Course Introduction: The computer is an indispensable tool in engineering and the natural sciences, i.e. the “STEM” fields of study. While mastery of computer software such as office productivity tools is essential in any profession, STEM students need further skills allowing them to leverage computers in their work. Computer programming can be taught using a variety of computer languages, such as Java, Python, or C++. Yet, practicing STEM scientists, engineers and technicians also need to visualize program output and analyze data. ERTH250 introduces students to this material in a one-semester introductory course using the MATLAB® programming environment. From Wikipedia, “MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. Developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, and Fortran”. It comes with a vast library of numerical and graphical functions and is therefore ideally suited for solving a broad range of technical problems on short notice. It is available for all major platforms (Windows, Macintosh, Linux, Unix), and a UHM Site License is available to all students; free near-clones (e.g., Octave) also exist.

Course Goals: Enable students to solve practical problems using the MATLAB programming language.

- Learn the concepts of programming, i.e., variables, control flow, input/output, functions, and more.
- Gain experience in developing solutions to multi-step problems.
- Design solutions while practicing your basic math and physics background.
- Practice translating such solutions into working MATLAB code.
- Experience how to test your code and to identify and correct bugs.
- Appreciate the importance of documentation and clarity of code comments.

Course Format: Two 50-minute lectures and one 3-hour lab weekly in Earth Sciences’ computer classroom. Standard lecturing will be interspersed with hands-on demonstrations and small in-class projects. Important material will be introduced and discussed in the lectures. and each lab will start with an overview of the current project and relevant background material in support of it. Students will work on the project in small groups but submit individual lab reports. The instructor will clarify common misconceptions and guide the groups in the most productive direction. Lab submissions are due one week later. Lab topics will range from the mundane to the crazy, including basic data analysis, simulating the launching of projectiles, counting money, breaking the Nazi Enigma code, reuniting South America with Africa, analyzing letter frequencies in languages, exploring games of chance, and much more. We hope to end the course with a programming tournament with prizes provided by MathWorks and the department.

Course Prerequisites: MATH 241 (or concurrent) or departmental approval. No Earth science background is needed.

We divide the course into four main sections:

I. Introduction [1 week]: Purpose and goals, organization and course rules, highlight of MATLAB.
II. Using MATLAB [~4 weeks]: Evaluate expressions, read data, plotting, layouts and saving figures, arrays and indexing.
III. Programming MATLAB [~7 weeks]: Design, flowcharts, pseudo code, and documentation, data types, relational operators, control flow, loops, procedural programming, debugging.
IV. Solving Composite Problems [~4 weeks]: Modeling and simulations.
Following the introductory section I, we will spend a few weeks using MATLAB as a tool to calculate, visualize, and analyze data (section II), and then the bulk of the class will be devoted to learning programming (section III). The final three weeks will see integrated uses of MATLAB, building on the skills already learned to do some modeling and simulations (section IV).

Text: Amos Gilat, Matlab – An Introduction with Applications, John Wiley. The main text will be supplemented by the instructor's notes on Laulima.

ERTH Student Learning Objectives (SLOs): The Earth Sciences department has defined 5 learning objectives for the undergraduate degree program related to Relevance of Earth Sciences, Technical knowledge, Scientific method, Oral and written skills, and Evaluating Phenomena. This course incorporates content relevant to 3 of those:

- SLO2: Students can apply technical knowledge of relevant computer applications, laboratory methods, field methods, and the supporting disciplines (math, physics, chemistry, biology) to solve real-world problems in the Earth Sciences.
- SLO3: Students use the scientific method to define, critically analyze, and solve a problem in earth science.
- SLO4: Students can reconstruct, clearly and ethically, geological knowledge in both oral presentations and written reports.

While SLO2 enters particularly strongly via the development of programming and applying their math and physics skills, SLO3 enters in how we break down a problem into multiple steps and test how each part works. SLO4 mostly enters via the written lab reports.

Students will reach the SLOs by doing weekly lab sessions and will be tested for factual knowledge at mid-semester and at the final exam. Tests are used to determine areas of student weaknesses, which will then be addressed via lectures and lab exercises.

Assessment and Grading: The labs are the most important aspect of the course since programming is very much hands on and experience-based. Lab reports must be submitted via Laulima by the due date in order for you to get full credit, unless you have a valid excuse and have made arrangements with us to hand it in late. Late reports will receive 50% credit only. If you anticipate a conflict for exams, you must re-schedule the exam prior to the scheduled date. Final grade will be a weighted average of grades for labs (65%), midterm (15%), and final exam (20%).

Class Format: Each week has two 50-minute lectures and one 3-hour lab. You are encouraged to actively ask questions in class, particularly if you do not understand the material being discussed. Most lectures involve mini examples on the computer and later on mini projects, interspersed with standard lecturing. Most of the important material will be introduced and discussed in the lectures, and each weekly lab starts with an overview of the current lab exercise and relevant background material in support of it. Students then work on the lab in small groups until time is up, asking questions of the instructor along the way. The instructor will clarify common misconceptions and interrupt the groups with impromptu presentations to lead them in the most productive direction. The lab submission is due one week later.

Lecture Notes: These will be laboratory-supporting materials for students to download (usually the week of the lab) from Laulima. Data sets used to demonstrate particular projects will be made available as well. Typically, all typing the lecturer does during the lecture will be posted afterwards on Laulima.

Disability Access: If you have a disability and related access needs the Department will make every effort to assist and support you. For confidential services students are encouraged to contact the Office for Students with Disabilities (known as “Koku”) located on the ground floor (Room 013) of the Queen Lili‘uokalani Center for Student Services:
Discrimination: The University of Hawai‘i is committed to providing a learning, working and living environment that promotes personal integrity, civility, and mutual respect and is free of all forms of sex discrimination and gender-based violence, including sexual assault, sexual harassment, gender-based harassment, domestic violence, dating violence, and stalking. If you or someone you know is experiencing any of these, the University has staff and resources on your campus to support and assist you. Staff can also direct you to resources that are in the community. Here are some of your options:

As members of the University faculty, your instructors are required to immediately report any incident of potential sex discrimination or gender-based violence to the campus Title IX Coordinator. Although the Title IX Coordinator and your instructors cannot guarantee confidentiality, you will still have options about how your case will be handled. Our goal is to make sure you are aware of the range of options available to you and have access to the resources and support you need.

If you wish to remain ANONYMOUS, speak with someone CONFIDENTIALLY, or would like to receive information and support in a CONFIDENTIAL setting, use the confidential resources available here: http://www.manoa.hawaii.edu/titleix/resources.html

If you wish to directly REPORT an incident of sex discrimination or gender-based violence including sexual assault, sexual harassment, gender-based harassment, domestic violence, dating violence or stalking as well as receive information and support, contact: Dee Uwono Title IX Coordinator (808) 956-2299
t9uhm@hawaii.edu.