_4\) would be the leading reactants with OH in the marine boundary layer given the absence of volatile organic compound (VOC) sources upwind. Concentration data for these gases were available from the INTEX-B data set. The loss/production rate was estimated via

\[
\frac{d[OH]}{dt} = k_{CO}[OH][CO] + k_{CH_4}[OH][CH_4]
\]

where [CO] is the atmospheric concentration of carbon monoxide, [CH\(_4\)] is the concentration of methane, \(k_{CO} = 3.45 \times 10^{-13}\) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\) (Baulch et al., 1980), and \(k_{CH_4} = 6.3 \times 10^{-15}\) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\).
molecules $^{-1}$ s$^{-1}$ (Sander et al., 2011). The loss/production rate of OH was approximately 2×10^{-8} molecules cm$^{-3}$ s$^{-1}$ and was dominated by reactions with CO. This represents a cap on OH reactions with SO$_2$, which would have been reached as SO$_2$ concentrations approached 1×10^{14} (−10 ppm) during maximum OH concentrations. This limit remained proportional to SO$_2$ concentrations throughout the diurnal cycle (Fig. 3). For our purposes, we assume that mixing between the plume and the environment over periods of tens of minutes lead to near steady-state concentrations of OH even in the presence of SO$_2$ plumes.

The model sensitivity study of Jourdain et al. (2016) found the depletion of O$_3$ by halogen reactions led to decreases in OH, beyond those associated with reactions with SO$_2$, resulting in ~30% longer SO$_2$ lifetimes. In their Ambrym simulations, halogen ratios such as HBr/SO$_2$ and HCl/SO$_2$ were estimated to be an order of magnitude more abundant than observations of halogens at Kilauea (Mather et al., 2012), while Ambrym SO$_2$ emissions were 4–6x as great as Kilauea meaning actual HBr emission rates are two orders of magnitude lower at Kilauea. Although some depletion may be occurring within the Kilauea plume due to halogen and SO$_2$ reactions, the magnitude is likely lower given the lower abundance of both SO$_2$ and halogens.

Other studies have found a reduction in O$_3$ in SO$_2$ plumes, which also limits the production of OH via halogen reactions (Vance et al., 2010; Oppenheimer et al., 2010; Schuman et al., 2011; Kelly et al., 2013; Surl et al., 2015). Surl et al. (2015) find the typical range of HBr/SO$_2$ measured at various volcanoes to encompass the values measured at Kilauea. These studies suggest the limit of OH production in SO$_2$ plumes is as much as 30% lower than the OH production rate calculation.

In summary, theoretical gas phase conversion rates estimated for conversion of SO$_2$ to sulfate aerosol display rates less than 10% h$^{-1}$. Daytime conversion rates are estimated to be $2.9 \pm 2.1% h^{-1}$, while nighttime conversion rates are estimated to be $0.04 \pm 0.3% h^{-1}$. Very high concentrations of SO$_2$ have been observed near the vents and could lead to this reaction being severely limited by availability of OH. Additionally, in-plume OH limiting reactions via HBr could further reduce SO$_2$ conversion rates by as much as 30%.

There is some uncertainty in the OH conversion rate that stems from the temperature and moisture dependence of the reaction between OH and SO$_2$, which is represented in the conversion rate coefficient, k. Sander et al. (2011) suggest the uncertainty associated with the temperature dependence of the reaction is minimized near room temperatures (25–27 °C) - a temperature range typical of Hawai’i’s climate. Additional uncertainty will arise from OH concentrations, including reduction of OH from in-plume halogen chemistry, and OH delivered to the plume through mixing between the plume and environment.

3. Aqueous phase

If the SO$_2$ plume encounters a cloud then SO$_2$ can be taken up in cloud water and undergo oxidation via aqueous phase pathways. Though this discussion will be limited to in-cloud oxidation it is possible that some loss of gas-phase SO$_2$ may occur due to mass transfer to aerosols.

Faloona et al. (2009) and Faloona (2009) have argued that SO$_2$ mass transfer to coarse mode sea salt aerosols (SSA) in non-negligible. This process is highly dependent on aerosol pH with significant mass transfer occurring at higher pH values, but a review of past observations by Faloona (2009) suggests that supermicron, or coarse, SSA have neutral to slightly alkaline pH while submicron aerosols are very acidic. Observations from PASE allowed Faloona et al. (2009) to estimate aerosol mass transfer rates to coarse SSA of 5–10% hr$^{-1}$ at night and an average daytime loss of 5% hr$^{-1}$. Thus SSA uptake of SO$_2$ may be on the order of homogeneous reactions with OH, but remains dependent on aerosol pH such that rates vary from 0 to 10% based on atmospheric variability. Given the height of the Kilauea vents and prevailing wind patterns this pathway may be important during high wind events, when coarse mode SSA are lofted high in the boundary layer, or when the plume descends down to sea level.

When SO$_2$ dissolves in water it forms a weak acid that undergoes two dissociations to form a total of three species, HS${}_2$O$_4$, H$_2$O·SO$_2$, SO$_2$H, the sum of which are known collectively as S$_V$. The solubility of SO$_2$ is a function of temperature and pH of the solution. At pH 2–7, S$_V$ is almost entirely in the form of the bisulfite ion (H$_2$SO$_3$) (Seinfeld and Pandis, 1998). At lower temperatures there will be higher solubility. The reaction rate will decrease with decreasing temperature, however, the increased reactant concentration will tend to counterbalance the decreased reaction rate HS${}_2$O$_4$, H$_2$O·SO$_2$, SO$_2$H$^-$, (Eatough et al., 1994).

Hydrogen peroxide (H$_2$O$_2$) and ozone (O$_3$) are the most likely oxidants for SO$_2$ in the aqueous phase. However, ozone reactions are highly pH dependent and only become the leading oxidant at pH > 5.5 (Hegg, 1989; Seinfeld and Pandis, 1998). Hydrogen peroxide reactions are relatively independent of pH between pH 2–6. The pH of atmospheric water droplets reported is typically 3–6 (Eatough et al., 1994). Rainwater samples taken in Hawai’i yield an average pH = 4.5 (Miller and Yoshinaga, 1981) while Siegel et al. (1990) found 84% of rain samples downwind of Kilauea had pH values less than 5.0. The large particle size of rain droplets relative to cloud droplets suggests that the pH of the smaller volume cloud droplets will likely be even lower and that the pH of rain droplets represents an upper limit. This suggests that hydrogen peroxide is the leading oxidant of sulfur dioxide in the aqueous phase in the vicinity of Kilauea. Hydrogen peroxide, like the hydroxyl radical, is produced photochemically, both in the gas phase and aqueous phase (Warneck, 1999). The average concentration of hydrogen peroxide found during the Pacific Atmospheric Sulfur Experiment (PASE) was 1.0 ppb (Simpson, 2010). PASE was designed to study the chemistry in the trade wind regime that may influence cloud droplet chemistry and aerosol concentrations and composition (Bandy et al., 2011).

In order for the aqueous phase reaction to occur, both sulfur dioxide and hydrogen peroxide gases must be dissolved in cloud water. Hydrogen peroxide is considered highly soluble and sulfur dioxide moderately soluble. Equilibrium between the gas and aqueous phase concentrations is reached on very short time scales relative to droplet lifetime so that equilibrium can be considered. This allows the use of Henry’s Law constants to determine aqueous phase concentrations. Henry’s Law has a strong dependence on temperature. This dependence has been found by Huang and Chen (2010) for hydrogen peroxide and can be expressed as
\[K[H_2O2] = \exp\left(\frac{a}{T} - b\right) \]

(10)

where \(a = 7.024 \pm 138 \) and \(b = 11.97 \pm 0.48 \) and \(T \) (K) is the equilibrium temperature. Huang and Chen (2010) showed that this relation is relatively independent of solution pH in the range of 1–7. This relationship results in \(K[H_2O_2] = 1.08 \times 10^5 \text{ M atm}^{-1} \) at 25 °C (Huang and Chen, 2010), where \(M \), molarity, is the concentration of solute in solution expressed as 1 mol L\(^{-1}\) or 1 \(\times 10^{-3} \text{ mol cm}^{-2} \). The recommended value of \(K[H_2O_2] \) by the JPL is 8.44 × 10\(^4\) M atm\(^{-1}\) (for 278 K < \(T < 303 \) K) with temperature dependence values for \(a = 7.600 \) and \(b = 14.16 \) (Sander et al., 2011). The recommended value for \(K[SO_2] \) from JPL is 1.36 M atm\(^{-1}\) and the temperature dependence is given by

\[K[SO_2] = \exp\left(\frac{a}{T} - b + cT\right) \]

(11)

where \(a = 4250 \), \(b = 39.72 \), and \(c = 4.525 \) (Sander et al., 2011). The uncertainty in \(K[H_2O_2] \) is given as 10–50%.

The aqueous phase reaction of sulfur dioxide and hydrogen peroxide is expressed by Hoffman and Calvert (1985) as

\[- \frac{d[SO_2]}{dt} = k[H^+][H_2O_2][HOSO_2] \]

(12)

where the reaction constant, \(k = 7.45 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) is approximately 1, and equation (12) becomes

\[- \frac{d[SO_2](aq)}{dt} = k[H^+][H_2O_2][SO_2](aq) \]

(13)

where \(k = 9.1 \) (± 0.5) \(\times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) as proposed by Maass et al. (1999). Caffrey et al. (2001) found this kinetic relation to work best for their modeling of cloud particle growth. If we assume 100% conversion efficiency to sulfate aerosol, equation (13) can be treated as an aerosol production equation by changing the left hand term to

\[\frac{d[SO_2](aq)}{dt} = k[H^+][H_2O_2][SO_2](aq) \]

(14)

Overnight observations at HAVO-OB on 20 July 2014 are used to estimate aqueous phase conversion rates because RH = 100% during this period. \(K[H_2O_2] \) values are corrected for pressure (altitude) using the 2014 annual mean station pressure from HAVO-OB. Values calculated from equations (10) and (11) at a temperature = 290.35 K and \(p = 8.067 \text{ atm} \) are \(K[H_2O_2] = 1.78 \times 10^5 \text{ M atm}^{-1} \) and \(K[SO_2] = 1.55 \text{ M atm}^{-1} \) for hydrogen peroxide and sulfur dioxide, respectively. When multiplied by the gas concentrations for \(H_2O_2 \) (1 × 10\(^{-9}\) atm\(^{-1}\)) and \(SO_2 \) (1 × 10\(^{-8}\) atm\(^{-1}\)) the aqueous phase concentrations are 1.78 × 10\(^{-4}\) M and 6.37 × 10\(^{-6}\) M, respectively. Note that the SO\(_2\) gas (SO\(_2\)(g)) concentration is an order of magnitude greater than [H\(_2\)O\(_2\)](g), but the solubility of H\(_2\)O\(_2\) results in dissolved concentrations of [H\(_2\)O\(_2\)](aq) four magnitudes greater than [SO\(_2\)](aq). Thus, [SO\(_2\)](aq) concentrations will be lower than [H\(_2\)O\(_2\)](aq) initially, however, higher [SO\(_2\)](aq) concentrations will continue to dissolve and react with [H\(_2\)O\(_2\)](aq) and ultimately [H\(_2\)O\(_2\)](g) will be the limiting reactant. Using the rate coefficient, \(k = 9.1 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \), provided by Maass et al. (1999) the loss rate of [SO\(_2\)](aq) is 3.26 × 10\(^{-8}\) M s\(^{-1}\), or roughly a 50% decrease in [SO\(_2\)](aq) per second. This rate is similar in magnitude to past theoretical conversion rates found by Seinfeld and Pandis (1998) (Fig. 4). Such rapid conversion assumed a homogeneous H\(_2\)O\(_2\) concentration within the cloud, however the reaction will likely be limited by mixing of the SO\(_2\) plume into and within.

This reaction is known to be very fast and should deplete all H\(_2\)O\(_2\) within a matter of minutes, which is the typical residence time of an air parcel in-cloud. Measurements by Daum et al. (1984) suggest that both reactants rarely coexist in clouds or fog. Further evidence in measurements by Barth et al. (1989) reveal that aqueous concentrations of hydrogen peroxide are always below those expected in equilibrium from Henry’s Law. This suggests that the sulfur dioxide sink is removing hydrogen peroxide faster than it can be replaced.

Simpson (2010) took three approaches to estimate in-cloud oxidation of SO\(_2\) to sulfate aerosols using project-averaged values from the Pacific Atmospheric Sulfur Experiment (PASE) conducted in 2007. Using chemical kinetic theory, the amount of SO\(_2\) oxidized during a single cloud encounter lasting 7 min (based on updraft velocities below cloud and assuming a 500 m deep cloud) is 50 ± 30%. The ratio of dimethyl sulfide to SO\(_2\) during individual cloud encounters is used to approximate the consumption of SO\(_2\) using method two. Again the loss rate is found to be 50 ± 30%. The third approach estimates conversion with a sulfur flux budget. This method suggests 33–46% total SO\(_2\) is consumed to produce 45–80% of the total sulfate. It is important to note that SO\(_2\) concentrations during PASE are between 1 and 100 ppt, significantly lower than concentrations in the vicinity of Kilauea.

In light of past observations and estimates of Simpson (2010) it is important to assess the uncertainty in the reaction rate calculated here because a significant depletion of H\(_2\)O\(_2\) will make reactions between SO\(_2\) and other reactants increasingly important.

Much of the uncertainty associated with the aqueous phase reaction of SO\(_2\) with H\(_2\)O\(_2\) stems from the uncertainty in the temperature dependence of the Henry’s Law constants and the conversion rate coefficients. The uncertainty for \(K[SO_2] \) is approximately 50% (Sander et al., 2011) while \(K[H_2O_2] \) is less than 1% (1.76 ± 0.01) \(\times 10^5 \text{ M atm}^{-1} \). Because the reaction is limited by H\(_2\)O\(_2\) concentrations, any error resulting from uncertainty in SO\(_2\) solubility is negligible. Estimates of \(k \) range from 5.2 × 10\(^{16}\) M\(^{-2}\) s\(^{-1}\) to 9.6 × 10\(^{17}\) M\(^{-2}\) s\(^{-1}\). By using the lower bound \([SO_2] \) loss will be 3% per second, or roughly a factor of 17.5 less than the upper bound estimate. While this lower conversion rate will deplete H\(_2\)O\(_2\) more slowly, estimates from Hua et al. (2008) suggest H\(_2\)O\(_2\) production peaks at less than 1 ppb h\(^{-1}\),
meaning that over time (especially overnight) H$_2$O$_2$ may still be depleted. The lower bound estimates are closer to those of Simpson (2010) and differ in proportion to [SO$_2$] used in the calculations.

If the rate of H$_2$O$_2$ production cannot keep pace with removal through aqueous SO$_2$ reactions then secondary reaction pathways will become important. Although O$_3$ reactions are more dependent on solution pH, this pathway remains important at pH 3–6 should H$_2$O$_2$ be absent in significant concentrations (Eattough et al., 1994). Ozone concentrations in the marine boundary layer are higher than H$_2$O$_2$, with mean concentrations between 15 and 19 ppb, and it is moderately soluble with a Henry’s Law coefficient of 1.3 × 10$^{-2}$ M. The O$_3$ rate expression is given as

$$\frac{d[SO_2]}{dt} = (k_0)[SO_2]H_2O + k_1[HSO_3] + k_2[SO_4^{2-}][O_3(aq)]$$

where $k_0 = 2.4 \times 10^4$ M$^{-1}$ s$^{-1}$, $k_1 = 3.7 \times 10^5$ M$^{-1}$ s$^{-1}$, and $k_2 = 1.5 \times 10^9$ M$^{-1}$ s$^{-1}$ (Hoffman and Calvert, 1985), however, if all H$_2$O$_2$ is consumed in reactions with SO$_2$ then solution pH can easily drop below 3 making this reaction negligible. Additionally, the depletion of O$_3$ within volcanic plumes (Vance et al., 2010; Oppenheimer et al., 2010; Schuman et al., 2011; Kelly et al., 2013; Surl et al., 2015) will limit the impact of this pathway.

Emission estimates from Halema’um’a’u Crater by Mather et al. (2012) show traces of Fe and Mn are being emitted, making conversion catalyzed via the Fe(III) and Mn(II) pathways possible. Mn is highly soluble and Fe is not water-soluble but would dissolve in an acidic solution such as H$_2$SO$_4$ so it is realistic to assume all Fe is dissolved in a cloud also impacted by the SO$_2$ laden volcanic. These reactants may be important conversion mechanisms near Halema’um’a’u Crater from pH 3.5 to 6 (c.f. figure 6.25 in Seinfeld and Pandis, 1998). The rate expressions are given as

$$\frac{d[SO_2]}{dt} = k_0[Fe(III)][SO_4^{2-}]$$

and

$$\frac{d[SO_2]}{dt} = k_0[Mn(III)][SO_4^{2-}]$$

where $k_0 = 1.2 \times 10^8$ M$^{-1}$ s$^{-1}$ for pH ≤ 5 (Hoffman and Calvert, 1985) and $k_{Mn} = 1.000$ M$^{-1}$ s$^{-1}$ (Martin and Hill, 1987). Fe and Mn emissions are estimated by Mather et al. (2012) as Fe/SO$_2 = 7.7 \times 10^{-5}$ and Mn/SO$_2 = 1.4 \times 10^{-6}$. Given an SO$_2$ emission rate of 3.000 t d$^{-1}$ this amounts to Fe emission of 0.231 t d$^{-1}$ and Mn emission of 4.2 × 10$^{-5}$ t d$^{-1}$. Benitez-Nelson et al. (2003) measured Fe concentrations in cloud water near the volcano as 1 × 10$^{-6}$ M and Sansone et al. (2002) estimated the Mn/Fe ratio near the volcano as 3.5 to 6 (c.f. figure 6.25 in Seinfeld and Pandis, 1998). The formation of sulfate via HOBr appears to be an important pathway, but may be limited due to the low pH (< 5) in Hawaii Volcanoes National Park (Vogt et al., 1996). The bromine explosion reaction chain to form BrO as detailed in (Babcock et al., 2003).

The formation of sulfate via HOBr appears to be an important pathway, but may be limited due to the low pH (< 5) in Hawai‘i (particularly in the volcanic plume itself). Results of Keene et al. (1998) and von Glasow et al. (2002) suggest the reaction is highly dependent on pH but even at pH = 4.5, it may account for ~25% sulfate formation. With the uncertainty around Henry’s Law constant for HOBr, this reaction could be faster and even match that of H$_2$O$_2$. Von Glasow et al. (2002) also found little sulfate formation (<10%) from HOCl under low pH values. Further research is needed to determine the magnitude of reactions in halogens and sulfur dioxide laden volcanic plumes.

4. Summary

Theoretical estimates of gas and aqueous phase oxidation of SO$_2$ at Kilaeua Volcano have been evaluated and the results suggest that hydroxyl radical and hydrogen peroxide are the dominant reaction pathways. For a frequently observed ground-level SO$_2$ concentration (10 ppb) the range of conversion rates for the hydroxyl radical and hydrogen peroxide reaction pathways are estimated from kinetic theory, where the range is representative of the uncertainty associated with the temperature and moisture dependence of the reactions. The estimated conversion rates represent results based on a single reactant concentration. Given that SO$_2$ is the limiting reactant (except near the
source area) the amount of sulfate aerosols formed via reactions can increase given higher SO2 concentrations or decrease given lower SO2 concentrations.

Oxidation of SO2 in the gas phase is dominated by reactions with the hydroxyl radical, OH. Reaction rates are estimated for daytime and nighttime conditions observed at the Hawai’i Volcanoes Observatory. Daytime rates range from 0.8 to 5% h$^{-1}$ and nighttime rates range from 0.01 to 0.07% h$^{-1}$. Because OH concentrations and production peak during the day and production ceases overnight, a diurnal signal is expected. Uncertainty in the conversion rate is addressed through the temperature and moisture dependence of the reaction is represented through a reaction coefficient, k. Additional uncertainty is the reaction rate results from concentrations of OH. Ozone depletion within volcanic plumes has been well documented (Jourdain et al., 2016 and references within), which reduces the formation of OH by as much as 30%. Under most circumstances the limiting agent will be SO2, however, near Hawai’i Volcanoes Crater the SO2 concentrations can exceed 100 ppm. Under such conditions OH would be completely depleted through reactions with SO2 and will be the limiting agent. This reaction limit is reached with SO2 concentrations as low as 10 ppm, however, concentrations of this magnitude are not common beyond a few kilometers downwind from the source.

The aqueous phase oxidation of SO2 is dominated by reaction with hydrogen peroxide, H2O2. This is because of the independence of the reaction on solution pH and low ozone concentrations in the Central Pacific. Past observations of rainfall pH in Hawai’i suggest a range of pH values between 3 and 5.5, which is likely an upper bound. Estimated reaction rates suggest a conversion rate of dissolved SO2 between 3 and 50% s$^{-1}$. Such a rapid reaction coupled with a rapid diffusion process is unsustainable over long periods of time and will quickly lead to the depletion of the limiting reactant. Given that parcels of air spend no more than a few minutes in shallow marine cumulus clouds (Simpson 2010) and the observations of Daum et al. (1984) and Barth et al. (1989), the reaction estimate here is limited by the ambient H2O2 concentrations (1.0 ppb) and H2O2 production, which has been limited by estimated by Martin et al. (1997) to be 0.85 ppb d$^{-1}$. Thus for an air parcel penetrating a cloud with 10 ppb SO2 and 1 ppb H2O2, the maximum loss of SO2 through conversion to SO3 is 1 ppb or 10%.

Other aqueous phase reactions via O3, Fe(III), and Mn(II), HOBr, and HOCI were considered to assess if the associated conversion rates are significant relative to H2O2. Ozone reactions are highly pH-dependent and become important only in the event that H2O2 is drawn down from Halema’uma’u Crater. The importance of this reaction is limited by the molar ratio of BrO = SO2 in the plume of Nyiragongo in comparison to Etna. J. Atmos. Chem. 74, 1441–1450. http://dx.doi.org/10.5194/acp-7-1441-2007.

Acknowledgements

This research was supported by NOAA under Grant NA11NMF4320128, NSF under Grant number 1108569, and ONR Award N00014-18-1-2166. Data were obtained from the National Park Service and NASA’s Global Tropospheric Experiment archive.

References
