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Abstract

Deterministic model forecasts do not convey to the end users the forecast uncertainty the models possess as  
a result of physics parameterizations, simplifications in model representation of physical processes, and er-
rors in initial conditions.  This lack of understanding leads to a level of uncertainty in the forecasted value  
when only a single deterministic model forecast is available.  Increasing computational power and parallel  
software architecture allows multiple simulations to be carried out simultaneously that yield useful meas-
ures of model uncertainty that can be derived from ensemble model results.  The Hybrid Single Particle Lag-
rangian Integration Trajectory and Dispersion model has the ability to generate ensemble forecasts.  A met-
eorological ensemble was formed to create probabilistic forecast products and an ensemble mean forecast for  
volcanic emissions from the Kilauea volcano that impacts the state of Hawai’i.  The probabilistic forecast  
products show uncertainty in pollutant concentrations that are especially useful for decision-making re-
garding public health.  Initial comparison of the ensemble mean forecasts with observations and a single  
model forecast show improvements in event timing for both sulfur dioxide and sulfate aerosol forecasts.

I. INTRODUCTION

he Kilauea volcano has been continu-
ously erupting from the Pu’u ‘O’o vent 
(East  Rift  vent)  since  1983,  emitting 

large amounts of sulfur dioxide (SO2).  The rate 
of  emissions  has  ranged  from  less  than  50 
tonnes/day  to  more  than  10,000  tonnes/day 
[Elias and Sutton, 2007].  In 2008, a second vent 
opened up in the Halema’uma’u Crater (sum-
mit vent) with a typical emission rate of ~700 
to 1000 tonnes/day based on in-situ observa-
tions.  Photochemical and aqueous-phase reac-
tions  convert  SO2 to  sulfates  (SO4).  Together 
the  SO2 and sulfate  aerosol  form a  plume of 
pollution known as “vog” after volcanic smog.

T
Prevailing northeast trade winds in Hawaii ad-
vect  the emissions  downwind past  the south 
end of the Island of Hawai’i where a sea breeze 
circulation  brings  the  vog  to  leeward  com-
munities, causing frequent episodes of poor air 
quality. Longo [2013] found the magnitude of 
health  effects  increasing  relative  to  exposure 
levels  following  the  opening  of  the  Hale-
ma’uma’u vent.  Southerly flow, also known in 
Hawaii as kona wind conditions, which occur 
most  frequently  in  the  winter  months  (Oct-
Mar), bring the vog plume over the village of 
Volcano, only 4 km from the vent.  The close 
proximity of Volcano to the vent exposes its in-
habitants  to  dangerously  high  concentrations 
of  vog  during  kona  conditions,  leading  to 
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evacuation orders in the recent past. 
An automated numerical model approach has 
been implemented at the University of Hawai’i 
at Manoa (UHM) to forecast the dispersion of 
emissions  from  Kilauea  volcano  across  the 
Island of Hawai’i and the other main Hawaiian 
islands [Hollingshead et al., 2003].  The goal of 
the modeling effort  is  to  give useful  forecast 
guidance  regarding  the  location  of  the  vog 
plume and the concentrations of sulfur dioxide 
and  sulfate  aerosol  in  Hawaiian  Island 
communities in a timely manner.  
The UHM Vog Model is a custom application 
of  the  HYbrid  Single-Particle  Lagrangian  In-
tegration Trajectory (HYSPLIT) and dispersion 
model  [Draxler  and  Hess,  1997;  1998].   The 
Vog  model  has  been  operational  since  2010 
and  produces  60-hr  forecasts  twice  daily  for 
sulfur  dioxide  and sulfate  aerosol  concentra-
tions at 100 m above ground level.  The model 
resolution is determined by the meteorological 
grids from the Weather Research and Forecast-
ing (WRF) model.  Emission rate data  are es-
timated from an array of UV FLYSPEC spec-
trometers [Horton et al., 2006] near the summit 
vent as well as a car-mounted FLYSPEC that 
samples both emission plumes.  Sulfur dioxide 
emissions are specified as vertical line sources 
at  each  vent  to  mimic  plumes  under  typical 
trade wind conditions.
There is a growing trend to move away from 
purely deterministic simulations to probabilist-
ic simulations where modelers seek to describe 
the range of likely events and their associated 
probabilities  [Dabberdt  and  Miller,  2000]. 
Model uncertainties commonly occur through 
excessive  simplification  of  physical  processes 
in the model, i.e. turbulence, or the misrepres-
entation of the meteorological conditions that 
can result from inadequate spatial data resolu-
tion, sampling errors, or inclusion of unrepres-
entative observations.   Even with further im-
provements  to  the  vog  model,  underlying 

model bias still remains in deterministic fore-
casts due to physical parameterizations or sim-
plifications  and model  numeric  schemes  that 
convey a sense of certainty that is not always 
supported by the model. Pollutant prediction 
uncertainty information may be especially crit-
ical for economic decisions, regulatory applica-
tions, and human health issues, especially for 
the atmospheric release of hazardous materials 
[Draxler, 2003]. 
Probabilistic forecasts are developed by build-
ing ensembles of model simulations to calcu-
late  the  model  mean  or  median  values  and 
model variance.  Experimental vog model en-
semble forecast products have been developed. 
It  is  important  to  note  that  an ensemble  can 
only give significant improvements if particip-
ating  models  have  complementary  strengths 
and weaknesses, and therefore are representat-
ive of the uncertainty in our knowledge [van 
Loon et al., 2007].  In this respect, the ensemble 
described in this paper is lacking complement-
ary models as it  relies entirely on initial  and 
lateral boundary conditions provided by WRF 
forecasts.   Thus  any weaknesses  in  the  WRF 
forecasts will be manifest in the vog forecasts 
via the meteorological forcing.

II. METHODS

Although sulfur dioxide emission uncertainty 
is significant, emissions are subject to meteoro-
logical conditions, such as stability, turbulence, 
and winds,  that are primarily responsible for 
what areas are affected by poor air quality.  A 
meteorological ensemble strategy has been ap-
plied in the vog model.  The ensemble is well 
suited  for  conditions  around  the  Hale-
ma’uma’u Crater.  It is well known that only 
meteorological features that are sampled by ~ 
5x  grid  points  are  well  resolved  in  observa-
tions and in numerical models [Carbone et al., 
1985].  Since the vog model has a 1.0 km grid 
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spacing, localized flow patterns that have been 
observed through plume motions around the 
summit crater (~ 1.0-2.0 km) are unresolved by 
the model.  This ensemble addresses the uncer-
tainty  in  the  under-sampled  meteorological 
fields near the vent sites.
The assumption behind the meteorological en-
semble is that errors in the downwind plume 
position are primarily a function of the accu-
mulation of initial errors in the particle traject-
ories [Draxler, 2003].  This is analogous to dif-
ferences  in  initial  conditions  in  which  errors 
are largest just downwind of the source.  The 
ensemble  consists  of  27  equally-weighted 
members.   Each  ensemble  member  is  com-
puted  from  the  same  pollutant  source 
location(s), but during the calculation the met-
eorological grid is offset by ±1 grid point (1.0 
km)  in the horizontal direction and .01% the 
depth of the vertical grid (~20 m) in the vertic-
al direction (Table 1).  The exact computational 
procedure  is  explained  in  detail  by  Draxler 
[2003].  While  model outliers  may impact  the 
ensemble results when all models have equal 
weights,  correcting  for  this  requires  a  larger 
data  set  than  is  presently  available  for  this 
study.  Once  the  ensemble  is  run,  the  results 
must  be  summarized and displayed graphic-
ally in a manner easily understood by the end 
user  of  the  model  guidance.  The  vog  model 
post-processing calculates the ensemble mean 
concentration values  presented in  this  study. 
The ensemble mean has been shown to outper-
form any single model [van Loon et al.,  2007 
and references within].  It is important for the 
ensemble model uncertainty for the forecast be 
conveyed graphically as well.  
Draxler  [2003]  developed  a  probabilistic  air 
quality  forecast  product  around  exceedance 
factors following the work of Krzysztofowicz 
[1998]  for  quantitative  precipitation  forecasts 
(QPF).   These  probability  exceedance  (PE) 

plots are representations of the probability of 
exceeding a specific concentration level at the 
nth-percentile values.  

Table 1: List of HYSPLIT ensemble members and their  
grid offsets. Model 10, with no grid offsets, is closest to  

the operational model configuration. Adapted from 
Draxler [2003].

Member X Y Z
1 0 0 -1
2 0 +1 -1
3 0 -1 -1
4 +1 0 -1
5 +1 +1 -1
6 +1 -1 -1
7 -1 0 -1
8 -1 +1 -1
9 -1 -1 -1
10 0 (control) 0 0
11 0 +1 0
12 0 -1 0
13 +1 0 0
14 +1 +1 0
15 +1 -1 0
16 -1 0 0
17 -1 +1 0
18 -1 -1 0
19 0 0 +1
20 0 +1 +1
21 0 -1 +1
22 +1 0 +1
23 +1 +1 +1
24 +1 -1 +1
25 -1 0 +1
26 -1 +1 +1
27 -1 -1 +1

  
In  such  a  plot,  only  one  concentration 
threshold is considered with multiple probab-
ility levels. The output can be displayed as a 
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concentration-probability  (CP)  plot,  where 
concentration contours are plotted at a specific 
probability level.  This type of plot portrays a 
range  of  thresholds  at  a  single  probability 
level.  

III. RESULTS

A Kona wind event on 21 November 2013 is 
used  to  illustrate  the  results  of  an  ensemble 
simulation over Hawai’i.  As expected, the vog 
model results for this case suggest that concen-
trations for sulfur dioxide (Fig. 1) and sulfate 
aerosols (Fig. 2) are more likely to be exceeded 
in  close  proximity  to  and  downwind  of  the 
vent  source  locations  and  that  higher 
thresholds are  more  likely to be  exceeded in 
this region as well. The orography of the Island 
of Hawai’i and the trade wind inversion play a 
significant role in constraining where the prob-
ability  of  experiencing  vog  is  greatest.   The 
trade wind inversion at 2,200 m causes the vog 
to  be  trapped  (Fr  =  .17)  and  is  advected  by 
weak southerly flow around the higher terrain.
The ensemble shows the pollutants are concen-
trated  below  the  inversion  as  was  seen  by 
Hollingshead et  al.  [2003].   CP maps (Fig.  3) 
also imply that the village of Volcano, located 
just north of the source vents, is most likely to 
encounter seriously unhealthy vog concentra-
tions during this event.  
Validation of the ensemble mean is necessary 
to  determine  the  added  value  of  ensemble 
forecasts over a single model forecast.  The en-
semble mean is compared against observations 
and the results from the control run of the op-
erational model (Fig. 4), which has no displace-
ment of the wind field (c. f. Table 1).  
Pollution episodes are defined by the sulfur di-
oxide observations because the sulfate aerosol 
observations are actually PM2.5 aerosol obser-
vations that include aerosols other than sulfate, 
such as sea salt particles, pollen, dust, and in-

dustrial and vehicular emissions. 
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Figure 1: Probability of exceedance (PE) maps for SO4 

levels at [a] 1E-8 μg/m3, [b] 15 μg/m3, [c] 35 μg/m3, [d]  
65 μg/m3,  [e] 150 μg/m3, and [f] 250 μg/m3 valid for  

period 1600-1700 HST 21 November 2013.  Thresholds  
conform to Airnow.gov’s Air Quality Index for PM2.5  

(sulfate) exposure.  The stars denote the source locations,  
volcanic vents.  The heavy black lines represent the 2,200  

m height contour.
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Figure 2: Probability of exceedance (PE) maps for SO2 

levels at [a] 1E-6 PPM, [b] 0.1 PPM, [c] 0.2 PPM, and  
[d] 1.0 PPM valid for period 1600-1700 HST 21 Novem-
ber 2013.   Thresholds conform to Hawai’I Department of  
Health guidelines for sulfur dioxide exposure. SO2 maps 
do not exist for higher concentrations because sulfur di-

oxide oxidizes rapidly in moist environments to form 
sulfates (SO4). The stars denote the source locations, vol-
canic vents.  The heavy black lines represent the 2,200 m  

height contour.
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Figure 3: Concentration-probability maps at the 95th 

percentile level for [a] SO4 and [b] SO2 for the same time  
periods as in Figures 1 and 2.  The threshold levels and  
color table for SO2 correspond to Hawai’i Department of  
Health standards and those of SO4 correspond to PM2.5 
levels established by the EPA.  Within a contour, 5% of  

the members (2 of 27) predict a higher concentration than  
the one given by the contour, and outside of it, 95% of  

the models in the ensemble (25 of 27) predict a lower con-
centration.

These  episodes  are  resolved  well.   The  en-
semble tends to capture both onset and cessa-
tion better than the control.   There is  a large 
positive forecast  bias in maximum values for 
the ensemble and control, which is partially a 
result of emission initialization (i.e. multi-day 
average emission estimates) and model chem-
istry.  These are issues that we are in the pro-
cess of addressing.

IV. DISCUSSION

In summary, preliminary results of this single 
case suggest that the ensemble mean forecasts 
will improve the pollution episode representa-
tion  for  locations  on  the  Island  of  Hawai’i. 
Probabilistic air quality forecasts provide addi-
tional information for improved decision-mak-
ing,  regulatory  purposes,  and  risk  manage-
ment,  especially  for  public  health.   Levels  of 
confidence can be assigned to particular fore-
cast events to help reduce false alarms.  Prob-
ability exceedance (PE)  maps display the en-
semble derived probability information in the 
most readily understood format. 

Figure 4: Sulfur dioxide and sulfate aerosol (SO4)  
timeseries for locations downwind of the vog sources  

(Mountain View and Hilo).  Background colors reflect  
the threshold values shown in Figure 3.  Observations for  

sulfate aerosol actually fall under PM2.5, so values re-
flect constituents other than sulfate.

A comprehensive model ensemble includes the 
greater  variability  displayed by several  inde-
pendent modeling systems, with differing ini-
tial conditions and physics schemes.  The cur-
rent  ensemble  instead  simulates  the  inherent 
variability  of  the  wind  field  by  shifting  the 
WRF model high-resolution output relative to 
the emission source.  In cases where there are 
errors in the initial conditions of WRF, the ob-
served  evolution  of  the  wind  field  may  fall 
outside  the  variability  seen  in  our  WRF  en-
semble.   A multi-  mesoscale model ensemble 
may  contain  greater  variability  in  the  wind 
field  and  be  more  likely  to  capture  the  ob-
served wind field evolution, however, it would 
be prohibitively expensive to run and the actu-
al atmospheric evolution may still fall outside 
of such an ensemble during times of weak syn-
optic forcing (i.e. kona wind conditions).  
The results of this case study also suggest that 
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more work is needed to improve the determin-
istic and ensemble vog models. A full valida-
tion  effort  will  be  conducted  after  improve-
ments to the vog model are completed. In par-
ticular an improved chemistry module is being 
developed for the conversion of SO2 to sulfate 
aerosol  and a  plume-rise  model  is  being  de-
veloped to improve the initial source of emis-
sions. 
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