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ABSTRACT

The sliding-window technique uses a moving time window to select GPS data for processing. This makes
it possible to routinely incorporate the most recently collected data and generate estimates for atmospheric
delay or precipitable water in (near) real time. As a consequence of the technique several estimates may be
generated for each time epoch, and these multiple estimates can be used to explore and analyze the
characteristics of the atmospheric estimates and the effect of the processing model and parameters. Ex-
amples of some of the analyses that can be undertaken are presented. Insights into the phenomenology of
the atmospheric estimates provided by sliding-window analysis permit the fine-tuning of the GPS processing
as well as the possibility of both improving the accuracy of the near-real-time estimates themselves and
constraining the errors associated with them. The overlapping data windows and the multiple estimates that
characterize the sliding-window method can lead to ambiguity in the meaning of many terms and expres-
sions commonly used in GPS meteorology. In order to prevent confusion in discussions of sliding-window
processing, a nomenclature is proposed that formalizes the meaning of the primary terms and defines the
geometric and physical relationships between them.
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1. Introduction

Networks of global positioning system (GPS) receiv-
ers are now routinely used to provide near-real-time
estimates of precipitable water vapor (PWV) for use in
weather models (e.g., Wolfe and Gutman 2000; Dick et
al. 2001). In order for GPS-derived PWV estimates to
be usefully included in a weather model the estimates
need to be more accurate than the model is capable of
analyzing without the GPS data, and the estimates must
be available for ingest into the model during the current
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assimilation cycle. These criteria vary considerably, de-
pending on the specific applications and models being
implemented; however, a reasonable rule of thumb is
that estimates should have accuracies better than 2 mm
of PWV and be available within 1 h of the data collec-
tion (Gutman and Benjamin 2001). Whereas GPS pro-
cessing has traditionally been performed in daily 24-h
batches, the new need for rapid estimates has led to
more flexible processing approaches, of which the most
commonly used is the “sliding window” (Fang and
Bock 1998; Dick et al. 2001; Ge et al. 2002). In this
approach a time window (of constant width) is used to
select data for geodetic processing and is stepped for-
ward in regular increments in order to include the most
recently available data from the network. In order to
optimize the processing speed, one possible sliding-
window approach is to include only the data collected
since the previous solution. This has the advantage of
providing the most current estimates more quickly than
an approach that includes all the data within a broader
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window. While using a wider time window to select data
for processing requires more CPU time, in practice,
with the relative affordability of fast computers, this
does not preclude the estimates being available in time
for application in numerical models (Gutman and Ben-
jamin 2001), and it has the advantage that multiple es-
timates are made for every time epoch. Each of these
multiple estimates is generated from a different posi-
tion within the data window, providing the operator
with an opportunity to examine a wide range of phe-
nomena associated with the processing and parameter
estimation. The focus of this paper is on the second
sliding-window approach, in which all the data in a
broader time window are processed. Abandoning the
traditional daily batch processing and instead generat-
ing multiple, overlapping solutions leads to ambiguity
in some commonly used GPS meteorology terminolo-
gies. Therefore, a nomenclature is proposed here to
formalize the meaning of the primary terms and to de-
fine the geometric and physical relationships between
them.

2. Sliding-window terminology

The sliding-window technique foregoes the tradi-
tional rigid 24-h-batch approach and instead applies a
finite time window to select the dataset for processing.
The window is then moved forward in time incremen-
tally, generating a full solution each time, resulting in
multiple estimates for atmospheric parameters at each
epoch in time. The analysis of any given time window is
similar to standard batch processing in that a single
(often strongly constrained) solution is obtained for the
spatial coordinates of each GPS station, whereas mul-
tiple atmospheric delay parameters are estimated for
each station in order to determine how the delay varies
with time within the period of consideration (e.g., Bevis
et al. 1992; Duan et al. 1996). Although the general
technique is conceptually simple, this approach, with its
multiple solutions overlapping in time, requires a more
careful definition of many terms often used loosely in
GPS meteorology in order to discuss meaningfully its
results and implications.

In this paper the term “solution” is reserved to refer
to the full set of parameters estimated in a single pro-
cessing run (the parameters obtained in a single geo-
detic analysis of all data associated with a given window
position or time interval). In general this will include
the site position and satellite orbit parameters, in addi-
tion to the atmospheric delay estimates; however, as
this paper is focused on GPS meteorology, “solution”
will be used to denote the full set of atmospheric delay
estimates from a processing run rather than employing
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the more cumbersome, albeit rigorous, term “atmo-
spheric solution.” For any window of data, the number
of atmospheric delays estimates, or “knots,” is deter-
mined by the time width of the window and the knot
interval (i.e., the time step between successive knots, or
estimates, in the solution). Typically the atmosphere is
modeled by a stochastic process similar to a random
walk and is fitted by either a piecewise linear or a piece-
wise constant function (e.g., King and Bock 2000). The
former function provides one more estimate per solu-
tion for a given knot interval than the latter, as its knots
begin and end at the edges of the data window rather
than at the midpoints of each constant section. Rather
than address each of these cases individually, in the
following formalism the form for the piecewise linear
approach is given and the reader is invited to make the
conversion to one-fewer knots for the piecewise con-
stant case.

When describing the sliding-window process it is pos-
sible to take either of two perspectives: time fixed or
window fixed. In the former perspective one views the
window moving forward in time, generating an estimate
for the most current epoch and successively increasing
the number of estimates for older epochs until the win-
dow passes that epoch and moves on (Fig. 1). This is the
most natural perspective for an intuitive understanding
of the sliding-window approach. In the window-fixed
perspective the process appears as a growing sequence
of solutions stretching back in time from the most cur-
rent window (Fig. 2). This perspective is the most useful
for programming and handling of solutions. The ap-
proach from both perspectives is presented, and the
transformations required to switch between them are
described.

3. Fundamental parameters

Three parameters are needed to define a window and
the sliding-window process: (i) the position of the win-
dow, (ii) the width of the window, and (iii) the incre-
ment with which the window moves forward in time. As
this technique is designed for near-real-time (NRT)
GPS processing, it is most natural to define the window
position as ¢, the end time of the window. In an NRT
processing environment this will be the most current
(or nearly real time) epoch. The “width” of the window
can be specified by any combination of two of three
parameters: the knot interval (or knot step) (8), num-
ber of knots (n), and the time width (W) of the window.
For these three parameters the following equation
holds (for a piecewise-linear solution):

(n—1)58=W. 1)
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FIG. 1. Schematic diagram of a sliding-window process viewed from a time perspective. The
window is nine knots wide and the step ratio is 1. The reference time for solution N is shown

as t.

The ratio of the window step (A), the time step with
which the window progresses, and the knot step is a
value that appears repeatedly in this sliding-window
definition. Due to its prominence this ratio is referred
to as the step ratio (S), where

= &)

For all practical applications S is expected to be a posi-
tive integer, as it makes little sense to set the window
step interval smaller than the knot interval or have the
knot interval not a factor of the window step interval.

By defining a reference epoch 7, (most typically, but
not necessarily, the most current epoch) a time frame is
established within which epochs can be identified by
their “lead” time or “lag” time relative to 7,. Epochs at
an earlier time-of-day than the reference time are said
to “lead” that time, while those at a later time “lag.” By
defining an integer scale for lead and lag times where
the integer is the number of knot intervals they are
from the reference epoch, epochs can be identified with
a compact and intuitive notation:

®)

where the 7, is said to lead if i is positive and lag if i is

T, = Ty — 10,

knot number

solution number

median of all available
estimates = best solution

1st available
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most
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FIG. 2. Schematic diagram of a sliding-window process viewed from a solution perspective.
The window is nine knots wide and the step ratio is 2.
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negative. A similar equation can be written to relate the
window times to a reference time:

T, =T, — jA. )

Here j simply represents the sequential solution num-
ber relative to the reference time. Using the epoch and
window lead/lag numbers and setting 7, = 7,, the ep-
ochs can now be related to knots and windows using

i=jS+n—k, (5)

where k is the knot number, that is, the consecutive
atmospheric estimate within a solution window.

The “order” of any epoch is the number of estimates
(N) available for that epoch. For any epoch still within
the active window (i.e., any epoch whose lead is less
than the number of knots in the window), N can be
determined from the following equation, setting the
most current epoch as the reference epoch:

i
N(t) = floor<§> +1, for i=0->n—-1, (6)

where “floor” indicates that the resultant is rounded
down to the nearest integer.

The final number of estimates, or maximum order,
Npnax available for any epoch is dependent on S and
whether the epoch position (7) is an integer multiple of
A from the window position (7):

1 d T—-71 “o N _n+1 .

case 1: mo A =0; max = g > 7)
) d T—71 0. N 7n—1

case 2: mo A # 0; max = T g

where “mod” indicates the modulo or remainder after
division by 2. One possible sliding-window configura-
tion is illustrated in Fig. 1. This could represent an 8-h
piecewise-linear window with a 1-h knot interval incre-
mented in hourly steps. As an example, the solution
and knot numbers for all estimates of the highlighted
epoch (¢ + 1) would be given by solving the equality
givenby (5): —1=j+9—k k=1{1,2,...,9}, resulting
in a set of solution lag numbers j = {—-1, =2, ..., —9}.

The view of the process for Fig. 1 is from a time
perspective, which is the easiest way to visualize the
sequential solutions and their temporal relationships.
For the implementation of a process, however, the most
useful practical perspective is from a solution view-
point, where each successive solution is a new row on
the bottom of a stack. This is illustrated by Fig. 2, which
once again shows a process with a nine-knot window. In
this case, however, the step ratio is set to 2, represent-
ing, for example, a knot step of half an hour and a
window step of an hour or, alternatively, a knot step of
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1 h and a window step of 2 h. The problem of locating
all the estimates for a given epoch requires consider-
ation of where the epoch lies relative to the window, as
in (6). As an example, we can calculate the knot-
window locations of all other estimates for the epoch
estimated at knot 6 in the most recent solution (N + 4).
If we define the most current estimate as our reference
time, we require the locations for all estimates of epoch
number i = 3:

3=2/+9—kk={1,2,...,9,
=2 =—6+kk={1,2,...,0

Integer solutions are only available for knots k = {2, 4,
6, 8} with matching solution numbers j = {—2, —1, 0, 1}.
Only solution numbers 0 and 1 currently exist in the
stack; the final two estimates will be generated by the
next two solutions.

4. Applications

The multiple solutions that are generated with a slid-
ing-window process simulate Gibb’s sampling, resulting
in a family of model parameters sampled from the so-
lution space close to the optimum solution. The mul-
tiple estimates for precipitable water (or atmospheric
delay) for each epoch provide the opportunity to ex-
amine a wide variety of problems related to the repro-
ducibility of PWV estimates and the characteristics of
the errors. In this section we will introduce a few ex-
amples of the types of analysis that can be undertaken
with the sliding-window approach.

The sliding-window technique was used to process
GPS data collected as part of the 1997 Water Vapor
Intensive Operations Period (WVIOP97). Seven con-
tinuous GPS stations in Oklahoma and Kansas were
running for 3 weeks during the fall of 1997 and four of
these sites had collocated water vapor radiometer
(WVR) instruments operating continuously and radio-
sonde launches (Lesht and Liljegren 1997; Lesht 1999)
every 3 h (Fig. 3). With this well-constrained dataset the
GPS PWYV estimates can be examined in detail to in-
vestigate the effect of the processing window on the
atmospheric solutions. In an operational system both
the global and regional solutions would be processed
using the sliding-window technique, with the global so-
lution using data from sites around the world and a
broader time window to generate precise orbits, clock
models, etc. For this study, however, the standard pre-
cise orbit solutions from Scripps Orbit and Permanent
Array Center (SOPAC) have been used (see http:/
sopac.ucsd.edu/processing/orbits.html) and the sliding-
window technique has been applied for the regional
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F1G. 3. Location map of sites in this study. Open squares are
sites with a GPS station only. Triangles and filled circles indicate
collocated WVR and radiosonde installations.

solution only. This approach allows the focus to remain
on the phenomenology of the sliding window in a
simple, specific context, without any potential confu-
sion as to which of the two sliding-window processes
might be responsible for any observed behavior in the
solutions. For example, it is common to note that the
delay estimates for an epoch have a trend that is a
function of the knot number of the estimate. If the
orbits are also being generated by a sliding-window
process, it is then unclear whether the source of such a
trend is purely due to the changing orbital parameters
used for each solution or arises from the regional slid-
ing-window process and is due to the interplay between
the changing data window and the regional processing
parameters, or is even some combination of both these
potential sources. The trade-off for this is the possibility
of artifacts in the solutions introduced from the poten-
tially discontinuous orbit solutions. These effects, how-
ever, are visible in the solutions as sliding-window pro-
cess steps from 1 day’s orbital solutions to the next.
The GPS data were processed using Gamit (King and
Bock 2000) with an 8-h window, half-hour knot step,
and 1-h window step. The atmospheric delay was esti-
mated with a piecewise-linear function, using the Niell
(1996) mapping function. The hydrostatic component
was calculated using Saastamoinen’s (1972) formula,
and the parameter II for mapping the wet delay to
PWYV was from Bevis et al. (1994). Although Ross and
Rosenfeld (1997, 1999) provide a more location- and
season-specific set of functions for II, the differences
were so small as to be insignificant for this study (less
then 0.05 mm of PWV). A fiducial site from each coast
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of the United States, plus one from Canada and one
from South America, were included in the processing to
provide the long baselines needed to provide absolute
PWYV estimates (Duan et al. 1996). Accurate Interna-
tional Terrestrial Reference Frame 1997 (ITRF97) lo-
cations and velocities for all sites were used to constrain
the site coordinates to their prior estimates as tightly as
their confidences permitted, and the orbits were also
tightly constrained. Site coordinates and orbital param-
eters were estimated in addition to the atmospheric pa-
rameters. The 8-h width of the sliding window was cho-
sen because experience suggests that this is an effective
compromise between processing time and solution ac-
curacy, as there is generally little measurable improve-
ment in the accuracy of atmospheric estimates for wider
windows (see, e.g., Baker et al. 2001).

In order to investigate the precipitable water esti-
mates in detail it is necessary to define a reference mea-
surement against which they can be compared. Al-
though comparisons against an absolute measurement
would be ideal, there is no absolute reference for PWV
data. Radiosondes and WVRs provide independent es-
timates of PWV that are useful for corroboration and
identification of gross biases and trends, but each sys-
tem has weaknesses that make them unsuitable for use
as a standard for this type of study. Thus, rather than
adopting an independent platform for a reference, a
GPS-derived reference PWV time series was chosen for
determining the performance of the new technique. A
PWYV time series was generated using the traditional
24-h-batch method, but with an extra 1 h of data added
before and after each 24-h data file in order to minimize
the window effect at the day boundaries. Figure 4 shows
the scatterplot of the results plotted against the radio-
sonde data. Also shown are plots for the WVR results,
the “nearly real time” GPS PWYV estimates (i.e., the
final estimates from each sliding-window solution), and
the time series of medians, formed from all the esti-
mates for each epoch from the sliding-window analysis.
These plots confirm that each of the GPS time series
compares well with the radiosonde data, with the time
series of median estimates providing the best match
(orthogonal standard deviation = 1.74 mm), perform-
ing slightly better than the WVR (2.14 mm). The results
match those found by previous investigations (e.g.,
Emardson et al. 1998; Tregoning et al. 1998) and con-
firm that even though the NRT is the weakest of the
GPS estimates (1.89 mm) it is sufficiently accurate for
weather prediction applications. Note that the some-
what large standard deviations quoted are the orthogo-
nal standard deviations and so include the contribution
from the radiosonde measurements, suggesting that the
actual scatter in the GPS estimates can be expected to
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FI1G. 4. Plots of precipitable water estimates from (a) WVR, (b)
traditional batch GPS solutions, (c) the near-real time, and (d)
the median estimates from the sliding-window process plotted
against the radiosonde estimates. The best-fit line is shown in
dashed black. The best-fit intercept and slope parameters for Y =
a+ b Xare (a)a=022,b=1.05(b)a=0.01,b =099 (c)a =
0.18, b = 1.01; and (d) @ = 0.11, b = 1.00. The standard deviations
of Y-X are (a) 2.14, (b) 1.80, (c) 1.89, and (d) 1.75 mm.

be rather smaller that the quoted numbers. Investiga-
tions into the accuracy of PWYV estimates derived using
predicted orbits (e.g., Dodson and Baker 1998; Kruse et
al. 1999) suggest that as long as the prediction lead is
only on the order of hours, the accuracy of the PWV
estimates is not badly degraded. Because the median
estimate compared best with the radiosondes and the
median is a robust operator, the time series of median
estimates is taken as the reference time series with
which to examine in detail the results of the sliding-
window process.

Removing the median estimate for each epoch from
all the estimates gives a set of residuals whose behavior
can be analyzed as a function of their window position.
Plotting the residuals for all seven WVIOP97 GPS sites
as a function of their knot number within the window
reveals the position-dependent scatter of the residuals
(Fig. 5). As might be expected, the rms of the residuals
rises near the edges of the window, with the rms scatter
for estimates from the middle 3 knots approximately 5
times lower than for estimates from the first and last
knots. This identifies one of the weaknesses with GPS
real-time estimates: the estimate that is of most interest
to weather forecasting is the most poorly constrained.
For epochs leading the most current epoch, however,
the opportunity exists to update the “best” estimate
with each successive window solution. Since the median
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FI1G. 5. Plot showing the standard deviations of the residuals
from the median epoch estimate with respect to the knot number
(solid black line with filled squares). The solid gray line with open
circles shows the standard deviations of the residuals of the cu-
mulative median estimates, and the dashed gray line with open
triangles shows the standard deviations of the residuals of the
cumulative weighted mean estimates, with weights derived from
the standard deviations (black line).

preserves steps and is robust in the presence of outliers,
it is a good choice for the best estimate. However, other
operators might reasonably be used. One of the sim-
plest alternatives to the median is a weighted mean
combination (see Fig. 5). The epochs estimated by the
first 2 knots in the window have order 1, so all estimates
are identical by definition. As the order (and therefore
the number of estimates available) for each epoch in-
creases the best estimate for that epoch can be cumu-
latively updated. The rms for the cumulative best esti-
mate drops continuously until it (by definition) matches
the reference estimate at N,,,,. The weighted mean per-
forms slightly better than the median, but what is most
notable is that neither it, nor the median, is able to
provide a better estimate than simply using the most
recent estimate for each epoch until the lead is more
than half the window width. This indicates that the es-
timates are not independent, and that improving con-
vergence to the final estimate would require that the
correlation between estimates be taken into account by
a more complicated operator, such as a Kalman filter.

One way to investigate the dependency of successive
estimates is shown in Fig. 6. Here we plot the means of
the residuals for each position within the window. This
shows whether there is a general tendency for the esti-
mates to have a particular bias based on their window
position, giving us some insight into trends in the esti-
mates that might be being introduced by the processing
itself. Figure 6 shows that although the overall trend of
all the sites combined is close to zero, several of the
sites, in particular LMNO, have small individual trends
that might be of concern. The source of these trends is
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Fi1G. 6. Plot of the mean residuals from the median epoch esti-
mate. The heavy solid black line is the mean for all the WVIOP97
sites. The black dashed line is HBRK, the black dotted line is
LMNO, the medium gray solid line is HVLK, the medium gray
dashed line is PRCO, the medium gray dotted line is VCIO, the
light gray dashed line is HKLO, and the dotted light gray line is
NDSK.

not clear; possibly some processing parameter is slightly
overconstrained for some of the conditions experienced
during WVIOP97. Further, more detailed sliding-
window analysis of this dataset might provide more in-
sight into the cause(s). The figure indicates that the
correlation between the residuals is small over the time
period of the WVIOP97 experiment. Mean residual
plots for other networks (not shown) tend toward zero
as the length of time considered increases; however,
more significant window trends may be present over
time periods on the order of days. Another visualiza-
tion of window trends is provided by a 2D image of the
PWYV residuals from the median estimates (Fig. 7). This
indicates a quasi-periodic component in the residuals
with a time period on the order of a few hours. In the
most severe case, at the beginning of day 13 of
WVIOPY7 the residuals range from ~3 mm too moist

KNOT NUMBER

11 12 13
DAY OF WVIOP97

F1G. 7. Plot of residuals from the median estimates for PRCO for days 11-15 of WVIOP97.

FOSTER ET AL.

693

at the beginning of the window to ~3 mm too dry at the
end of the window. Two similar, but reversed, examples
appear toward the end of the same day. The pairing of
these residuals, with opposite signs appearing at oppo-
site edges of the window, suggests that they might be
due to the zenith delay change constraint parameter
being too tight. If there is an event with a temporal
delay gradient that is greater than the delay change
parameter can accommodate, there will be under- and
overshoot in the delay estimates as the window slides
past the event (reversed if the gradient is negative).
Although many of these zones of extreme residuals at
the edges of the windows are paired, there are also
examples that are not: the epochs near the end of day
12 show only small residuals near the end of the win-
dows despite high residuals near the beginning of the
window; the source of these anomalies is unknown.
The potential for sliding-window analysis as a tool for
fine-tuning processing parameters is illustrated by Fig.
8. The data here come from a network of GPS sites on
the island of Hawaii during a large storm event (Foster
et al. 2003). The dataset was processed using the slid-
ing-window technique with an 8-h window and an
hourly window step. Two piecewise-constant atmo-
spheric gradients were estimated per window. By com-
paring the differences between the two gradients esti-
mated within each processing window with the differ-
ences between gradient estimates for corresponding
epochs but from windows 4 h apart, we can examine
whether the gradient variation constraint used for the
processing is allowing the model sufficient range. The
results clearly show that the gradient differences are
significantly smaller when calculated from within the
windows than when calculated between windows (Fig.
8a). This suggests that the gradient variation parameter
was overconstrained. As the magnitudes of the gradi-
ents suggest, this was an extreme storm event with peak

RESIDUAL PWV (mm)

14 15 16
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Fi1G. 8. Scatterplots of 4-h atmospheric gradient component dif-
ferences. Differences calculated from two processing windows are
plotted against the differences calculated from within the win-
dows. Units are meters of delay. (top) Processed with tight (0.02
m h™'?) constraints on gradient variation. (bottom) Processed
with loose constraints (0.04 m h™"?) on gradient variation. The 1:1
line is the shown in gray. The 95% confidence ellipse and the best
least squares fit line are shown in black.

rainfall rates of over 4 in. h ™!, and the default choices of
processing parameters were unable to accommodate it.
The processing was repeated, this time with the gradi-
ent variation constraint loosened from the original 0.02
to 0.04 m h™'2. The new results (Fig. 8b) fall almost
exactly on the 1:1 line, indicating that we are now get-
ting estimates that are consistent. (The effect of the
relaxed constraint is also visible in the overall scatter:
the loosely constrained estimates are ~50% more scat-
tered.)
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5. Conclusions

The multiple overlapping solutions that the sliding-
window technique generates provide the operator with
the opportunity to examine a variety of statistics of the
precipitable water estimates and their errors. The tech-
nique is conceptually straightforward; however, to dis-
cuss meaningfully the implications and results associ-
ated with multiple, overlapping solutions, a nomencla-
ture was presented to formalize the meaning of the
primary terms and to define the geometric and physical
relationships between them.

In addition to improving the understanding of the
errors associated with GPS precipitable water esti-
mates, the technique provides a tool for fine-tuning the
processing parameters used. The impact of the con-
straints applied to the atmospheric model, for example,
can be evaluated using sliding-window analysis. The ex-
amples presented in this paper utilize standard precise
orbits, while an operational system will not have access
to these products. A similar sliding-window process can
be established, however, to generate near-real-time or-
bits from those global sites that report hourly data.
Such a process, run by SOPAC, provides orbits within
1 h of real time, allowing regional sliding-window pro-
cesses to take advantage of orbits that need only be
predicted forward 2 h (Gutman and Benjamin 2001),
minimizing errors introduced by orbit predictions.

The access that sliding-window analysis gives to the
time correlation of successive estimates and errors also
permits the operator to calculate likely corrections for
the near-real-time estimates and their real errors. For
example, a predictive filter might be designed to recog-
nize when the first estimates for the near-real-time ep-
ochs from the last few solutions are biased relative to
their best estimates and to provide a correction term to
be applied to the current near-real-time estimate, im-
proving the quality of the data that GPS is able to pro-
vide to numerical weather models.

Acknowledgments. We would like to thank Peng
Fang, who provided invaluable help and advice in
implementing the sliding-window process, and Seth
Gutman, who provided the WVIOP97 data analyzed
for this paper.

APPENDIX

Glossary

Window position T The end time (last knot) of the
window. As the primary applica-
tion of the sliding-window tech-
nique is for (near) real-time pro-
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cessing, the most relevant time is
the most recent—Ilast—epoch.
Time width (k) of the window.
Time between each atmospheric
estimate in a solution.

Time step between successive so-
lutions.

The complete set of (atmospheric/
ZND) parameters estimated by a
processing run.

Atmospheric delay (ZND) esti-
mate for a fixed epoch.

The first estimate for an epoch.
(Strictly only appropriate for the
last estimate of the most recent
window when the processing is in
a near-real-time mode; otherwise
the term “most recent estimate” is
more correct.)

The median (or other statistically
derived) estimate for an epoch de-
termined from all the estimates
available for that epoch.

The number of estimates avail-
able for the epoch.

Window width W
Knot interval &

Window increment/
step A
(Window) solution

Epoch estimate

Nearly real-time
estimate

Best estimate

Epoch order
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