1. SCIENTIFIC OBJECTIVES

The objective of the cruise was to maintain a collection of hydrographic and biogeochemical data at the Hawaii Ocean Time-series (HOT) stations. Four stations were to be occupied during the cruise, in the following order:

1) Station 1, referred to as Station Kahe, is located at 21° 20.6’N, 158° 16.4’W and was to be occupied on August 16th for about 3 hours.
2) Station 2, referred to as Station ALOHA, is defined as a circle with a 6 nautical mile radius centered at 22° 45’N, 158°W. This is the main HOT station and was to be occupied August 17th, 18th, and 19th.
3) Station 50, the site of WHOTS-9 Mooring (anchor position 22° 46.071’N 157° 53.956’W) was to be occupied on August 19th for about one hour.
4) Station 6, referred to as Station Kaena, is located off Kaena Point at 21° 50.8’N, 158° 21.8’W and was to be occupied on August 19th for approximately 3 hours.

Upon arrival to Station Kahe a 1300 lb. weight-test cast to 500 m, one CTD cast to 1000 m, a Hyperpro cast and a hand lowered Niskin cast to 20 m were to be conducted on the afternoon of August 16th. The single CTD cast was to be conducted to collect continuous profiles of various physical and chemical parameters. Water samples were to be collected at discrete depths for biogeochemical measurements. After these operations were satisfactorily completed, the ship was to proceed to Station ALOHA.

Upon arrival to Station ALOHA, the free-drifting sediment trap array was to be deployed. The sediment trap array was to stay in the water for about 52 hours. This was to be followed by one 1000 m CTD cast for preparation of the Primary Productivity Array. This cast was to be followed by the deployment of the free-drifting Primary Productivity Array to incubate insitu for 12 hours. A full-depth (~4740 m) CTD cast was to be conducted after the deployment of the Primary Production Array, followed by 1000 m CTD casts at strict 3 hour intervals for at least 36 hours for continuous and discrete data collection, ending with another full-depth CTD cast at 2300 on August 18th.

Another free-drifting array (Gas Array) was to be deployed for 24 hours for incubation experiments on August 18th. The Gas Array was to be recovered on August 19th.

A plankton net was to be towed between 1000-1400, and 2200-0200 for 30 minute intervals on August 17th and 18th at Station ALOHA.

The Hyperpro was to be deployed for a half-hour period near noon time on August 16th, 17th and 19th.
A package including a Wet Labs AC9, a Chelsea Fast Repetition Rate Fluorometer (FRRf), a SeaBird Seacat, and a LISST particle size and distribution analyzer was to be used to profile the upper 200 m at Station ALOHA in the early morning and around noon on August 19th.

A trace metal free sample was to be collected by the ATE sampler each day the ship was occupying Station ALOHA.

After the 36 hour burst period of CTD work at Station ALOHA was accomplished, the ship was to transit to recover the floating Sediment Trap Array and the Gas Array on the morning of August 19th. After recovering the arrays, the ship was to transit to Station 50 to conduct a one-hour 200 m CTD yo-yo cast. Once operations at Station 50 were complete, the ship was to re-position within Station ALOHA, close to the HPM mooring to conduct an ACS/AC9/FRRf/LISST cast, and a Hyperpro cast. Once the optics profiles were complete, the ship was to lower a transducer head to communicate with the HPM and receive an acoustic transmission from the mooring.

Once operations at Station ALOHA were complete, the ship was to transit to Station 6, referred to as Station Kaena where a near-bottom CTD cast (~2500 m) was to be conducted to collect salinity and chlorophyll samples for calibration.

After Station Kaena operations were complete, the ship was to transit back to Snug Harbor.

The following instruments were to collect data throughout the cruise: shipboard ADCP, thermsalinograph, pCO_2 system, underway fluorometer and the meteorological package.

2. SCIENCE PERSONNEL

<table>
<thead>
<tr>
<th>Participant</th>
<th>Title</th>
<th>Affiliation/HOT Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan Curless</td>
<td>Research Associate</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Dan Sadler</td>
<td>Research Associate</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Brett Updyke</td>
<td>Research Associate</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Adriana Harlan</td>
<td>Research Associate</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Sean Junghbluth</td>
<td>Graduate Student</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Donn Viviani</td>
<td>Graduate Student</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Shimi Rii</td>
<td>Graduate Student</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Blake Watkins</td>
<td>Marine Engineer</td>
<td>UH/BEACH</td>
</tr>
<tr>
<td>Brenner Wai</td>
<td>Graduate Student</td>
<td>UH/CMORE</td>
</tr>
<tr>
<td>Jeffrey Snyder</td>
<td>Marine Technician</td>
<td>UH/PO</td>
</tr>
<tr>
<td>Fernando Santiago-Mandujano</td>
<td>Research Associate</td>
<td>UH/PO</td>
</tr>
<tr>
<td>Cameron Fumar</td>
<td>Research Associate</td>
<td>UH/PO</td>
</tr>
<tr>
<td>Joseph Gum</td>
<td>Research Associate</td>
<td>UH/PO</td>
</tr>
<tr>
<td>Michelle Wong</td>
<td>Graduate Student</td>
<td>UH/PO</td>
</tr>
<tr>
<td>Emily Crigler</td>
<td>Volunteer</td>
<td>NOAA/PO</td>
</tr>
<tr>
<td>Jim Foley</td>
<td>Marine Educator</td>
<td>UH/CMORE</td>
</tr>
<tr>
<td>Alia Thompson</td>
<td>STARS participant</td>
<td>Kaimuki Middle School</td>
</tr>
<tr>
<td>Deborah Clevenger</td>
<td>STARS participant</td>
<td>Waipahu Intermediate</td>
</tr>
<tr>
<td>Erin Mendelson</td>
<td>STARS participant</td>
<td>Wheeler Middle School</td>
</tr>
<tr>
<td>Trevor Young</td>
<td>Marine Technician</td>
<td>OTG</td>
</tr>
<tr>
<td>Trevor Goodman</td>
<td>Marine Technician</td>
<td>OTG</td>
</tr>
</tbody>
</table>
3. GENERAL SUMMARY

Operations at Station ALOHA were conducted as planned. Small delays in the schedule occurred due to slowing of winch speed on casts to adjust the level wind on the Caley winch drum and due to the long transit back to Station ALOHA after recovering the Gas Array and Sediment Trap Array. Two separate issues with the operation of the Caley crane occurred on the cruise but did not affect the overall operational plan of the cruise (See Section 5).

One 1000 m CTD cast was completed at Station Kahe. Two near bottom CTD casts and thirteen 1000 m CTD casts were conducted at Station ALOHA. One 200 m yo-yo CTD cast was completed near the WHOTS mooring (Station 50) with five cycles completed. One near bottom cast was completed at Station Kaena.

The Sediment Traps, Primary Production Array, and Gas Array were all deployed and recovered successfully. All arrays drifted to west of the center of Station ALOHA.

Six net tows for the core HOT zooplankton collection were completed successfully; three during the day, and three during the night.

The Hyperpro was deployed and recovered successfully three times near noon.

The optical package ACS/AC9/FRRf/LISST was deployed two times during the cruise, once around noon and once in the early morning.

The ATE was deployed and recovered successfully three times on the cruise. Three trace metal samples were collected.

The fluorometer, thermosalinograph and the ship’s meteorological suite ran without interruption during the cruise, but the data were not available on the ship’s intranet system because one of the computers (kmsnap) was not working. The underway pCO$_2$ system would not operate and requires additional parts for repair. The Caley Crane control and read out monitor in Lab #1 was not working.

Winds were from the east throughout the cruise at ~15kts. Seas were 1-2 ft with a 3-5 ft easterly swell. The prevailing currents were to the west of the center of Station ALOHA.

4. R/V Kilo Moana OFFICERS AND CREW, TECHNICAL SUPPORT

The R/V Kilo Moana continues to maintain good ship support for our work. Captain Meyer and the ship’s crew showed enthusiasm, concern, and dedication to our scientific mission. A sincere thank you goes to the engineers who worked tirelessly to troubleshoot the problems we experienced with the Caley crane.

Technical support during this cruise was good. OTG personnel were available to assist in our work during the cruise.
5. DAILY REPORT OF ACTIVITIES (HST)

August 16, 2012
0858- Depart Snug Harbor
0925- Science Party Briefing with Captain and Chief Scientist
1006- Fire and Abandon Ship Drills
1130- Arrive at Station Kahe
1140- Weight Cast to 500m
1215- End of Weight Cast
1232- Hyperpro Cast #1
1250- Hyperpro Cast #2
1212- Hyperpro Cast #3
1334- S1C1 1000 m CTD
1450- End of cast, 4 twists removed from wire
1503- Niskin cast to 20 m
1509- End of Niskin Cast
1510- Transit to Station ALOHA
2242- Arrive at Station ALOHA, 1 mile NE of center
2310- Begin Sediment Trap Deployment
2330- Sediment Traps Deployed 22° 45.638’N 157° 59.293’W

August 17, 2012
0155- S2C1 1000 m CTD
0230- Stop to fix level wind at 768 dbar on upcast
0249- Stop to fix level wind at 135 dbar on upcast
0305- End of cast
0430- Begin PP array deployment
0501- Deployed PP Array 22° 45.628’N 157° 59.2983’W
0505- Transit to Center
0520- S2C2 PO Deep Cast
0736- Stop to fix level wind at 4220 dbar on upcast
0924- End of cast, 6 twists removed from wire
0925- Transit to pump ship’s tanks
1015- Net Tow
1047- End of net tow
1055- ATE
1125- End of ATE
1145- Drive by PP array to check floatation, flotation is good
1200- S2C3 1000 m CTD
1315- End of Cast
1329- Hyperpro
1355- End of Hyperpro, 2 casts completed before 1400 cut off
1400- Hand net tow
1424- Hand net tow complete
1428- S2C4 1000 m CTD
1544- End of cast - removed 4 twists
1600- Transit to pump ship’s tanks
1656- S2C5 1000 m CTD
1808- End of cast - removed 2 twists
1910- PP Array Recovery 22° 46.232’N 158° 4.435’W
1929- Array on board
1954- S2C6 1000 m CTD
2104- End of cast - 4 twists removed
2120- Transit to pump ship’s tanks
2157- Net Tow
2225- Begin second Net Tow
2258- End of net tow
2309- S2C7 1000 m CTD

August 18, 2012
0013- End of cast - 4 twists removed

HOT-245 Chief Scientist Report
0020- When parking the Caley Crane the power transfer from the belly pack to the console created an error alarm in doghouse. Neither the belly pack nor dog house could control the movement of the crane and the crane remained upright above the winch drum. Engineering was called to troubleshoot the Caley HPU shut down.

0205- It was found that the slew joystick in doghouse had been tapped slightly out of 'neutral' position and since the joystick does not have a spring stop, it was therefore sending out a command that was interfering with the operation of the crane. The joystick was moved into neutral position and normal operation of the crane was resumed from both the doghouse controls and the belly pack.

0210- S2C8 1000 m CTD
0315- End of cast - 4 twists removed
0320- Transit to Gas Array Deployment site, 1 mile north of center
0400- Begin Gas Array deployment
0426- Gas Array deployed 22° 46.055'N 158° 00.003'W
0445- S2C9 1000 m CTD
0550- End of cast - 5 twists removed
0600- Transit to pump ship's tanks
0748- S2C10 1000 m CTD
0900- End of cast - 5 twists removed
1002- Net Tow
1035- End of net tow
1040- ATE
1104- End of ATE
1105- S2C11 1000 m CTD
1212- End of cast - 4 twists removed
1230- Net Tow
1300- End of net tow
1351- S2C12 1000 m CTD
1501- End of cast, 5 twists removed
1510- Transit to pump ship's tanks
1652- S2C13 1000 m CTD
- While getting the crane into the appropriate deployment position, the locking pins for the docking head failed to engage. Engineering was called to investigate and found a proximity switch had failed. Due to the calm conditions, it was decided to proceed with the deployment of the CTD and further work on the proximity switch/replacement of the switch would occur after the cast was completed.
1816- End of cast - 6 twists removed
1929- Captain and Chief Sci met and agreed to continue CTD operations without the locking pins engaged on docking head while engineers continue to investigate proximity switch/fuse tripping problems.
1950- S2C14- 1000 m CTD
- Winch drum stopped at 115 dbar on up cast for level wind problems
2112- End of cast, 5 twists removed
2115- Transit to pump ship's tanks
2200- Net tow
2234- End of Net Tow
2305- S2C15 near bottom CTD

Aug 19, 2012
0052- At 4805 dbar, 10 m off bottom 22° 44.997'N 158°W
- Level wind problems on upcast at 3771, 2800, 1800, and 760 dbar (when wire was close to inboard drum cheek).
0250- End of cast, 2 twists removed
0300- AC9/FRRf
0450- End of AC9, transit to Gas Array
0600- Gas Array Recovery 22° 45.44'N 158° 11.08'W
0620- Gas Array on board, transit to Sediment Traps
0715- Arrive at Sediment Traps 22° 46.99'N 158° 20.13'W
0745- Sediment traps on board, transit to Station 50
1010- Arrive at Station 50, ATE
1033- End of ATE
1040- S50C1, 200 m yo-yo CTD
1155- End of cast, 5 cycles complete
1200- Transit to HPM site
1250- Hyperpro
1338- End of Hyperpro
1350- AC9/FRRf

HOT-245 Chief Scientist Report
1528- End of AC9/FRRf
1603- Transducer deployed
1623- Transducer recovered, communications with HPM were not successful. Although the downloading of data began, the file transfer was not completed.
1630- Transit to Station Kaena
2125- Arrive Station Kaena
2130- S6C1 near bottom CTD
2330- End of cast
2336- Transit to Snug Harbor

August 20, 2012
0700- Hotel buoy
0748- First Line at pier
0754- Arrive Snug Harbor
HOT program sub-components:

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Project</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt Church</td>
<td>Core Biogeochemistry</td>
<td>UH</td>
</tr>
<tr>
<td>Dave Karl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob Bidigare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roger Lukas</td>
<td>Hydrography</td>
<td>UH</td>
</tr>
<tr>
<td>Mike Landry</td>
<td>Zooplankton dynamics</td>
<td>SIO</td>
</tr>
<tr>
<td>Ricardo Letelier</td>
<td>Optical measurements</td>
<td>OSU</td>
</tr>
<tr>
<td>Charles Keeling</td>
<td>CO$_2$ dynamics and intercalibration</td>
<td>SIO</td>
</tr>
<tr>
<td>Paul Quay</td>
<td>DI13C</td>
<td>SIO</td>
</tr>
<tr>
<td>Matt Church</td>
<td>Diversity and activities of nitrogen-fixing microorganisms</td>
<td>UH</td>
</tr>
<tr>
<td>Matt Church (via Sam Wilson)</td>
<td>Reduced gases in the upper ocean: The cycling of methane, sulfide and nitrous oxide</td>
<td>UH/Moore</td>
</tr>
<tr>
<td>Matt Church (via Donn Viviani)</td>
<td>Bacterial production and EOC at Station ALOHA</td>
<td>UH</td>
</tr>
<tr>
<td>Matt Church (via Shimi Rii)</td>
<td>Investigation of temporal changes in picoeukaryote diversity at Station ALOHA</td>
<td>UH</td>
</tr>
<tr>
<td>Henrieta Dulaiova and Ken Buesseler</td>
<td>Japanese radionuclide release sampling</td>
<td>UH</td>
</tr>
<tr>
<td>Rebecca Briggs</td>
<td>LNSW collection for SOEST Lab for Analytical Biogeochemistry</td>
<td>UH</td>
</tr>
<tr>
<td>Adina Paytan</td>
<td>O18 natural abundance</td>
<td>UCSC</td>
</tr>
<tr>
<td>Dave Karl (via Mariona Segura-Noguera)</td>
<td>Sample collection for dissolved inorganic and organic nitrogen determination</td>
<td>UH</td>
</tr>
<tr>
<td>Dave Karl (via Jim Foley)</td>
<td>Science Teachers Aboard Research Ships (STARS)</td>
<td>UH</td>
</tr>
<tr>
<td>Matt Church (via Church Lab members)</td>
<td>N$_2$ fixation, Primary Production, and Bacterial</td>
<td>UH</td>
</tr>
<tr>
<td>Matt Church and John Waterbury (via Christina Johnson)</td>
<td>Production rates in 25 m water at Station ALOHA</td>
<td>UH</td>
</tr>
<tr>
<td>Matt Church (via Donn Viviani and Dan Sadler)</td>
<td>Slide collection for crocosphaera and heterocystic bacteria associated with diatoms</td>
<td>UH</td>
</tr>
<tr>
<td>Matt Church and Greig Steward</td>
<td>Methods testing for ocean acidification experiment</td>
<td>UH</td>
</tr>
<tr>
<td></td>
<td>Teaching plating techniques and methodology of DNA extraction from seawater to students of OCN626</td>
<td>UH</td>
</tr>
</tbody>
</table>