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ABSTRACT 
 

The source of intraplate volcanism is commonly postulated to be melting 

anomalies, referred to as hotspots, relatively fixed in the Earth’s mantle and fed by deep-

seated thermal plumes. In plume models, flood basalts are thought to form when a rising 

mantle plume-head breaches the lithosphere, and age-progressive volcanic chains 

represent the trace of these mantle plume “tails” as lithospheric plates move over the 

melting anomaly. In this dissertation, I studied both aspects: the Deccan Traps (India), 

representing volcanism related to a plume-head, and the Louisville Seamount Chain 

(Southwest Pacific) tracking plume-tail activity, to gain insights into aspects of hotspot 

initiation and maturity. 

The Deccan Traps of India is one of the Earth’s largest flood basalt province. Using 

elemental and Pb-Nd-Sr isotope characteristics, feeder dikes for Deccan flow formations 

were identified and dike strikes were measured to inferred tectonic conditions at the time 

of their emplacement. Lower and middle lava formations were fed by E-W or N-S 

striking dikes. Feeder dikes for upper lava formations displayed no clear preferred strike. 

The absence of a preferred dike orientation for the voluminous upper formation lavas 

favors a plume-head origin for the Deccan Traps.  

The Louisville Seamount Chain is the second longest hotspot track in the Pacific. 

This geochemical study was undertaken to characterize the mantle source evolution of a 

hotspot that has been active for ~80 Myr and compare those findings with generic models 

of hotspot volcanism. I focused on lavas dredged from scarps and steep slopes of 

seamounts along the chain between 72 Ma and 24 Ma. I found little evidence of chemical 
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variations that would be caused by mantle source heterogeneity. In fact, age-corrected Sr, 

Nd and Pb isotope ratios are extraordinarily homogeneous. The small variations that do 

exist, do not correlate with the age of the seamounts, degree of partial melting or age of 

the lithosphere at the time of seamount emplacement. 
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CHAPTER 1 

INTRODUCTION 

 

The hotspot theory, proposed by Wilson (1963), was designed to explain the pattern 

of long-lived intraplate volcanism that leaves linear chains of seamounts observed on the 

ocean floor and appear to track the motion of lithospheric plates. The model proposed the 

existence of hot and fixed melting anomalies beneath the lithosphere: literally, hot spots. 

Morgan (1971) elaborated on this  model by ascribing the stability of hotspots to deep 

mantle plumes seated in the lower mantle. Subsequent developments in the production of 

model mantle plumes through scaled experiments (e.g., Richards et al., 1989; Campbell 

& Griffiths, 1990) and numerical modeling intricately linked the origin of large igneous 

provinces and hotspot tracks to the head and tail phases of mantle plumes, respectively 

(Fig. 1.1). 

The term “intraplate volcanism” refers to volcanism unrelated to plate boundaries, 

while “hotspot” was defined as a hot and fixed melting anomaly in the mantle that can 

produce volcanism, and “mantle plume” is an upwelling of mantellic material rising from 

thermal boundary layers. Despite these differences, these three terms have often been 

used interchangeably, essentially blurring the boundary between observations, causes and 

effects. However, some authors have proposed that hotspots may not be hot (e.g., 

Schilling et al., 1980; Bonatti, 1990; Herzberg, 2004), but may be wet instead, and that 

some presumed hotspot tracks do not show a systematic (or at least, not linear) 

progression in age (e.g., Davis et al., 2002; Koppers et al., 2007a). As a result, in the past 

few years, the mantle plume theory has come under scrutiny and sometimes under
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Fig. 1.1: Thermal structure of a numerically modeled thermo-chemical plume. Temperatures are 
given (in K) in excess of ambient mantle. After Lin & van Keken (2005).
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vigorous assault (e.g., Smith, 1993; Anderson, 1994; King & Anderson, 1995; Smith & 

Lewis, 1999; Sheth, 1999; 2005; Foulger & Anderson, 2005). 

The present research was carried out during years of intense debate regarding the 

plume hypothesis, which saw numerous authors (ibid.) dispute the existence of mantle 

plumes and point to features of intraplate volcanism that the plume model typically fails 

to explain (e.g., the lack of evidence for uplift above mantle plumes in some large 

igneous provinces, such as the Deccan; e.g., Sheth, 2007). This dissertation focuses on 

two localities commonly proposed to be the products of mantle plume volcanism: the 

Deccan Traps of India (assumed to be the plume head of the Réunion plume; e.g., 

Morgan, 1972) and the Louisville Seamount Chain in the South Pacific (assumed to be 

the plume tail of an unknown plume head; e.g., Hawkins, 1973; Clague & Jarrard, 1973; 

Lonsdale, 1988). The goals of the Deccan study were to: (1) determine the association of 

feeder dikes to the lava pile by comparing the chemical and isotopic compositions of 

dikes with those of the lava flow formations defined in the central western Deccan; (2) 

use the feeders’ strike to infer the timing of rifting along the west coast and the grabens 

of the northern Deccan relative to the main phases of volcanism; and (3) assess the 

plume-head and alternative (rifting-plus-plume, and non-plume) models for the origin of 

the Deccan province. The purpose of the Louisville study was to determine the 

geochemical composition of the Louisville seamounts and guyots and assess the 

evolution of their mantle source(s). As the only other long-lived seamount chain besides 

the Hawaiʻi-Emperor chain located on the Pacific plate, the Louisville chain offers a 

unique opportunity to compare models for the origin of hotspot ocean island magmatism 

in the Pacific Ocean. 
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THE DECCAN TRAPS 

Geography and physical features 

The Deccan Traps – the name “Traps” deriving from the step-like morphology of 

the exposed pile of lava flows – is one of the world’s larger continental flood basalt 

provinces, covering ~0.5 x 106 km2 of west-central India, an area roughly equal to the 

size of Spain or Texas (Fig. 1.2). Accounting for erosion (≥50%), the estimated volume 

of lava ranges from ~1 to 3 x 106 km3 (e.g., Wadia, 1975; Eldholm & Coffin, 2000; Sen, 

2001). In its thickest part along the Western Ghats escarpment (Fig. 1.2), the Deccan 

Traps reach a stratigraphic thickness of ~3400 m, the largest continuous exposed section, 

~1500 m, being located at Kalsubai Peak. At the eastern, northern and southern fringes of 

the province, the Traps thin to a few flows and total exposures of 200 m or less. The 

Rajahmundry Traps, possibly representing the southeasternmost edge of the province, are 

just a handful of flows thought to be related to the Deccan, located on India’s eastern 

coast some ~350 km from the main province. To the north, magmatic precursors to the 

Deccan event have been found near Barmer (Basu et al., 1993; Simonetti et al., 1995), 

and perhaps as far north as the South Tethyan suture zone of Pakistan, near Zhob 

(Fig. 1.2; Mahoney et al., 2002). Seaward dipping reflectors have also been imaged by 

seismic reflection off the west coast and are thought to represent the offshore expression 

of Deccan volcanism as the Seychelles Bank was rifting away from the Indian mainland 

(e.g., Collier et al., 2008). Morgan (1972) proposed that the hotspot at the source of the 

Deccan Traps can be linked to the source of volcanism on Réunion Island; this link was 

strengthened by Duncan (1990) who showed age-progressive volcanism 
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along a path following the archipelagos of Lakshadweep, Maldives, Chagos, Mauritius 

and the Mascarene Plateau (Fig. 1.3). 

Flows of the Deccan Traps generally are nearly flat-lying with dips of 1° or less 

(e.g., West, 1959; Raja Rao et al., 1978). Compound flows predominate in the central 

western Deccan, whereas simple flows appear to be more common on the periphery of 

the province (e.g., Walker, 1971; Raja Rao et al.,1978). Raja Rao et al. (1978) interpreted 

this flow pattern distribution as indicating the proximity of the province’s main eruptive 

vents. However, unambiguous eruptive vents have not been found, Crookshank (1936) 

describing perhaps the sole example of a sill feeding a flow in the western Mandla lobe. 

Three large dike swarm systems have been recognized in the province (Beane et al., 

1986; Deshmukh & Sehgal, 1988; Hooper, 1990; 1999), which will be introduced in 

more detail in Chapter 2: the Narmada-Tapi swarm system comprises dikes running 

preferentially E-W and parallel to the Narmada and Tapi grabens; the coastal swarm is 

composed of dikes striking N-S, parallel to the west coast; and the Nasik-Pune swarm of 

the central western Deccan displays only a weakly defined NNE-SSW trend. On the basis 

of preliminary chemical analyses of dikes, it has commonly been assumed that the Nasik-

Pune dike swarm (roughly located between the cities of Nasik and Pune; Fig. 1.2) 

represents the main locus of feeder dikes for the province (Beane et al., 1986; Hooper, 

1990). Hooper (1990, 1999) interpreted the near-absence of preferred orientation in the 

Nasik-Pune system as strong evidence that the main phase of Deccan eruptive activity 

was not accompanied by significant directed extension of the regional lithosphere. This 

conclusion, in turn, has been used as a key argument in favor of a plume-head origin for 
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the Deccan Traps, as opposed to a rifting-controlled origin (e.g., Hooper, 1990; 

Campbell, 1998). 

 

Stratigraphy and origin of isotopic variability 

Eleven lava formations (Table 2.1, in chapter 2) have been defined in the 

southwestern Deccan on the basis of their major and trace element compositions and their 

Pb, Nd and Sr isotopic ratios (e.g., Mahoney et al., 1982; Cox & Hawkesworth, 1985; 

Beane et al., 1986; Beane, 1988; Devey & Lightfoot, 1986; Lightfoot et al., 1990; 

Mitchell & Widdowson, 1991; Peng et al., 1994; Subbarao et al., 1994). Most formations 

have been subdivided into chemical types and members of relatively homogeneous 

chemical composition. In the absence of geological markers (paleosols, discontinuities 

such as ash or sediment beds) that can be traced over large distances, the basalt 

compositional stratigraphy has proven to be the most useful tool to correlate lava 

sequences separated by hundreds of kilometers. Over the last decade, substantial progress 

has also been made in correlating the geochemically dissimilar exposures of the northern, 

northeastern, northwestern and southeastern Deccan with the better-studied sections of 

the Western Ghats (e.g., Mitchell & Widdowson, 1991; Peng & Mahoney, 1995; Melluso 

et al., 1995; Peng et al., 1998; Mahoney et al., 2000; Jay & Widdowson, 2008). 

The chemical and isotopic differences between formations are distinctive and are 

thought to arise from variable mixing and assimilation of products from different mantle 

sources and/or crustal end-members (e.g., Mahoney et al., 1982; Cox & Hawkesworth, 

1985; Mahoney, 1988; Matsuhisa et al., 1986; Lightfoot & Hawkesworth, 1988; 

Lightfoot et al., 1990; Peng et al., 1994; 1998). Peng et al. (1994) proposed a two-stage 
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mixing model to account for the isotopic variations observed among Deccan lava 

formations (Fig. 1.4). They postulated that the first stage of mixing involved melts of an 

Ambenali-formation-like end-member (thought to represent a chemically transitional-

mid-ocean ridge basalt (MORB)-like source) and lower-crustal or lithospheric mantle 

material with a distinct high-206Pb/204Pb, high-87Sr/86Sr and low-εNd signature. The first 

stage of mixing would explain the isotopic array observed between the Ambenali 

formation and high-206Pb/204Pb regions of the Poladpur, Khandala, Neral, Bhimashankar, 

Igatpuri, Jawhar, Thakurvadi and Bushe formations, and an isotopic array displayed by 

lavas in the northeastern Deccan or Mandla lobe. Products of variable amounts of first-

stage mixing were proposed to have then mixed with a variety of low-206Pb/204Pb 

continental (possibly granulitic) end-members to produce the observed arrays of most of 

the formations. 

 

Age of the Deccan Traps 

Although some debate remains as to the exact age of the main volcanic event (e.g., 

Venkatesan et al., 1993; Hofmann et al., 2000), most lavas of the Deccan have been 

dated between 64 and 66 Ma (Courtillot et al., 1988; Duncan & Pyle, 1988; Vandamme 

et al., 1991; Baksi, 1994; Allègre et al., 1999; Pande et al., 2004). Radiometric 40Ar-39Ar 

and 187Re-187Os age data show no statistically significant difference between the top and 

bottom of the sequence. More recently, Chenet et al. (2007; 2008) isolated two 

paleomagnetic stages in the formation of the Deccan, a precursory event at ~67 Ma and a 

main phase of volcanism at ~65 Ma. The latter phase encompasses the bulk of the 

Western Ghats formations, at least from the Jawhar to the Mahabaleshwar. These authors 



Fig. 1.4: Pb-Nd-Sr isotopic data of Deccan flow formations. Fields represent the southwestern
Deccan formations, as well as data for the northeastern Deccan (Mandla lobe), modified after
Mahoney et al. (2000). Central Indian Ridge (CIR) field after Mahoney et al. (1989). Some fields
are not shown to avoid cluttering. Arrows represent the two-stages model of Peng et al. (1994).
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also present strong paleomagnetic secular variation evidence that lavas of the Poladpur 

through Ambenali formations in the Mahabaleshwar area were formed by major short-

lived eruptive events or pulses, each lasting but a few decades. The same authors thus 

estimate eruption rates of ~100 km3/yr being sustained for decades during these pulses, 

three order of magnitudes more than those of the Puʻu ʻŌʻō eruption of Kilauea (Sutton et 

al., 2003) 

 

THE LOUISVILLE SEAMOUNT CHAIN 

The Louisville Seamount Chain (LSC), historically termed “Louisville Ridge”, is a 

~4300 km long chain of extinct submarine volcanoes located in the southwestern Pacific 

Ocean, second only to the Hawaiʻi-Emperor chain in terms of length (Lonsdale, 1988). 

Comprising over 70 guyots and seamounts of varying sizes, it extends from 138.1° W, 

50.9° S at its eastern end to the Kermadec Trench (175.3° W, 25.7° S), where it is 

currently being subducted (Fig. 1.5). Although not perfectly linearly progressive, ages of 

seamounts have been shown to get younger to the east (Watts et al., 1988; Koppers et al., 

2004), spanning an age range of 79-1.1 Ma. As a result, the LSC has commonly been 

interpreted as a hotspot trail recording the passing of the Pacific plate over a mantle 

melting anomaly that has been fixed over 79 Myr (e.g., Hawkins, 1973; Epp, 1978; Jurdy, 

1978; Lonsdale, 1988; Clague & Jarrard, 1973; Molnar et al., 1975; Vogt et al., 1976; 

Cheng et al., 1987; Koppers et al., 2004). This hypothesis is further supported by the 

apparent synchronicity of bends in the LSC and Hawaiʻi-Emperor chain, that are thought 

to record changes in Pacific plate motion. As the only other long-lived hotspot trail 

located on the Pacific plate, the LSC presents a premium opportunity for evaluating 
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geochemical and geodynamical models for the origin of hotspot volcanism, which have 

largely been developed from the study of Hawaiʻi and its volcanic chain. However, the 

LSC also presents its own set of characteristics that set it apart from its North Pacific 

counterpart. Published geochemical data for a small collection of dredged LSC samples 

hint that, unlike their Hawaiʻian counterparts, Louisville seamounts are dominantly 

alkalic and result from smaller degrees of partial melting of a much more homogeneous 

mantle source (Hawkins et al., 1987; Cheng et al., 1987). Lonsdale (1988), using 

estimates of seamount volumes, showed that magma productivity at the LSC has been an 

order of magnitude smaller than that of the Hawaiʻian hotspot, and has declined sharply 

over the past 25 Myr, sparking hypotheses that the Louisville hotspot is dying. The 

scarcity and degree of alteration of available samples emphasized the need for more-

detailed sampling and study of Louisville seamounts and their geochemistry, which will 

be presented in chapter 4. 

 

ANALYTICAL METHODS 

Major and trace element concentrations and Pb, Nd and Sr isotopic analyses of 

samples used in this dissertation were measured using a variety of instruments at several 

facilities. Major and trace element concentrations of many Deccan samples were already 

available from previous analyses carried out at the X-ray fluorescence (XRF) and 

inductively coupled plasma mass spectrometry (ICP-MS) facilities of Washington State 

University (Knaack et al., 1994; Johnson et al., 1999) and at the inductively coupled 

plasma-atomic emission spectrometry (ICP-AES) laboratory of Royal Holloway College 

(UK) (after Walsh, 1992). A few isotopic analyses had also been conducted on the 
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Deccan dike samples at the University of Alberta’s (Canada) thermal ionization mass 

spectrometry (TIMS) facility (following Creaser et al., 1997). Major and trace element 

concentrations of LSC samples were also measured at the XRF and ICP-MS laboratory of 

Washington State University. These methods and laboratory procedures are presented in 

the following chapters. Below, I will detail the laboratory procedures of XRF, ICP-MS 

and isotopic analyses carried out at the University of Hawaiʻi in order to keep the 

description of analytical procedures succinct in upcoming chapters. 

 

XRF 

Major elements in our recently collected suite of Deccan Traps dike samples were 

measured by XRF on fused disks at the University of Hawaiʻi, following Eason & Sinton 

(2006). Whole rock powders were prepared from ~40 g of cleaned and picked ~5 mm 

rock chips in an alumina swing mill and disks were fused using a Li2B4O7 flux. Major 

element concentration data were collected on the fused disks on a Siemens 303 AS XRF 

spectrometer using a Rh-target, end-window x-ray tube, following Norrish & Hutton 

(1977). Corrected intensities were calibrated against a wide range of natural rock 

standards (AGV-1, BHVO-1, BIR-1, G-2, JA-2, JA-3, JB-1, JB-2, JB-3, NIMG, NIMN, 

W-1, W-2). Accuracy and precision data for this system are reported by Sinton et al. 

(2005) and in legends of the relevant tables in Chapters 2-4.  

 

ICP-MS 

Concentrations of trace elements were determined by ICP-MS following a 

procedure similar to that of Pyle et al. (1995) and Neal (2001). Chips or slabs of rocks 
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were crushed to a 1-2 mm size, hand-picked, and powdered with an agate mortar and 

pestle. For each sample, ~50 mg of powder was weighed and subsequently digested with 

an HF-HNO3 (1:2) solution. Samples then underwent four successive evaporation and 

redissolution steps, the first with 6N HCl, followed by three redissolutions in ~8N HNO3. 

Samples were then diluted with 4N HNO3, from which subsequent dilutions were made 

for analysis on the ICP-MS instrument. A range of trace elements was analyzed using the 

University of Hawai‘i Thermo-Finnigan Element2 and VG Elemental PlasmaQuad II+ 

machines. Trace element concentrations were determined by external calibration with 

USGS standards AGV-1, BIR-1, W-2, BHVO-1 and BCR-1. Two dilutions of each 

standard were analyzed at the beginning and end of each analytical run, resulting in a 20-

point calibration curve (Pyle et al., 1995). A University of Hawai‘i in-house standard, 

K1919 (from the same lava flow as BHVO-1), was analyzed after every fifth sample to 

monitor possible instrument drift not accounted for by the 1 ppb internal standards (Be, 

In, Tl, Bi) added to each sample and standard. Repeat analyses of K1919 are good 

indicators of analytical uncertainty and run-to-run precision. Separate dissolutions of 

BHVO-1 and BIR-1 were also treated as unknowns (i.e., not used in the standard 

calibration) as a further assessment of accuracy. Two samples were picked, dissolved and 

analyzed in duplicate to assess procedural error and variation in glass picking procedure. 

All tests show the data reported here to be within analytical error. Relative errors as two 

standard deviations range from 1.4% (for Sr) to 7.0% (for Gd). 
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Isotopic analyses 

Sample preparation and mass spectrometry for Sr, Nd and Pb isotopic and isotope-

dilution measurements were carried out following Mahoney et al. (1991, 2005). Analyses 

were performed on splits prepared from small (1-2 mm) rock chips that were picked to 

avoid alteration, acetone- and acid-cleaned and sonicated and rinsed with quartz-distilled 

water prior to powdering and dissolution. We prepared ~200 mg of powder from the 

picked and cleaned grains with a boron carbide mortar and pestle that was cleaned with 

~6N HCl in a sonic bath for 30 min and pre-contaminated in between each sample to 

avoid cross-contamination. About 40 mg of powder was then digested with a HF-HNO3 

(1:2) solution, followed by eight evaporation and redissolution steps (the first three in 

~8N HNO3, the fourth in ~6N HCl, the fifth in ~2N HCl and the last three in ~4N HBr in 

preparation of Pb extraction). Finally, Pb, Sr, Rb, Nd and Sm, as well as U and Th for the 

LSC samples, were separated by routine ion-exchange chromatography techniques and 

analyzed on a VG Sector multi-collector thermal ionization mass spectrometer (TIMS) or 

a VG/Micromass Sector 54 in the case of Th and U. Deccan Pb isotope analyses were 

carried out using conventional multi-collector static analyses, whereas the LSC data were 

acquired by double-spike measurements in multi-collector dynamic mode. 
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CHAPTER 2 

GEOCHEMICAL SIGNATURES OF DECCAN TRAPS (INDIA) DIKES: 

IMPLICATIONS FOR THE EVOLUTION OF THE FLOOD BASALT PROVINCE AND 

FEEDER SYSTEM 

 

Loÿc Vanderkluysen1, John J. Mahoney1, Peter R Hooper2, Hetu C. Sheth3, Ranjini Ray3 

 

1. Department of Geology and Geophysics, School of Ocean and Earth Science and 

Technology, University of Hawaiʻi, Honolulu, HI 96822, U.S.A. 

 

2. School of Earth and Environmental Sciences, Washington State University, Pullman, 

WA 99164, U.S.A. 

 

3. Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, 

Mumbai 400 076, India 

 

 

INTRODUCTION 

The Deccan Traps is a flood basalt province presently covering 500,000 km2 of 

west-central India (Fig. 2.1), and is one of the larger continental large igneous provinces 

(e.g., Eldholm & Coffin, 2000). With an estimated original lava volume of approximately 

1.5 to 3 x 106 km3 (Wadia, 1975; Eldholm & Coffin, 2000; Sen, 2001), it is mainly 
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composed of nearly flat-lying tholeiitic lava flows (e.g., West, 1959; Raja Rao et al., 

1978), with notable picritic and alkalic occurrences in the northwestern Deccan (e.g., 

Krishnamurthy & Cox, 1977). Several scattered alkalic, acidic and carbonatitic 

complexes cut through or overlie tholeiitic lavas elsewhere (see review of Mahoney, 

1988). 

Raja Rao et al. (1978) noted a predominance of compound flows in the central 

western Deccan that they interpreted as indicating the relative proximity of the province’s 

main eruptive vents. However, eruptive vents have not been found. In the absence of vent 

location, the study of dikes is crucial for determining the source area(s) of the lava flows 

(and therefore, the length of the flows), the architecture of the volcanic edifice, and its 

evolution during the flood basalt event (e.g., Beane et al., 1986; Devey & Lightfoot, 

1986; Watts & Cox, 1989; Hooper, 1990; Mitchell & Widdowson, 1991; Jerram & 

Widdowson, 1995; Hooper, 1997). In turn, these factors bear strongly on models of the 

environmental impact of Deccan emplacement (e.g., Ravizza & Peucker-Ehrenbrink, 

2003; Self et al., 2006; Chenet et al., 2008), which is of particular importance 

considering that the Deccan event straddled the Cretaceous-Tertiary (K-T) boundary 

(65 Ma) and the controversy surrounding the origin of the K-T mass extinction (e.g., 

Courtillot et al., 2000, and references therein). 

In the present paper, we report major and trace element and Pb-Sr-Nd isotopic 

compositions of dikes sampled from the three principal dike systems in the province. We 

use the data to compare the dikes with the compositions of major lava packets (using lava 

data from the literature), with the goals of determining the major loci of feeder dikes and 

how feeder dike locations may have changed or migrated. Finally, we combine the 
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geochemical comparisons with data on dike trends to explore the evolution of the Traps’ 

feeder system and to evaluate the viability of plume-head and rifting-based models for 

the province. 

 

BACKGROUND 

Previous authors have divided the lava stratigraphy in the southwestern part of the 

province into eleven flow formations (Table 2.1) on the basis of major and trace element 

compositions and Pb, Nd and Sr isotope ratios (e.g., Cox & Hawkesworth, 1985; Beane 

et al., 1986; Lightfoot et al., 1990; Peng et al., 1994; Subbarao et al., 1994). These 

studies have mostly focused on the ~3400-m-thick pile (stratigraphic thickness) of lava 

exposed in the type-sections of the Western Ghats range (Fig. 2.2), an escarpment that 

separates the western coastal plain (or Konkan plain) from the Deccan Plateau (Fig. 2.2 

and 2.3). Several of these formations have been shown to extend far to the southeast, east, 

and/or northeast, although their chemical and isotopic variability in distant locations is 

somewhat greater than seen in the Western Ghats sections (e.g., Mitchell & Widdowson, 

1991; Peng et al., 1998; Mahoney et al., 2000; Jay & Widdowson, 2008). These eleven 

formations have been divided further into three sub-groups (from bottom to top: 

Kalsubai, Lonavala and Wai subgroups) on the basis of field characteristics, which also 

correspond to breaks in chemical and isotopic characteristics. Transitions from one sub-

group to the next typically are accompanied by a shift from massive amygdaloidal 

compound flows to individual simple flows (e.g., Beane et al., 1986). This transition is 

typically thought to result from shifts in lava effusion rates (e.g., Walker, 1971). 

 



Subgroup Formation Member or (87Sr/86Sr)t Avg. TiO2 % Avg. Samples
(Max. Thickness) Chemical Type Mg# Ba/Zr (this study)

Wai Panhala (>175 m) Desur 0.7072-0.7080 48 1.6-1.9 11.4
Panhala 0.7046-0.7055 52 1.6-2.3 14.8

Mahabaleshwar  
(280 m) 0.7040-0.7055 47 2.5-4.3 11.4

Ambenali (500 m) Ambenali CT 0.7038-0.7044 49 1.9-3.1 14.4
Poladpur (375 m) Upper 0.7061-0.7083 52 1.8-2.3 12.7

Lower 0.7053-0.7110 56 1.5-2.0 14.0
Sambarkada 0.7075 43 2.2-2.3 12.6 JEB-300
Valvhan 0.7068 42 2.5-2.6 12.3
Ambavne 0.7056 45 2.0-2.1 14.0 BEL-13

Lonavala Bushe (325 m) Pingalvadi 0.7127 61 1.1-1.2 17.2 JEB-353
Bushe CT 0.713-0.720 55 1.0-1.3 15.3
Shingi Hill 0.718-0.7181 49 1.3-1.4 16.2 JEB-211
Hari. 0.7078-0.7079 46 2.0-2.1 12.9
Karla Picrite 0.7147-0.7150 68 1.1-1.2 19.7 JEB-136
Bhaja 0.712-0.7164 58 1.3-1.5 18.2 JEB-185

Khandala (140 m) Rajmachi 0.7093-0.7102 44 2.1-2.5 14.6 JEB-297
Khandala Phyric CT 0.7085 41 2.4-2.8 13.6 JEB-134
KA3 0.7107 49 1.7 12.9
Madh 0.7095 58 1.6 14.0 DDW-13
Boyhare 0.7102 63 1.2-1.3 13.7
KA2 0.7124 57 1.2 13.5
Khandala Phyric CT 0.7077 41 2.5-2.8 13.6
KA1 0.7094 61 1.0-1.1 15.4
Dhak Dongar 0.7071-0.7072 40 2.9-3.1 13.1 BOR-4
KCG 0.7098 48 1.4-1.6 18.7
Monkey Hill GPB 0.7073-0.7075 41 3.1-3.4 12.2 KOP-21
Giravli GPB 0.7068-0.7074 45 2.8-3.1 12.1

Kalsubai
Bhimashankar (140 
m) Bhimashankar CT 0.7067-0.7077 47 1.9-2.6 11.7 CH-24

Manchar GPB 0.7075-0.7077 42 2.9-3.1 13.2 M-12, M-13
Thakurvadi Thakurvadi CT 0.7073-0.7080 58 1.8-2.2 12.0
(650 m) Water Pipe 0.7099-0.7112 59 1.4-1.6 12.3

Member 71 1.0-1.1 12.0
Paten Basalt 0.7224 58 1.0 15.2 JEB-434
Thakurvadi CT 0.7067-0.7070 58 1.8-2.2 12.4
Ashane 0.7068 62 2.0-2.1 9.6
Thakurvadi CT 0.7080-0.7088 58 1.8-2.2 11.6 M-8
Jammu          Upper 0.7112 34 2.7 9.8
Patti              Middle 0.7099 46 2.2-2.3 8.4
Member        Lower 0.7066-0.7067 56 1.7-2.0 11.2

Neral (100 m) Tunnel Five GPB 0.7082-0.7083 36 3.3-3.5 10.8
Tembre Basalt 0.7084 43 2.8-3.0 10.6 Tem-04
Neral CT 0.7062-0.7073 62 1.5-1.7 12.3
Ambivli Picrite 0.7104 67 1.4-1.5 18.6

Igatpuri - Kashele GPB 0.7102-0.7122 40 2.6-3.1 11.5
Mg-Rich Igatpuri 59 1.4-1.9 13.3
Igatpuri Phyric 0.7107-0.7124 49 1.9-2.2 14.3

Jawhar Thal Ghat GPB 0.7108 36 3.6 10.7
(>700 m) HFS-Poor Jawhar 51 1.3-1.6 13.0

Plag. Phyric 0.7085 38 3.0 11.7
Mg-Rich Jawhar 0.7128 59 1.4-1.9 12.7
Kasara Phyric 0.7091 39 2.8-3.0 10.8

Table 2.1: Stratigraphic nomenclature and thickness of the western Deccan basalt formations (after Peng et al., 1994 and 
references therein), in stratigraphic order according to the type sequences of the Western Ghats. Values in bold represent data from 
this study, with the associated sample name reported in the far right column. CT: chemical type; GPB: giant plagioclase basalt; 
KCG: Khandala coarse-grained; KA: Khandala aphyric; HFS: high field-strength.
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The chemical and isotopic differences between formations are distinctive and are 

thought to arise from variable mixing and assimilation of products from different mantle 

sources and/or crustal end-members (e.g., Mahoney et al., 1982; Cox & Hawkesworth, 

1985; Mahoney, 1988; Matsuhisa et al., 1986; Lightfoot & Hawkesworth, 1988; 

Lightfoot et al., 1990; Peng et al., 1994; 1998). Peng et al. (1994) proposed a two-stage 

mixing model to account for the isotopic variations observed among Deccan lava 

formations. They postulated that the first stage of mixing involved melts of an Ambenali-

formation-like end-member (thought to represent a chemically transitional-MORB-like 

source) and lower-crustal or lithospheric mantle material with a distinct high-206Pb/204Pb, 

high-87Sr/86Sr and low-εNd signature. Products of variable amounts of first-stage mixing 

were proposed to have then mixed with a variety of low-206Pb/204Pb continental (possibly 

granulitic) end-members to produce the observed arrays of most of the formations. 

Dikes from across the province have been described and studied (e.g., Auden, 

1949; Agashe & Gupte, 1972; Agrawal & Rama, 1976; Powar, 1981; Sinha-Roy & 

Radhakrishna, 1983; Sreenivasa Rao et al., 1985; Beane et al., 1986; Dessai & Viegas, 

1995; Bhattacharji et al., 1996; Sethna et al., 1996; Chandrasekharam et al., 1999; 

Melluso et al., 1999; Mahoney et al., 2000; Widdowson et al., 2000; Paul et al., 2008), 

and previous researchers have recognized three main dike systems (Beane et al., 1986; 

Deshmukh & Sehgal, 1988; Hooper, 1990; 1999): (1) the Narmada-Tapi swarm, in which 

dikes strike roughly E-W, paralleling the grabens of the Narmada and Tapi rivers; (2) the 

coastal swarm, which is approximately parallel to the west coast and composed largely of 

N-S striking dikes; and (3) the Nasik-Pune swarm, in which dikes exhibit a weakly 

expressed NNE preferred strike (Beane et al., 1986) (Fig. 2.1). Tholeiitic dikes are the 
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most abundant; they are overwhelmingly vertical or nearly so. Dikes (both alkalic and 

tholeiitic) with a noticeable dip (10-30° from vertical) have been found among the dikes 

cropping out along the coast north and south of Bombay. These may have been tilted 

after their emplacement. 

Despite a lack of systematic geochemical studies, the Narmada-Tapi swarm and 

coastal swarm have previously been discounted as major feeder systems, because many 

of these dikes appear to cut flows at all levels of outcrop (e.g., Auden, 1949; Beane et al., 

1986; Hooper, 1990). On the basis of reconnaissance major and trace element analysis of 

42 Nasik-Pune dikes, Beane et al. (1986) postulated that the Nasik-Pune swarm served as 

the principal locus of feeders for the lava pile. Hooper (1990, 1999) interpreted the near-

absence of preferred orientation in the Nasik-Pune system as strong evidence that the 

main phase of eruptive activity was not accompanied by significant directed extension of 

the regional lithosphere. This conclusion, in turn, has been used as a key argument in 

favor of a plume-head origin for the Deccan Traps, as opposed to a rifting-controlled 

origin (e.g., Hooper, 1990; Campbell, 1998). 

One caveat that must be kept in mind is that, with the exception of the Western 

Ghats escarpment, there are few deep incisions exposing the deeper parts of the 

stratigraphy. The Deccan Plateau, east of the Western Ghats, covers the majority of the 

province. On the plateau, only the topmost flows of the local stratigraphy are exposed, in 

general, and access to lower portions of the stratigraphy is very limited. This situation 

implies that outcrops of feeder dikes will be biased toward feeders of the upper 

formations. To help minimize this problem, we devoted particular attention to dikes in 

areas offering windows into deeper parts of the stratigraphy in the Konkan plain 
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(Fig. 1.2) north and northeast of Bombay, and in the Narmada-Tapi grabens (Fig. 2.2), 

where the lower formations are exposed (e.g., Devey & Lightfoot, 1986; Watts & Cox, 

1989; Jerram & Widdowson, 2005). Nevertheless, the bias cannot be removed entirely. 

 

The timing of lithospheric extension 

Dike orientation at the time of emplacement results from local stresses and pre-

existing zones of weakness within the fracturing rock (e.g., Delaney et al., 1986). In a 

homogeneous medium, dikes form perpendicular to the minimum principal compressive 

stress (e.g., Ida, 1999; Ernst et al., 2001; Gudmundsson & Marinoni, 2002; Jourdan et al., 

2006). The existence of two large swarms of well-oriented dikes in the Deccan indicates 

that these dikes were either emplaced during two episodes of regional extension or within 

zones that had previously been fractured. The tectonic history of western India during the 

Cretaceous and Paleocene is marked by a succession of rifting events following the 

breakup of Gondwana. The first of these events resulted in the breakup of Madagascar 

from Greater India (completed around 84 Ma; Storey et al., 1995), followed by the 

separation of the Seychelles Bank from the west coast of India at ~62 Ma (e.g., Dyment, 

1998; Collier et al., 2008). The Cambay graben, Katchchh rift and Narmada-Tapi rift 

zones (Fig. 2.1) are also thought (e.g., Sheth, 1999 and references therein) to have been 

active around the time of the Deccan event, although the timing of rifting in these zones 

relative to Deccan volcanism is not well constrained. This issue is of critical importance 

when studying dike emplacement in these regions. 

The Narmada-Son lineament, a structure where the Narmada graben (Fig. 2.1) 

developed, is thought to be a continental transform fault active since the Jurassic (Sen, 



27 

1991), and may have reactivated even older structures (e.g., Raval & Veeraswamy, 

2003). Pal & Bhimasankaran (1976) indicated that the lineament possibly offsets the 

lower Deccan volcanic sequence. Kaila (1988) reported seismic evidence of an 

extensional sedimentary basin under the Deccan flows in the Narmada area, and Ray et 

al. (2007) presented dike length and thickness measurements indicating that N-S 

extension was taking place in the area during emplacement of the Narmada-Tapi dike 

swarm. 

Of the two other major extensional structures in the Deccan area (Fig. 2.1), rifting 

in the Cambay graben might have begun in the Early Cretaceous but was pronounced 

during the Tertiary (Biswas, 1987; Sheth, 1999), whereas the Katchchh rift is thought to 

have initiated in the Late Triassic and remained active until the Late Cretaceous-Early 

Paleocene (ibid.). The Panvel “flexure” is a monocline that formed along the west coast 

of India as a consequence of the post-Deccan E-W rifting of the Seychelles 

microcontinent and whose mechanism of formation is disputed (Devey & Lightfoot, 

1986; Watts & Cox, 1989; Dessai & Bertrand, 1995; Sheth, 1998). Various authors have 

argued, however, that rifting along the west coast occurred near the end of Deccan 

volcanism or soon afterward (Hooper, 1990; Devey & Stephens, 1991; Sheth, 1998). In 

summary, although there is abundant evidence of extension shortly before the onset of 

Deccan volcanism in the Cambay and Narmada-Tapi rift zones, evidence of pre-flood-

basalt extension along the west coast is lacking. 
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SAMPLES AND METHODS 

Samples and definition of dike swarms 

Most of the dike samples from the coastal and Nasik-Pune swarms were taken 

from the collections of Mahoney (1984), Beane (1988), Widdowson et al. (2000), Hooper 

& Widdowson (submitted) and Hooper’s other coworkers. Data for the major elements 

and a group of trace elements analyzed by X-ray fluorescence spectrometry (XRF) were 

already available for these samples. Supplemental data for a wider array of trace 

elements, determined by inductively coupled plasma mass spectrometry (ICP-MS), 

existed for some of them. For three samples (BO-31, BO-32 and DH-27), data were 

available for several trace elements analyzed by ICP-AES (inductively coupled plasma-

atomic emission spectrometry) at Royal Holloway College, UK. These XRF, ICP-MS, 

and ICP-AES data are listed in Appendix A, together with information on precision and 

accuracy. 

The samples we studied from the Narmada-Tapi swarm included several 

described by Melluso et al. (1999). In addition, we collected samples from the Narmada-

Tapi swarm, the Nasik-Pune swarm and the coastal swarm in the northern Konkan plain 

between 2003 and 2005. Descriptions of some of these samples are given by Ray et al. 

(2007, 2008), and location maps are presented in Fig. 2.4 here and by Ray et al. (2007). 

Samples used in this study were dominantly fine- to medium-grained aphyric or 

sparsely phyric basaltic rocks with mm-size phenocrysts of plagioclase, clinopyroxene 

and olivine. Rare dikes with cm-size plagioclase are also present, particularly in the 

Narmada-Tapi swarm. As already noted by previous authors (e.g., Sethna et al., 1996; 

Hooper & Widdowson, submitted), lamprophyric and other alkalic dikes are present in 
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the Narmada-Tapi swarm (in particular, near the locality of Rangpur; Fig. 2.1) and the 

coastal swarm (most notably near Bombay and along the coast to the south), although 

tholeiitic dikes are the norm. These alkalic dikes cannot represent feeder dikes to the 

tholeiitic lava pile; geochemical data for them are presented in chapter 3. 

Unlike the dikes, the southwestern Deccan flow formations are generally well-

characterized isotopically; however, combined Nd-Pb-Sr isotopic data were lacking for 

one or more members of several formations. To characterize these formations more fully, 

we measured the Nd, Sr, and Pb isotope ratios of samples of these members that 

remained in the collection of Beane (1988). Samples of two other members without 

isotope data (the HFS-Poor member of the Jawhar formation and the Mg-Rich member of 

the Igatpuri formation) were either missing or contained too little remaining material for 

analysis. 

Although the three main dike swarms have long been recognized, their boundaries 

have been defined rather loosely. Because these swarms overlap substantially in some 

areas (e.g., the coastal and Nasik-Pune swarms overlap in the Konkan plain north of 

Bombay, though cross-cutting relationships are scarcely observed), we apply strict 

criteria to categorize the swarm to which each dike belongs. In this study, dikes of the 

Narmada-Tapi swarm only include those dikes observed and sampled north of latitude 

20º30’ N. We define the coastal swarm as comprising only dikes located to the west of 

the Panvel flexure that trend N-S ± 20º. The Nasik-Pune swarm is defined as all the dikes 

east of the Panvel flexure, plus all the dikes west of the flexure that have an orientation 

departing from N-S by more than 20º. The potential drawback of these criteria is that, for 

example, dikes that were emplaced as part of the Nasik-Pune swarm and that strike 
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roughly N-S and are located near the coast are considered as part of the coastal swarm. 

Similarly, dikes emplaced in the coastal swarm but whose orientation deviates from N-S 

by > 20º will erroneously be classified as Nasik-Pune dikes. Because of such overlap, no 

set of classification criteria can be completely satisfying. The criteria used here were 

designed in the spirit of the original definition of the swarms (Beane et al., 1986). In any 

event, the small number (< 20) of contentious cases is offset by the large size of the data 

set and is unlikely to affect overall interpretations. 

 

Chemical and isotopic analyses 

Major elements in our recently collected samples were measured by XRF on 

fused disks at the University of Hawaiʻi, following Eason & Sinton (2006). 

Concentrations of trace elements were determined by ICP-MS following a procedure 

similar to that of Pyle et al. (1995) and Neal (2001). Relative errors as two standard 

deviations range from 1.4% (for Sr) to 7.0% (for Gd). Sample preparation and mass 

spectrometry for Sr, Nd and Pb isotopic and isotope-dilution measurements were 

principally carried out at the University of Hawaiʻi following Mahoney et al. (1991). 

Analyses were performed on splits prepared from small (1-2 mm) rock chips that were 

picked to avoid alteration, and acid-cleaned prior to dissolution. Although concentrations 

of Pb, Sr, Nd and Sm determined by isotope-dilution are generally in good (within 10% 

or less) agreement with those obtained by other methods on the bulk samples (Rb shows 

greater variation), the isotope-dilution values are used only for age correction (to 65 Ma) 

of the Sr and Nd isotope ratios because these concentrations are not strictly representative 

of the whole-rock concentrations (e.g., as a result of picking). Isotope ratios of a smaller 
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group of samples were analyzed at the University of Alberta, following Creaser et al. 

(1997); for age-correcting these, we have used the corresponding XRF and ICP-MS 

concentration data for parent and daughter elements. 

 

Data evaluation procedures and statistical methods 

Comparisons of the dikes with the flow formations of the Western Ghats were made 

combining four different approaches, following Peng et al. (1998), Mahoney et al. (2000) 

and Bondre et al. (2006): 1) element vs. element and element ratio vs. element ratio plots 

(involving >850 lava flow analyses for comparison with the dike data), 2) mantle-

normalized patterns of selected incompatible element abundances, 3) discriminant-

function analysis (DFA) using several major and trace elements and 4) combined Nd, Sr 

and Pb isotope ratios. 

Element plots and mantle-normalized incompatible element patterns were 

particularly useful when studying the chemical composition of individual samples, but a 

statistical approach proved more practical to treat our large number of samples in a 

systematic way. Discriminant-function analysis has proven to be a powerful classification 

tool for treating large flood-basalt data sets, particularly for working out regional lava 

chemostratigraphy (e.g., Beane et al., 1986; Beane, 1988; Peng et al., 1998; Mahoney et 

al., 2000). DFA is a multivariate statistical technique that calculates discriminant 

functions, group centroids and the Mahalanobis distance of each sample composition to 

the nearest centroids (e.g., Davis, 2002), concepts that are explained in more detail in 

Appendix C. In essence, it computes the affinity of an unknown sample to a standard set 

of known sample groups. The technique, however, has been found to be somewhat 
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unreliable for samples with transitional chemical characteristics (such as flows near some 

boundaries between formations; Peng et al., 1998). Also, processes such as alteration 

and, particularly, variable fractional crystallization or flowage differentiation in both 

flows and dikes can substantially affect the results of a classification. The effects of these 

processes can be greatly reduced by a careful selection of the variables used in the 

statistical analysis (Peng et al., 1998). Despite of this, DFA and isotopic analyses can 

sometimes point to conflicting results. Isotope ratios provide the ultimate test for 

comparing Deccan dike samples with the flow formations because of the limited overlap 

between the isotopic fields for most of the individual formations in multi-isotope space 

and because these ratios tend not to be affected much by near-surface magmatic 

processes or subaerial alteration. For this reason, we consider results of the isotopic 

analyses to provide more reliable matches than the DFA. However, many more chemical 

data are available for the Deccan basalts than Nd-Pb-Sr isotopic data. 

Discriminant-function analysis was conducted with the SPSS 11.0.4 software for 

Macintosh (SPSS, Inc.), following the procedure detailed by Peng et al. (1998; see also 

Appendix C) and using an updated 624-sample standard set of major and trace element 

data for the lava formations. Elements used as variables included the same suite used by 

Mahoney et al. (2000), for repeatability, availability and internal consistency: SiO2, 

Al2O3, TiO2, CaO, K2O, P2O5, Ni, Ba, Sr, Zr, Y and Nb. With these parameters, samples 

known to be from specific flow formations, when treated as unknowns, were correctly 

predicted (i.e. assigned to the correct formation) 87.8% of the time. The success rate rose 

to 96.6% when both the first and second closest formation matches were considered. 

Appendix A reports the closest formation match if the squared Mahalanobis distance to 
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the group centroid is ≤ 25; samples with no match listed are considered to be unclassified 

because the large Mahalanobis distance indicates an unreliable statistical match 

(conditional probability less than 1%). 

In this study, the DFA standard set was divided into nine individual groups. A given 

formation is represented by one group, with the exception of the lowermost two 

formations, the Jawhar and Igatpuri, for which data were merged because of their 

substantial geochemical similarities (Peng et al., 1994). Data for the Panhala flow 

formation were not included in the standard set, because too few have been analyzed in 

the literature to be statistically significant in the DFA. To account for the absence of 

Panhala formation data in the DFA, samples found matching Ambenali, Poladpur or 

Mahabaleshwar formation (with which the Panhala has the most chemical affinity) 

compositions where checked individually for compatibility with the Panhala (e.g., 

Ba<90 ppm, Ba/Y<3, Zr/Nb>13; Lightfoot & Hawkesworth, 1988). Samples from 

several formation members considered anomalous within their formation (such as the 

Harischandrigad of the Bushe formation and the Paten Basalt of the Thakurvadi 

formation) were also not included in the DFA standard set. 

 

RESULTS 

Within-dike chemical variation 

Although the majority of dikes appear homogeneous at the centimeter scale, a few 

that we sampled display some degree of macroscopic heterogeneity, most commonly in 

the form of vertical (i.e., top to bottom) stratification caused by varying amounts of 

plagioclase (cf. Melluso et al., 1999); in one case (the dike from which sample DND-3 
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came), an uneven distribution of xenoliths was observed (cf. Ray et al., 2008). For this 

reason, along-strike chemical variations were investigated in five localities. Sample 

NBD-1B was taken 15 km to the east of NBD-1 along the same dike and is nearly 

identical in chemical and mineralogical composition (Appendix A). Sample NBD-03B 

was taken 10 km east of sample NBD-03 along the same dike and, with the exception of 

Cr and Ni, the two have nearly identical mantle-normalized incompatible trace element 

patterns (Fig. 2.5A). Samples NBD-12 and NBD-21, separated by 11 km, probably 

belong to the same dike, although it does not crop out continuously between the two sites. 

The dike is 5.5 m wide, coarser grained, and rich in centimeter-size plagioclase at the site 

of NBD-21, in contrast to the fine-grained aphyric rock at the NBD-12 site (20 m wide). 

Despite these differences, these two samples are chemically nearly identical, with only 

minor variation in the large-ion lithophile elements (LILE) and heavy rare-earth elements 

consistent with different cooling and crystallization histories. SDPD-2 was sampled 

38 km east of SDPD-1 along the same dike, and has a nearly identical chemical signature. 

UDD-7 is from the same dike as UDD-7B, but 3 km farther north; again, these two 

samples are almost indistinguishable. These results demonstrate that dikes can be 

geochemically homogeneous over considerable distances along strike. 

Some of the wider dikes, such as the 62-m-thick NBD-24 dike, show signs of 

multiple injections as evidenced by the presence of multiple pairs of chilled margins 

within the dike. Samples NBD-37 and NBD-38 were taken from two markedly different 

(in terms of texture, grain size and crystal content) and adjacent sections across-strike of 

a single dike displaying signs of multiple injections. The NBD-37 section is 8 m thick; 

that of NBD-38 is 12 m. Even though they exhibit clear differences in some elements 
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(most notably Pb, Sr and LILE), the major and trace element compositions of the two 

samples are very similar overall, indicating that in this case two magma injections 

probably occurred close in time, such that similar magma types were injected, but with 

some differences in source composition and alteration history. Alternatively, dikes may 

branch and, at a different level, rejoin; the paths of ascent and the cooling histories of 

magma in different parts of a merged dike may be sufficiently different to generate 

multiple chilled margins, but the dike would consist of a single magma type (e.g., 

Pallister, 1981; Delaney & Gartner, 1997; Gudmundsson & Marinoni, 2002). Substantial 

differences in La/Ta, a ratio unaffected by fractional crystallization, discount the second 

phenomenon as a plausible explanation in the case of samples NBD-37 and NBD-38. 

Despite the strong similarities between the geochemical signatures of these two samples, 

differences in Ta/La (0.045 and 0.064, resp.) cannot be explained by minor differences in 

alteration and cooling history and require two different magma types to have been 

injected in the dike, either resulting from melting of slightly different sources or having 

undergone different degrees of crustal contamination. 

 

Isotopic compositions of Western Ghats flow members 

The Western Ghats represent the thickest and best-exposed part of the Deccan and, 

as a result, the most studied. Lavas of the upper five formations (i.e., Bushe, Poladpur, 

Ambenali, Mahabaleshwar and Panhala) have been the subject of several isotopic 

investigations (e.g., Mahoney et al. 1982; Cox & Hawkesworth, 1984; 1985; Lightfoot & 

Hawkesworth, 1988; Lightfoot et al., 1990; Peng et al., 1994). The lower six formations 
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(i.e., Jawhar, Igatpuri, Neral, Thakurvadi, Bhimashankar and Khandala) have received 

less attention (Peng et al., 1994) and their isotopic composition is less well known. 

New Nd, Sr, and Pb isotope ratios were measured on previously uncharacterized 

flow formation members, as shown in Table 2.2. Fig. 2.6 shows how data for the new 

samples plot relative to the isotopic fields defined by previous studies. The new data for 

the Poladpur lie within the field of previous Poladpur data, whereas the boundaries of the 

Neral and Khandala fields are extended slightly. Those for the Bhimashankar extend the 

previous field to higher values of εNd(t) and slightly lower 206Pb/204Pb. The new Bushe 

data extend the field of the Bushe formation even more, with the Pingalvadi sample 

displaying the highest εNd(t) measured for the formation (-7.9) and the Shingi Hill sample 

the lowest (-18.9). The Paten Basalt (thought to be a single flow; Beane, 1988) displays a 

chemical signature uncharacteristic of other Thakurvadi formation members, with many 

concentrations and inter-element ratios more typical of the Bushe formation (Beane, 

1988); for instance, TiO2 <1 wt% and Y/Zr >0.23 whereas values between 1.3 and 2.7 

wt% and 0.15 and 0.23, respectively, are observed for other members of the Thakurvadi 

formation. Thus, we expected this member also might be isotopically distinct and, indeed, 

the isotope ratios of the Paten Basalt sample (JEB-434D) differ considerably from those 

of other Thakurvadi basalts, broadly resembling Bushe formation values, with 206Pb/204Pb 

= 20.938, εNd(t) = -15.4 and even higher 87Sr/86Sr(t) (0.72235) than found among the 

Bushe basalts. To our knowledge, this 87Sr/86Sr(t) ratio is the highest reported for a 

Deccan basalt. The intercalation of an anomalous Bushe-like flow within an older 

formation is reminiscent of the anomalously Poladpur-like Harischandrigad member 
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within the Bushe itself (Beane, 1988; Peng et al., 1994); such flows pose special 

challenges in terms of petrogenetic models and stratigraphic correlations. 

 

The coastal dike swarm 

Elemental signature and DFA 

The coastal dikes comprise two main categories: those of tholeiitic composition and 

those of lamprophyric and other alkalic compositions. The great majority of the tholeiitic 

dikes fall within the range of major and trace element compositions observed for flows of 

the Western Ghats (Fig. 2.7A) and cover most of the Western Ghats compositional 

spectrum. Along the coast south of Bombay, the lamprophyric dikes cross-cut both the 

tholeiitic dikes and local flows, indicating they are a late-stage feature (Hooper & 

Widdowson, submitted). 

Results of the DFA (e.g., Fig. 2.8A) show that 43% of the coastal tholeiitic dikes 

have a strong chemical affinity with the Poladpur, Ambenali (two of the upper 

formations) or Thakurvadi (a lower formation) formations. Approximately 27% of dikes 

remain unclassified by the DFA. On the basis of DFA and element vs. element plots (e.g., 

Ba vs. TiO2, MgO vs. TiO2, Sr vs. Zr), Hooper & Widdowson (submitted) note that dikes 

of the coastal swarm with compositions indistinguishable from those of the Thakurvadi 

formation (a lower formation) cut across dikes with Poladpur‑, Ambenali- and 

Mahabaleshwar-type (three upper formations) chemical signatures. As these chemically 

Thakurvadi-like dikes (Fig. 2.9A) cut through flows of the Poladpur, Ambenali and 

Mahabaleshwar formations, they cannot have been feeders to the Thakurvadi formation 

and must represent a post-Mahabaleshwar-formation phase of magmatism. It will be 
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shown in the next section, however, that these dikes’ chemical affinity for the Thakurvadi 

formation does not translate in the isotope space. 

Our DFA also shows that dikes with affinities with the lower or middle formations 

(excluding the Thakurvadi formation matches mentioned above), although rarer (27%), 

tend to occur preferentially in the Konkan plain (Fig. 1.2) at some distance from the coast 

north-east of Bombay, whereas upper-formation-like dikes are generally found along the 

coast south of Bombay. The remaining 3% are classified as Mahabaleshwar by the DFA. 

 

Isotopic signature 

Sixteen tholeiitic samples from the coastal swarm were selected for isotopic 

analysis (Fig. 2.10). Two samples from the coast near Goa, ~70 km to the southwest of 

the current boundary of the flood basalts, were analyzed isotopically, to test Widdowson 

et al.’s (2000) hypothesis that some of these dikes might represent feeders of the upper 

lava formations. One sample, IND-005, is chemically similar to both the upper 

formations of Ambenali and Poladpur (with Ba, TiO2 and MgO levels closer to those 

typical of the Poladpur, but Ba/Y and Zr/Nb closer to typical Ambenali values). Its 

isotope ratios, however, are unequivocally Poladpur-like. The other sample, ORL-005, 

has low Sr, Ba and Zr concentrations rarely observed in Deccan flows, except those of 

the Panhala formation (Lightfoot & Hawkesworth, 1988; Lightfoot et al., 1990). Isotope 

ratios for this sample fall within the uppermost Panhala formation field (which is 

enclosed in the Mahabaleshwar field; Fig. 2.6), at the boundary with the field of the 

Ambenali formation. On the basis of these results, it is probable that dikes in the Goa 

region indeed acted as feeders to some of the flows of the Poladpur and Panhala 
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formations. Lavas of the Panhala, in particular, are found only in the extreme 

southwestern Deccan, relatively near (~135 km) the Goa-area dikes. 

The majority (eight) of the remaining coastal-swarm dikes that we analyzed 

isotopically can be matched with the three main upper lava formations (three with 

Poladpur, two with Ambenali, three with Mahabaleshwar), in good agreement with their 

major and trace element characteristics (Figs. 2.9C and 2.9D). These dikes are located 

along the coast north and south of Bombay and in the Konkan plain north-east of 

Bombay. We interpret them as probable feeders for the upper formations. 

The Konkan plain (Fig. 1.2) east and north-east of Bombay exposes the lowermost 

known parts of the Deccan lava stratigraphy (Beane et al., 1986); thus, this area (~75 x 

130 km2) is one where feeders for the lower formations might be exposed. One coastal-

swarm dike in this area (JW-32) was found to have a chemical and isotopic signature that 

closely resembles the signature of the lowermost Igatpuri-Jawhar formations 

(specifically, the Plagioclase Phyric member of the Jawhar formation). Another (DDH-

036) has unmistakable Bushe-type (a middle formation) isotope ratios and major and 

trace element compositions. These two dikes are part of a set of a dozen sampled dikes in 

this area with major and trace element affinities to the lower and middle formations, 

particularly the Igatpuri-Jawhar, Thakurvadi and Bushe. Nevertheless, possible feeder 

dikes for the lower and middle formations remain rare, at least partly because younger-

formation flows cover much of the oldest part of the stratigraphy. 

Finally, four dikes, three of which have major and trace element patterns matching 

those of members of the Thakurvadi, Bushe and Poladpur formations, have isotope ratios 

unlike those of any formation. One such dike (DDH-11) belongs to the late-stage, 
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chemically Thakurvadi-like group mentioned above that cuts across dikes with upper-

formation characteristics. The timing of emplacement of the other three dikes is currently 

unknown. 

 

The Nasik-Pune swarm 

Elemental signature and DFA 

In contrast to the coastal and Narmada-Tapi swarms, all the dikes sampled in the 

Nasik-Pune swarm are tholeiitic. The great majority (88%) have major and trace element 

signatures similar to those of Western Ghats flows (Fig. 2.7B), as Beane et al. (1986) and 

Beane (1988) suggested from their reconnaissance study. Results of our DFA confirm 

that the chemical similarities are generally strong (Fig. 2.7B). The Nasik-Pune swarm 

also displays the smallest proportion of unclassified cases among the three swarms, with 

only 12% of 196 samples yielding Mahalanobis distances >25. Over 55% of the 

classified cases match the signatures of formations of the Wai subgroup (Fig. 2.11) of the 

upper lava stratigraphy. Thakurvadi- and Khandala-like (a lower and middle formation, 

respectively) signatures are also widely represented. 

Beane et al. (1986) and Hooper (1990) noted that when treated as a whole, strikes 

of the Nasik-Pune swarm dikes are nearly random, showing only a weak preferred NNE 

orientation (Fig. 2.1). Deshmukh & Sehgal (1988) and Bondre et al. (2006) additionally 

pointed out that some portions of the Nasik-Pune swarm exhibit well-defined orientations 

at the local scale. Our results confirm Beane et al. (1986) and Hooper’s (1990) 

observations (Figs. 2.12B and 2.12G), but also reveal an important difference in dike 

orientation with dike composition (Figs. 2.12D, E, F and G): the dikes with Wai- 
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Fig. 2.12: (A-F) Rose histograms of dike strikes. The number of samples included in the histogram is 
indicated by n. (A) Dikes of the coastal swarm. (B) Dikes of the Nasik-Pune swarm. (C) Dikes of the 
Narmada-Tapi swarm. (D) Dikes of the Nasik-Pune swarm that are matched by DFA to formations of the 
Wai subgroup. (E) Dikes of the Nasik-Pune swarm matched by DFA to the Ambenali and Mahabaleshwar 
formations. (F) Dikes of the Nasik-Pune swarm matched by DFA to formations of the Kalsubai subgroup. 
(G) “Box and whiskers” diagram of dike strike data. All data are included between the short vertical lines, 
which represent the minimum and maximum values observed (whiskers), whereas the gray rectangles 
encompass data within the 25% and 75% percentiles; i.e., each box represents the median percentages 
of the dataset. Thick tick marks represent the averages. In the scale at the top of the figure, zero indicates 
due north; i.e., dikes striking N-S. Data are broken down by swarm and chemical affinity. From top to 
bottom: dikes of the coastal swarm; the Nasik-Pune swarm; the Narmada-Tapi swarm; dikes of the Nasik-
Pune swarm matched by DFA with formations of the Wai subgroup, higher in the stratigraphy (Poladpur, 
Ambenali, Mahabaleshwar); dikes of the Nasik-Pune swarm matched by DFA with formations of the 
Kalsubai subgroup, lower in the stratigraphy (Jawhar, Igatpuri, Neral, Thakurvadi, Bhimashankar) ; dikes 
of the Nasik-Pune swarm unclassified by DFA; dikes of the Nasik-Pune swarm matched to the Ambenali 
and Mahabaleshwar formations by DFA; dikes in both the coastal and Nasik-Pune swarms matched to 
formations of the Wai subgroup by DFA. 
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subgroup-like signatures display two or three dominant orientations (Figs. 2.12D and G); 

however, when considering only the dikes matched by the DFA to the Ambenali and 

Mahabaleshwar (i.e., upper) formations, the directional pattern appears roughly random 

(Figs. 2.12E and G). The Kalsubai-subgroup-like dikes in the swarm, on the other hand, 

display a strong N-S orientation (Figs. 2.12F and G). 

 

Isotopic signature 

We analyzed the Sr, Nd and Pb isotope ratios of 35 samples from the Nasik-Pune 

swarm (Fig. 2.10). Fourteen were found to fall within the isotopic fields of the Poladpur 

(5 matches), Ambenali (3 matches), or Mahabaleshwar (5 matches, and one sample that 

falls within the space where Mahabaleshwar and Ambenali data overlap) formations. 

These isotopic matches are generally in good agreement with the samples’ elemental 

affinities (e.g., Figs. 2.9B, C and D). In two chemically borderline cases, BOR-013 and 

BOR-014, which share many characteristics with the Mahabaleshwar formation but also 

diverge from it (with Sr<250 ppm and Ba/Y<3.5, whereas most Mahabaleshwar lavas 

have Sr>250 ppm and Ba/Y>4), close isotopic matches to the Mahabaleshwar formation 

were found. Indeed, in all but three cases (JEB-182D, JEB-393D and JEB-438D), 

samples matched with the upper formations by the DFA also yielded the corresponding 

upper-formation-type isotope ratios. We conclude that the majority of dikes with upper-

formation chemical affinities sampled in the Nasik-Pune swarm acted as feeders for these 

formations. 

Fourteen of the 21 remaining samples analyzed isotopically exhibit a chemical 

resemblance (ranging from close to distant) to formations of the Kalsubai or Lonavala 
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subgroups. Interestingly, the isotopic characteristics of these dikes generally do not match 

those of any of the formations defined in the type sections of the Western Ghats. There 

are only three exceptions, for which both isotopic and elemental characteristics are in 

agreement: one dike has an Igatpuri-Jawhar-type signature (more specifically, it 

resembles the Plagioclase Phyric member of the Jawhar formation: IGA-006; Fig. 2.9E), 

one a Thakurvadi-type signature (JEB-453D; Fig. 2.9F), and one a Bushe-type signature 

(UDD-09; Fig. 2.9G). We infer that, despite dikes of the Nasik-Pune swarm possessing 

major and trace element characteristics resembling those of the lower and middle 

formations (i.e., from Jawhar to Bushe), they are unlikely to be feeders for these 

formations. Some of these dikes may have fed flows that are not exposed or have not yet 

been sampled; others may represent “dead-end” intrusions that did not result in eruptions. 

 

The Narmada-Tapi swarm 

Elemental signature and DFA 

The Narmada-Tapi swarm shows greater chemical variability than observed in the 

other two swarms. This is due to the fairly fractionated nature of some of the dikes (e.g., 

DD-05, NBD-30; Melluso et al., 1999), to the abundant presence of basalts with low 

(<1.5 wt%) TiO2 concentrations (typical of the Bushe formation and some members of 

the Khandala and Neral formations), and to a greater presence of alkalic dikes. 

Because of these factors, Narmada-Tapi dike chemical compositions compare rather 

poorly as a group with those of the Western Ghats formations. The results of our DFA 

(Fig. 2.8C) show that 56% of cases have Mahalanobis distances >25 from the statistically 

closest formation match. 
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The remaining 44% of cases (39 out of 89) can be matched principally with the 

lower and middle formations (from Jawhar to Bushe) (Fig. 2.11); such dikes outnumber 

dikes matched with formations of the Wai subgroup (Poladpur through Panhala 

formations) by 4:1. This result is in sharp contrast to the coastal and Nasik-Pune swarms, 

for which most DFA matches are with the three main upper formations (Poladpur, 

Ambenali and Mahabaleshwar). The DFA also assigns twice as many Narmada-Tapi 

samples to the Khandala formation as to any other. 

Sample DD-10 is worth special mention, as it is classified as Bhimashankar by the 

DFA but is rather distinct from the Bhimashankar formation in having higher Ba and Sr 

concentrations. However, it is chemically similar to broadly Bhimashankar-like flows 

near the locality of Mhow (Fig. 2.1) in the northern Deccan. (Peng et al., 1998) and, for 

most of the incompatible elements, nearly identical (except for the mobile LILE) to a 

Bhimashankar-like flow in the northern Deccan near Toranmal (Mahoney et al., 2000) 

(Figs. 2.1 and 2.5C). 

 

Isotopic signature 

Isotope ratios were measured for 14 samples from the Narmada-Tapi swarm 

(Table 2.3; Fig. 2.10). Of these, data for four fall outside the isotopic fields defined by the 

Western Ghats formations (Table 2.1). Four can be matched isotopically to one of the 

lower or middle formations (one to the Igatpuri-Jawhar, one to the Thakurvadi, two to the 

Bushe), and have trace element patterns that broadly support the affiliation based on the 

isotopic results (Fig. 2.5E), despite the failure of the DFA to match them with any 

Western Ghats formations. Four samples that share chemical similarities with the upper 



Ta
bl

e 
2.

3:
 Is

ot
op

ic
 a

nd
 is

ot
op

e-
di

lu
tio

n 
da

ta
 fo

r d
ik

es
. N

as
ik

-P
un

e 
is

 a
bb

re
vi

at
ed

 a
s N

-P
 a

nd
 N

ar
m

ad
a-

Ta
pi

 a
s N

-T
. M

os
t d

ik
e 

sa
m

pl
es

w
er

e 
an

al
yz

ed
 in

 la
b 

“U
H

” 
(U

ni
ve

rs
ity

 o
f H

aw
ai
ʻi)

; s
ta

nd
ar

d 
va

lu
es

 a
nd

 e
rr

or
s a

re
 th

e 
sa

m
e 

as
 in

 T
ab

le
 2

.2
. A

na
ly

se
s i

n 
la

b 
“U

A
” 

w
er

e 
pe

rf
or

m
ed

at
 th

e 
U

ni
ve

rs
ity

 o
f A

lb
er

ta
. A

ge
-c

or
re

ct
io

ns
 fo

r t
he

se
 sa

m
pl

es
 u

se
 p

ar
en

t-d
au

gh
te

r r
at

io
s d

et
er

m
in

ed
 fr

om
 X

R
F 

an
d 

IC
P-

M
S 

co
nc

en
tra

tio
n

va
lu

es
. E

rr
or

s (
2σ

) o
n 

U
A

 sa
m

pl
e 

m
ea

su
re

m
en

ts
 a

re
 ±

0.
00

00
2 

fo
r S

r, 
±0

.0
00

00
9 

(0
.2

 ε
N

d u
ni

ts
) f

or
 N

d,
 ±

0.
01

1 
fo

r 20
6 Pb

/20
4 Pb

,
±0

.0
12

 fo
r 2

07
Pb

/20
4 Pb

 a
nd

 ±
0.

01
2 

fo
r 20

8 Pb
/20

4 Pb
. “

SI
O

” 
in

di
ca

te
s a

 sa
m

pl
e 

an
al

yz
ed

 a
t t

he
 S

cr
ip

ps
 In

st
itu

tio
n 

of
 O

ce
an

og
ra

ph
y,

fo
r w

hi
ch

 a
na

ly
tic

al
 m

et
ho

ds
 a

re
 p

re
se

nt
ed

 b
y 

M
ah

on
ey

 (1
98

4)
 a

nd
 M

ah
on

ey
 e

t a
l. 

(1
98

2)
; e

rr
or

s f
or

 th
is

 sa
m

pl
e 

ar
e 

0.
00

00
3 

fo
r 87

Sr
/86

Sr
 a

nd
+0

.3
 ε

N
d u

ni
ts

.

Sa
m
pl
e

L
ab

Sw
ar
m

87
Sr
/86
Sr

(0
)

87
Sr
/86
Sr

(t)
14
3 N
d/
14
4 N
d (
0)

14
3 N
d/
14
4 N
d (
t)

ε N
d(
t)

20
6 P
b/
20
4 P
b

20
7 P
b/
20
4 P
b

20
8 P
b/
20
4 P
b

Pb
Sr

R
b

N
d

Sm

A
L8

2-
12

SI
O

C
oa

st
0.

70
44

4
0.

51
27

94
+4

.6
19

5.
5

5.
64

16
.8

1
4.

95
D

D
H

-0
11

U
A

C
oa

st
0.

70
43

9
0.

70
43

4
0.

51
23

37
0.

51
22

69
-5

.6
16

.3
42

15
.1

49
36

.7
93

D
D

H
-0

15
U

A
C

oa
st

0.
70

53
8

0.
70

53
1

0.
51

24
61

0.
51

24
18

-2
.7

17
.6

40
15

.3
66

38
.0

10
D

D
H

-0
30

U
H

C
oa

st
0.

70
50

6
0.

70
50

5
0.

51
26

68
0.

51
26

00
+0

.8
17

.2
67

15
.3

35
38

.0
35

2.
21

18
0.

7
0.

81
22

.4
5

5.
95

5
D

D
H

-0
34

U
H

C
oa

st
0.

70
66

9
0.

70
66

5
0.

51
26

42
0.

51
25

67
+0

.2
18

.9
41

15
.6

37
40

.0
03

0.
97

14
8.

0
2.

23
11

.1
3

3.
23

9
D

D
H

-0
36

U
H

C
oa

st
0.

71
36

6
0.

71
32

7
0.

51
21

05
0.

51
20

36
-1

0.
2

19
.3

89
15

.7
52

39
.6

17
3.

26
14

3.
9

20
.7

12
.6

0
3.

39
9

D
D

H
-0

39
U

H
C

oa
st

0.
70

48
0

0.
70

45
5

0.
51

27
06

0.
51

26
38

+1
.6

17
.4

51
15

.3
78

38
.1

39
2.

66
19

1.
6

18
.1

29
.4

8
7.

81
7

D
D

H
-0

40
U

H
C

oa
st

0.
70

45
8

0.
70

43
7

0.
51

27
58

0.
51

26
90

+2
.6

17
.6

17
15

.3
89

38
.1

17
2.

23
21

0.
5

16
.2

27
.1

5
7.

20
7

D
D

H
-0

95
U

H
C

oa
st

0.
70

67
7

0.
70

65
0

0.
51

26
29

0.
51

25
61

+0
.1

19
.7

54
15

.7
41

40
.1

48
2.

47
19

5.
6

19
.9

24
.4

9
6.

48
1

D
D

H
-1

16
U

H
C

oa
st

0.
70

42
9

0.
70

42
3

0.
51

28
73

0.
51

27
98

+4
.7

18
.4

21
15

.5
36

38
.8

22
1.

19
20

5.
9

4.
33

18
.0

7
5.

25
7

IN
D

-0
05

U
H

C
oa

st
0.

70
56

0
0.

70
54

2
0.

51
26

84
0.

51
26

14
+1

.1
18

.5
26

15
.5

94
39

.0
12

1.
87

17
6.

1
11

.8
19

.3
9

5.
28

2
JH

-3
5

U
H

C
oa

st
0.

70
45

9
0.

70
45

2
0.

51
28

64
0.

51
27

83
+4

.4
18

.4
04

15
.5

57
38

.8
91

0.
90

11
1.

7
2.

98
10

.8
3

3.
40

0
JH

-4
0

U
H

C
oa

st
0.

70
66

5
0.

70
64

7
0.

51
26

88
0.

51
26

14
+1

.1
18

.8
61

15
.6

38
39

.1
04

2.
95

15
2.

8
10

.7
17

.9
3

5.
16

8
JH

-4
8

U
H

C
oa

st
0.

70
82

9
0.

70
80

3
0.

51
24

37
0.

51
23

71
-3

.6
18

.9
07

15
.6

22
39

.6
56

2.
97

21
5.

2
23

.4
21

.2
8

5.
50

6
JH

-7
2

U
H

C
oa

st
0.

71
05

9
0.

71
01

8
0.

51
22

54
0.

51
21

86
-7

.2
19

.9
02

15
.8

35
40

.5
98

2.
58

11
3.

5
17

.3
12

.4
2

3.
27

0
JW

-3
2

U
H

C
oa

st
0.

70
93

6
0.

70
88

6
0.

51
24

39
0.

51
23

76
-3

.5
19

.2
97

15
.7

27
40

.2
59

3.
62

22
3.

1
39

.7
30

.1
4

7.
43

3
O

R
L-

5
U

H
C

oa
st

0.
70

49
9

0.
70

49
6

0.
51

27
66

0.
51

26
91

+2
.6

17
.5

51
15

.3
98

38
.2

97
0.

72
10

6.
3

1.
82

8.
38

0
2.

43
6

A
M

-2
U

H
N

-P
0.

70
41

4
0.

70
40

7
0.

51
28

61
0.

51
27

88
+4

.5
18

.1
42

15
.4

67
38

.5
09

0.
91

20
3.

4
4.

75
18

.3
5

5.
21

4
A

M
-3

0
U

A
N

-P
0.

70
93

8
0.

70
92

0
0.

51
22

43
0.

51
21

64
-7

.6
17

.6
77

15
.6

00
38

.6
31

B
O

R
-1

3
U

H
N

-P
0.

70
48

6
0.

70
46

7
0.

51
27

13
0.

51
26

47
+1

.8
17

.8
98

15
.4

46
38

.3
35

2.
65

22
8.

9
16

.4
30

.3
8

7.
79

9
B

O
R

-1
4

U
A

N
-P

0.
70

48
9

0.
70

47
9

0.
51

27
04

0.
51

26
30

+1
.4

17
.8

98
15

.4
54

38
.3

69
B

O
R

-2
0

U
A

N
-P

0.
70

46
6

0.
70

45
2

0.
51

27
47

0.
51

26
71

+2
.2

18
.0

31
15

.4
71

38
.5

20
B

O
R

-2
9

U
H

N
-P

0.
70

62
0

0.
70

61
4

0.
51

26
69

0.
51

25
99

+0
.8

18
.5

28
15

.5
9

39
.2

18
2.

13
22

6.
9

4.
6

22
.8

0
6.

19
8

D
D

H
-5

U
A

N
-P

0.
70

43
5

0.
70

42
1

0.
51

28
28

0.
51

27
47

+3
.7

18
.0

00
15

.4
65

38
.5

02

57



Ta
bl

e 
2.

3 
(C

on
t.)

: I
so

to
pi

c 
an

d 
is

ot
op

e-
di

lu
tio

n 
da

ta
 fo

r d
ik

es
.

Sa
m
pl
e

L
ab

Sw
ar
m

87
Sr
/86
Sr

(0
)

87
Sr
/86
Sr

(t)
14
3 N
d/
14
4 N
d (
0)

14
3 N
d/
14
4 N
d (
t)

ε N
d(
t)

20
6 P
b/
20
4 P
b

20
7 P
b/
20
4 P
b

20
8 P
b/
20
4 P
b

Pb
Sr

R
b

N
d

Sm

D
D

H
-1

3
U

H
N

-P
0.

70
45

4
0.

70
45

1
0.

51
28

41
0.

51
27

67
+4

.1
18

.3
32

15
.5

67
38

.6
93

1.
19

19
4.

1
2.

66
15

.6
7

4.
60

3
D

D
H

-0
81

U
H

N
-P

0.
70

61
6

0.
70

60
8

0.
51

26
71

0.
51

26
01

+0
.9

18
.4

99
15

.5
65

39
.1

43
2.

18
24

1.
2

6.
89

22
.9

9
6.

27
6

D
D

H
-0

89
U

H
N

-P
0.

70
55

6
0.

70
55

0
0.

51
27

26
0.

51
26

55
+1

.9
19

.7
79

15
.7

10
39

.9
25

0.
88

17
3.

2
3.

56
12

.2
6

3.
38

3
IG

A
-6

U
H

N
-P

0.
70

86
5

0.
70

85
4

0.
51

24
29

0.
51

23
64

-3
.8

19
.2

81
15

.7
19

40
.2

27
3.

35
24

9.
2

10
.4

29
.6

1
7.

46
3

IG
A

-1
3

U
H

N
-P

0.
70

65
7

0.
70

64
7

0.
51

25
77

0.
51

25
08

-0
.9

19
.5

17
15

.7
23

40
.0

33
2.

00
23

2.
4

8.
39

21
.2

2
5.

66
6

IG
A

-1
9

U
A

N
-P

0.
71

21
5

0.
71

20
4

0.
51

18
70

0.
51

18
04

-1
4.

7
18

.9
51

15
.5

47
38

.7
93

JE
B

-0
08

U
A

N
-P

0.
70

48
0

0.
70

47
0

0.
51

26
81

0.
51

26
04

+0
.9

17
.1

52
15

.3
14

37
.7

85
JE

B
-0

16
U

A
N

-P
0.

70
75

2
0.

70
72

8
0.

51
23

70
0.

51
22

97
-5

.1
17

.5
17

15
.4

66
38

.5
15

JE
B

-1
82

U
A

N
-P

0.
70

51
6

0.
70

50
8

0.
51

26
93

0.
51

26
20

+1
.2

18
.0

07
15

.4
70

38
.3

72
JE

B
-2

84
U

A
N

-P
0.

70
75

1
0.

70
72

9
0.

51
23

68
0.

51
22

95
-5

.1
17

.5
28

15
.4

62
38

.5
17

JE
B

-3
27

U
A

N
-P

0.
70

75
9

0.
70

73
3

0.
51

36
75

0.
51

36
03

+2
0.

4
17

.5
21

15
.4

75
38

.5
91

JE
B

-3
32

U
A

N
-P

0.
70

62
4

0.
70

60
8

0.
51

26
57

0.
51

25
79

+0
.4

18
.4

85
15

.5
58

39
.0

94
JE

B
-3

33
U

A
N

-P
0.

70
91

4
0.

70
90

3
0.

51
20

05
0.

51
19

30
-1

2.
2

16
.5

80
15

.4
05

37
.9

11
JE

B
-3

93
U

A
N

-P
0.

70
69

9
0.

70
66

8
0.

51
26

19
0.

51
25

44
-0

.2
20

.4
48

15
.8

44
40

.9
47

JE
B

-3
96

U
A

N
-P

0.
70

49
0

0.
70

47
4

0.
51

26
68

0.
51

25
93

+0
.7

17
.7

75
15

.3
44

38
.0

75
JE

B
-3

97
U

H
N

-P
0.

70
52

4
0.

70
51

4
0.

51
26

33
0.

51
25

72
+0

.3
17

.7
81

15
.4

53
38

.5
76

2.
29

32
1.

1
12

.2
26

.3
5

6.
26

8
JE

B
-4

26
U

H
N

-P
0.

70
50

9
0.

70
49

6
0.

51
26

94
0.

51
26

32
+1

.5
18

.2
17

15
.4

89
38

.6
92

2.
82

30
5.

7
14

.4
33

.4
8

8.
03

1
JE

B
-4

38
U

H
N

-P
0.

70
68

8
0.

70
66

5
0.

51
26

37
0.

51
25

70
+0

.3
20

.4
99

15
.8

34
40

.4
58

2.
59

18
4.

4
16

.1
25

.8
3

6.
76

5
JE

B
-4

42
U

H
N

-P
0.

70
57

8
0.

70
56

5
0.

51
26

60
0.

51
25

91
+0

.7
19

.2
26

15
.6

53
39

.4
61

1.
43

23
9.

3
11

.9
17

.7
5

4.
78

6
JE

B
-4

53
U

A
N

-P
0.

70
83

5
0.

70
80

9
0.

51
22

51
0.

51
21

81
-7

.3
19

.0
25

15
.5

51
39

.1
75

JE
B

-4
55

U
A

N
-P

0.
70

64
2

0.
70

64
2

0.
51

26
62

0.
51

25
84

+0
.5

18
.4

93
15

.5
76

39
.1

63
JH

-2
0

U
H

N
-P

0.
70

82
1

0.
70

75
2

0.
51

25
62

0.
51

24
97

-1
.2

20
.6

83
15

.8
93

41
.1

29
4.

20
20

3.
1

52
.0

40
.4

6
10

.2
25

JH
-2

2
U

H
N

-P
0.

70
63

2
0.

70
61

2
0.

51
26

59
0.

51
25

89
+0

.6
18

.4
89

15
.5

75
39

.1
44

2.
52

23
1.

0
17

.7
23

.8
2

6.
49

7
JH

-2
5

U
H

N
-P

0.
71

16
6

0.
71

14
8

0.
51

22
17

0.
51

21
55

-7
.8

18
.8

93
15

.7
22

40
.2

72
3.

81
24

7.
1

16
.6

24
.0

8
5.

84
4

JH
-2

8
U

H
N

-P
0.

70
43

5
0.

70
43

2
0.

51
28

49
0.

51
27

74
+4

.2
18

.0
41

15
.4

73
38

.4
54

1.
19

17
1.

3
2.

34
15

.3
9

4.
51

4
TR

M
-5

9
U

H
N

-P
0.

70
57

4
0.

70
56

6
0.

51
23

55
0.

51
22

92
-5

.2
17

.7
54

15
.3

43
37

.9
39

2.
29

30
6.

3
9.

07
21

.4
9

5.
25

6
U

D
D

-9
U

H
N

-P
0.

71
71

2
0.

71
69

1
0.

51
20

30
0.

51
19

60
-1

1.
6

19
.3

23
15

.7
32

38
.7

94
6.

79
97

.2
2

7.
74

10
.0

8
2.

74
9

D
D

-1
U

H
N

 - 
T

0.
71

60
6

0.
71

53
7

0.
51

20
47

0.
51

19
90

-1
1.

1
22

.0
66

16
.1

13
43

.6
12

4.
64

16
3.

6
42

.0
20

.5
3

4.
58

0
D

D
-1

0
U

H
N

 - 
T

0.
70

89
2

0.
70

87
0

0.
51

25
04

0.
51

24
38

-2
.3

21
.2

33
15

.9
30

41
.4

87
1.

81
25

2.
6

20
.0

19
.6

5
5.

05
7

D
D

-1
4

U
H

N
 - 

T
0.

70
94

1
0.

70
91

2
0.

51
22

60
0.

51
22

04
-6

.9
19

.2
60

15
.7

59
40

.2
24

2.
54

25
0.

5
12

.2
19

.9
4

4.
35

2
D

D
-1

5
U

H
N

 - 
T

0.
71

10
1

0.
71

06
4

0.
51

22
93

0.
51

22
24

-6
.5

19
.3

01
15

.7
64

40
.0

71
3.

96
11

5.
7

16
.2

14
.2

9
3.

86
2

58



Ta
bl

e 
2.

3 
(C

on
t.)

: I
so

to
pi

c 
an

d 
is

ot
op

e-
di

lu
tio

n 
da

ta
 fo

r d
ik

es
.

Sa
m
pl
e

L
ab

Sw
ar
m

87
Sr
/86
Sr

(0
)

87
Sr
/86
Sr

(t)
14
3 N
d/
14
4 N
d (
0)

14
3 N
d/
14
4 N
d (
t)

ε N
d(
t)

20
6 P
b/
20
4 P
b

20
7 P
b/
20
4 P
b

20
8 P
b/
20
4 P
b

Pb
Sr

R
b

N
d

Sm

D
D

-2
3

U
H

N
 - 

T
0.

70
64

2
0.

70
63

8
0.

51
26

70
0.

51
25

57
0.

0
19

.8
36

15
.7

75
40

.1
03

2.
44

14
9.

7
2.

72
20

.6
3

5.
48

0
D

H
D

-8
U

H
N

 - 
T

0.
70

46
0

0.
70

45
4

0.
51

28
01

0.
51

27
29

+3
.4

17
.6

98
15

.4
10

38
.2

41
1.

25
19

2.
4

3.
65

15
.7

2
4.

39
4

D
H

D
-9

U
H

N
 - 

T
0.

70
45

4
0.

70
44

8
0.

51
27

98
0.

51
27

27
+3

.3
17

.7
91

15
.4

38
38

.3
76

1.
44

17
4.

5
3.

86
17

.8
5

4.
96

4
D

H
D

-1
1

U
H

N
 - 

T
0.

70
64

2
0.

70
63

0
0.

51
26

81
0.

51
26

11
+1

.1
19

.1
77

15
.6

70
39

.6
35

21
1.

9
10

.0
20

.2
7

5.
50

2
D

N
D

-2
U

H
N

 - 
T

0.
70

95
4

0.
70

93
7

0.
51

22
97

0.
51

22
32

-6
.3

18
.1

68
15

.5
63

39
.5

29
3.

32
24

0.
3

15
.1

20
.3

0
5.

15
8

N
B

D
-1

U
H

N
 - 

T
0.

71
52

6
0.

71
49

5
0.

51
18

59
0.

51
18

02
-1

4.
7

18
.8

83
15

.8
00

39
.0

90
5.

11
15

9.
8

18
.3

15
.0

6
3.

34
0

N
B

D
-4

U
H

N
 - 

T
0.

71
00

7
0.

70
96

0
0.

51
23

10
0.

51
22

42
-6

.1
20

.0
31

15
.8

63
40

.6
40

2.
60

11
8.

6
20

.9
12

.0
7

3.
17

6
N

B
D

-1
0

U
H

N
 - 

T
0.

71
11

9
0.

71
09

3
0.

51
23

60
0.

51
22

97
-5

.1
22

.3
60

16
.0

85
43

.1
63

2.
81

25
5.

9
24

.3
28

.0
1

6.
88

4
TA

P-
00

1
U

H
N

 - 
T

0.
70

63
9

0.
70

59
2

0.
51

26
82

0.
51

26
19

+1
.2

17
.6

37
15

.5
56

37
.6

39
7.

38
18

1.
7

32
.0

21
.8

0
5.

32
5

TA
P-

00
2

U
H

N
 - 

T
0.

70
47

3
0.

70
46

1
0.

51
27

48
0.

51
26

79
+2

.4
17

.7
64

15
.4

15
38

.4
11

2.
03

20
9.

7
9.

56
20

.1
9

5.
43

4

59



60 

formations (e.g., Fig. 2.5D) have Poladpur-, Ambenali-, or Mahabaleshwar-formation-

type isotope ratios. Even though the DFA indicated that the Khandala might be the most 

abundantly represented formation in the swarm, no sample was found to be isotopically 

equivalent to any known Khandala member composition. 

The chemically Bhimashankar-like sample DD-10 has no isotopic equivalent in the 

Deccan, although its data fall along an extension of the field defined by lavas of the 

Mandla lobe (Fig. 2.10). Unfortunately, it cannot be compared isotopically to the 

chemically Bhimashankar-like Toranmal or Mhow samples noted above, for which 

isotopic data are lacking. 

Finally, DD-23 has an isotopic signature outside the range of the Western Ghats 

flows but within that for lavas of the northeastern Deccan (Mandla lobe field in Fig. 2.10) 

as defined by Peng et al. (1998) . 

We infer that the Narmada-Tapi swarm may well have fed flows belonging to the 

lower and upper Western Ghats formations, as well as some flows cropping out in the 

northern and northeastern regions of the province. Although major and trace element 

correlations with the Western Ghats formations are weak for about half of the Narmada-

Tapi dike samples, we have little evidence for this swarm contributing to flows of the 

southern sector of the province. 

 

DISCUSSION 

Our results combined with previous studies allow the reconstruction of a multi-

stage history of emplacement of the Deccan’s plumbing system. 
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(1) Early alkalic intrusive rocks were emplaced near the localities of Mundwara and 

Barmer (Fig. 2.1; Basu et al., 1993; Simonetti et al., 1995), and perhaps well north of 

these localities (e.g., Mahoney et al., 2002). 

(2) Dikes formed striking E-W in the Narmada-Tapi region, and N-S in what is now 

the coastal plain. The chemical compositions of some of these dikes are consistent with 

them being feeders of the lower and middle formations, from the Jawhar to the Bushe. 

(3) Dikes isotopically and chemically similar to the upper formations of Poladpur, 

Ambenali and Mahabaleshwar were emplaced in all three dike swarms, with the greatest 

number being in the latitudes between Nasik and Pune and west of Sangamner 

(Fig. 2.13B and 2.14B and C). These dikes as a group show no specific preferred 

orientation (Fig. 2.12G, bottom; Fig. 2.14C). This group includes coastal dikes as far as 

350 km south of Pune, near Goa (Figs. 2.13B and C), although the timing of 

emplacement of these latter dikes (dated at ~62 Ma by Widdowson et al., 2000) is 

uncertain relative to the emplacement of geochemically similar lava flows of the Western 

Ghats, the southernmost exposures of which are >70 km to the northeast (Widdowson et 

al., 2000). In addition, some dikes of the Narmada-Tapi region may also have fed Wai-

subgroup flows, as well as some Wai-like flows in the northern and northeastern Deccan. 

(4) Dikes similar in major and trace element composition to, in particular, members 

of the Thakurvadi and Khandala formations, but with different isotopic characteristics, 

were emplaced in all three dike systems (Fig. 2.14D and E). These dikes show a strong 

preferred N-S orientation in the coastal and Nasik-Pune swarms. Although this set of 

dikes has not been dated radiometrically, field relationships clearly indicate that they 

cross-cut flows and potential feeder dikes of the upper formations in some areas (Dessai 
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Fig. 2.14: Sketch map of the evolution of dike activity in the Deccan. Inferred feeders for the lower 
and middle formations (A), upper formations (B) and post-Deccan dikes (D) for which isotopic 
data is available. Feeders for the upper formations (C) and post-Deccan dikes (E) inferred from 
their chemical composition only.
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& Viegas, 1995; Hooper & Widdowson, submitted). Lava flows with chemical and 

isotopic compositions corresponding to these dikes have not been found. Three 

hypotheses can account for this fact: (a) the dikes are hypabyssal; i.e., they did not reach 

the surface (e.g., Auden, 1949); (b) they fed flows higher up in the stratigraphy that have 

since then been eroded, although work by Widdowson & Cox (1996) argues against large 

amounts of erosion from the top of the lava pile, in general; (c) they fed late lavas that 

flowed to the west and that are now in the largely unknown portion of the Deccan 

province that has foundered in the Arabian Sea. 

(5) In the last stages of magmatism, dikes of alkalic, including lamprophyric, 

composition were emplaced (Dessai & Viegas, 1995; Widdowson & Hooper, submitted) 

along the coast, from at least as far north of Bombay as Umbargaon to at least as far 

south as Murud (Fig. 2.13B and 2.14D and E) (e.g., Mahoney, 1984; Beane, 1988; see 

also chapter 3, this volume). Alkalic dikes also formed along the Narmada-Son 

lineament. Some of these dikes are possibly associated with some of the alkalic intrusions 

and flows of the Deccan, such as those observed in the Rajpipla area (e.g., Krishnamurthy 

& Cox, 1980; Mahoney et al., 1985; Gwalani et al., 1993; Sethna et al., 1996; Simonetti 

et al., 1998) and around Bombay (e.g., Sethna & D’Sa, 1991; Melluso et al., 2002). 

Previous estimates of the timing of emplacement of the lava flows and feeder dikes 

relative to rifting and separation of the Seychelles Bank from western Greater India were 

largely based on observations in the coastal area between Bombay and Murud (e.g., 

Hooper, 1990; Dessai & Viegas, 1995; Hooper & Widdowson, submitted). We have 

determined that at least some possible feeder dikes for the lower and middle formations 

are present in the E-W-striking Narmada-Tapi swarm and, although rare, in the N-S 
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striking coastal swarm. Possible feeders of the upper formations in the Narmada-Tapi 

swarm strike E-W; in contrast, inferred feeders of the three main upper formations (in 

particular, the upper two of these, the Ambenali and Mahabaleshwar; Figs. 2.12E and G) 

in the Nasik-Pune swarm do not exhibit a dominant strike. Finally, dikes that are likely 

to, and in some cases clearly do, post-date the upper formations display a strong E-W 

strike in the Narmada-Tapi swarm and a N-S strike everywhere else. 

The combined results indicate that broadly N-S crustal tension was prevalent in the 

Narmada-Tapi area throughout the period of Deccan volcanism. East-west extension may 

have occurred along the (future) west coast during emplacement of the lower and middle 

formations. However, signs of directed extension (i.e., rifting) during emplacement of the 

upper formations are lacking from the coast to at least as far inland as Sangamner (e.g., 

Fig. 2.13B), either because directed extension had greatly diminished, or because directed 

extensional stresses in this area were negated by more prevalent regional stresses, or 

stresses were more evenly distributed; e.g., radially above a plume head located below 

the Nasik-Pune area. East-west extension appears to have resumed along what would 

become the west coast shortly after eruption of the upper Deccan formations, leading to 

emplacement of the N-S striking, chemically Thakurvadi-like tholeiitic dikes in the 

coastal and Nasik-Pune swarms, followed by N-S oriented alkalic dikes along the coast. 

This well-expressed phase of E-W extension eventually led to the split-off of the 

Seychelles Bank, which was followed by full-fledged seafloor spreading at ~62 Ma 

(Dyment, 1998; Collier et al., 2008). 

We can also rule out pre-existing structural weaknesses in the continental crust as a 

major control on emplacement of the Narmada-Tapi swarm. The length, spacing and 



66 

straightness of the dikes, as well as the absence of en échelon dike patterns (e.g., Delaney 

et al., 1986), suggest that the dikes of this system were emplaced under conditions of 

regional N-S, tension, and were not controlled predominantly by underlying geological 

structures, in agreement with conclusions reached by Ray et al. (2007) on the basis of 

magmatic overpressure calculations and dike aspect-ratio measurements. 

The exact time interval over which this evolution took place remains a matter of 

debate. One body of geochronological work argues that emplacement of nearly all the 

Deccan flood basalts occurred in a million years or less (e.g., Courtillot et al., 1986; 

1988; Duncan & Pyle, 1988; Vandamme et al., 1991; Hofmann et al., 2000; Sen, 2001; 

Chenet et al., 2007). Other workers hold that the flood basalt eruptions occurred over a 

few million years (Venkatesan et al., 1993; 1996; Baksi, 1994; 2007; Widdowson et al., 

2000; Pande, 2002; Pande et al., 2004), and ended with the emplacement of alkalic rocks 

near Bombay at ~60 Ma (Sheth et al., 2001). However, recent studies of paleomagnetic 

secular variation in lavas of the Western Ghats by Chenet et al. (2008) offer strong 

evidence for major short-lived eruptive events, each lasting but a few decades, for the 

lavas of the Poladpur through Ambenali formations in the Mahabaleshwar area 

(Fig. 2.13B). 

 

Implications of results for models of Deccan emplacement 

The timing of magmatism relative to rifting, the orientation of dikes, and the 

migration of dike swarm activity provide important insights that can be used to help 

evaluate models for the province. 
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The plume-head model 

The plume-head model (e.g., Richards et al., 1989; Campbell & Griffiths, 1990; 

Campbell, 1998) explains the large volumes of magma produced in continental flood 

basalts (and oceanic plateaus) by the impingement of the head of a new, deep-seated 

mantle plume upon the base of the lithosphere. Although rifting can develop as a 

consequence of the plume head’s arrival, the main phase of volcanism is not associated 

with regional directed lithospheric extension. This model predicts random or radial feeder 

dike patterns in the main stage of volcanism, pre-eruptive lithospheric uplift shortly 

before flood volcanism, a short duration (less than about 5 Myr; Campbell, 1998) of peak 

eruptive activity accounting for the bulk of a province’s volume, and an age progression 

of volcanism if the plate is moving rapidly relative to the hotspot. 

Sheth (1999, 2007) has argued that evidence is lacking for either pre-eruptive uplift 

or a southward age progression in the Deccan. The 2.5 Myr difference in 40Ar-39Ar ages 

(though measured in different laboratories) between the upper formations in the Western 

Ghats and the dikes near Goa (Widdowson et al., 2000), on the other hand, is consistent 

with the 450 km the Indian plate would have traveled northward, assuming a plate 

velocity of 18 cm/yr (McKenzie & Sclater, 1971). The apparent southward off-lap 

(Fig. 2.3) of formations from Nasik south noted by numerous authors (e.g., Beane et al., 

1986; Devey & Lightfoot, 1986; Watts & Cox, 1989; Mitchell & Widdowson, 1991) 

probably reflects this migration. However, a plume-head model involving a brief and 

intense episode of magmatism preceded by a short (<5 Ma) “incubation” period does not 

by itself predict directed extension and minor extension-related magmatism either before 

flood basalt volcanism (e.g., the Barmer and Mundwara alkalic complexes in the Cambay 
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graben, dated at 68.5 Ma; Basu et al., 1993) or during the main phase (as evidenced by 

the probable feeder-like dikes in the Narmada-Tapi swarm), or during the late stages of 

volcanism (e.g., the late-stage chemically Thakurvadi-like tholeiitic dikes, the alkalic 

dikes associated with the west coast rift [e.g., Sheth et al., 2001; Melluso et al., 2002], 

and the alkalic complexes of the Narmada graben [e.g., Mahoney et al., 1985; Simonetti 

et al., 1998]). Mahoney et al. (2002), however, noted that minor magmatic activity is not 

unexpected in the few million years preceding the outpouring of flood basalts, as the 

impacting plume head spreads at the base of still-thick lithosphere. The plume-head 

model also explains well the near-random overall pattern of probable upper-formation 

feeder dikes in the combined Nasik-Pune and coastal swarms. In particular, it can explain 

the apparent absence of directed extensional stress in the brief interval during which the 

upper formations were emplaced (Chenet et al., 2008) by having the plume head centered 

under the Nasik-Pune area at the apex (Hooper, 1990; Self et al. ,2006) of Deccan 

volcanism. 

 

Models involving rifting above a plume 

Another end-member of plume-related models was developed largely to account for 

the apparent syn- and post-rift nature of flood basalts in several provinces. It involves the 

arrival of a relatively small plume head that spreads and also grows in volume 

(“incubates”) at the base of the lithosphere for as much as 50 Myr, causing dynamic uplift 

of the overlying lithosphere, which generates extension and melting (e.g., Courtney & 

White, 1986; White & McKenzie, 1989). Here, rifting is not a consequence of flood 

volcanism but triggers it; massive magmatism is a response to lithospheric extension over 



69 

hotter-than-average mantle. Besides a protracted period of pre-volcanic uplift during the 

incubation phase, this type of model also predicts that rifting will occur in the early stages 

of volcanism, and that the maximum amount of melting will occur at the time of crustal 

breakup. 

In the Deccan case, this model is particularly successful at explaining the period of 

precursory volcanism along the western rift zones (Barmer and Mundwara in the Cambay 

graben, and possibly a suite of dikes along the west coast near the southern tip of India, in 

Kerala [Radhakrishna et al., 1994]). A long period of plume incubation (40-60 Ma) 

would also imply that lithospheric uplift began some, perhaps many, millions of years 

prior to the onset of volcanism, which would explain an absence of evidence of uplift 

shortly before the Deccan event (Sheth, 2007). What the model fails to explain is how a 

deep-sourced mantle plume could have grown at the base of the lithosphere for ~25 Myr 

(White & McKenzie, 1989) while the Indian plate was drifting at a very high rate of 

18 cm/yr (McKenzie & Sclater, 1971). It also fails to account for the fact that the 

formations of the Wai subgroup, which may comprise 50% or more of the Deccan 

volume (Self et al., 2006), appear to have been fed without any dominant control by 

rifting. In addition, it does not account for the fact that the extensional phase leading to 

the break-off of the Seychelles Bank was only associated with dikes that do not seem to 

have fed any significant volume of lava flows, at least onshore. 

 

The triple junction model 

Burke & Dewey (1973) proposed the earliest form of the plume-head model, noting 

the coincidental occurrence of triple junctions, flood basalts, and in some cases persistent 
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subsequent basaltic volcanism, most notably in the Afar region of eastern Africa. In their 

compilation, they included the Deccan Traps, suggesting that a triple junction of the 

Cambay graben, Narmada-Tapi graben and west coast rift (two of which were later 

aborted) was generated by a rising plume. This and similar models (e.g., Ernst & Buchan, 

1997) predict a radial feeder dike pattern surrounding the triple junction, which Burke & 

Dewey (1973) argued was located in what is now the Gulf of Cambay. 

As noted by Sheth (1999), the presence of the often-disregarded Katchchh rift 

makes this area a quadruple junction, with the Katchchh (Late Triassic to Late 

Cretaceous), Cambay (Early Cretaceous to Tertiary), Narmada (Jurassic to Late 

Cretaceous) and West Coast (Late Cretaceous/Early Tertiary) branches not all actively 

rifting at the same times. However, patterns of pre-Deccan alkalic dikes in Katchchh 

(Paul et al., 2008) and of probable lower and middle formation feeders in the Narmada-

Tapi and coastal swarms are not conflicting with a pattern of dikes radiating from the 

Gulf of Cambay. Nevertheless, this model fails to explain the near-absence of preferred 

orientation of the numerous probable upper-formation feeders in the Nasik-Pune swarm, 

which falls ~350-400 km south of the Cambay graben on or near an extrapolated Réunion 

hotspot track (Fig. 1.2) going through the Gulf of Cambay (Duncan, 1990). 

 

Non-plume models 

In recent years, an increasing number of non-plume models (e.g., Smith, 1993; 

Anderson, 1994; King & Anderson, 1995; Smith & Lewis, 1999; Sheth, 1999; 2005) 

have been proposed as alternatives to plume-based models of large igneous province 

generation. Most originate from attempts to address shortcomings of the various plume 
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models and what the authors have perceived as the indiscriminate application of a single 

type of model to a disparate worldwide set of provinces. Sheth (1999, 2005) proposed 

such a model for the Deccan Traps. 

Rifting is a prerequisite to flood volcanism in most non-plume models. Although 

evidence exists of rifting in the early stages of Deccan volcanism, the extensive and 

voluminous upper formations appear to have been fed largely from dikes whose 

emplacement was not controlled by rifting, as they strike more or less randomly. This fact 

contradicts non-plume models. Such models are also unsuccessful at explaining why the 

peak rifting event – occurring along the west coast and culminating with break-off of the 

Seychelles microcontinent – post-dates the peak of volcanism and is associated, at least 

onshore, with only comparatively tiny volumes of magmatic rock. Furthermore, Collier et 

al. (2008) concluded that the rifting and breakup of the Seychelles Bank from India was 

caused by external plate-boundary forces and was unrelated to Deccan volcanism. 

 

In summary, all existing models present serious weaknesses when applied to the 

Deccan. Objections by Sheth (1999; 2007) notwithstanding, the plume-head model of 

Campbell & Griffiths (1990) successfully accounts for the majority of observed 

characteristics of the dikes and must thus be preferred, assuming that some or all of the 

Cambay, Katchchh, Narmada and Tapi rifts and extension along parts of the western 

coastal zone (dating back to the break-up of Madagascar and earlier; Storey et al., 1995; 

Raval & Veeraswamy, 2003) were already active at the time of plume head arrival. Minor 

melting would have occurred a few million years prior to the main melting event as a 

consequence of rising upper-mantle temperatures in regions of already thinned 
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lithosphere, such as the Katchchh and Cambay grabens. Minor precursory volcanism 

might also be expected in the regions affected by Precambrian tectonism as a result of 

pre-existing zones of weaknesses, as in southwestern India where the Kerala dikes were 

emplaced (Biswas, 1987; Sheth, 1999). The 4-5 Myr interval separating plume head 

arrival from the onset of the main phase of volcanism predicted by Campbell & Griffiths 

(1990) is similar to the gap separating the precursory 61 Ma phase from the 56 Ma main 

magmatic phase in the North Atlantic Tertiary province (e.g., Saunders et al., 1997) and 

fits rather well with the ~69 Ma ages measured for the alkalic rocks of the Cambay 

graben (Basu et al., 1993). It also fits with the (more controversial) ~69 Ma age of the 

Kerala dikes (Radhakrishna et al., 1994) and perhaps could also account for the ~73 Ma, 

possibly Deccan-related rocks of Pakistan without overstretching the model (Mahoney et 

al., 2002). In the plume-head model, voluminous melt generation and eruption could 

begin abruptly following this phase of precursory volcanism, as a consequence of 

adiabatic decompression as the plume-head reaches the top of the upper mantle (e.g., 

Campbell & Griffiths, 1990). Continued rifting in the region of the Narmada and Tapi 

grabens would favor the emplacement of E-W striking lower-, middle- and upper-

formation feeder dikes. Likewise, existing trends in the Archean basement (e.g., Raju, 

1968; Chandrasekharam, 1985; Biswas, 1987; Raval & Veeraswamy, 2003) along the 

west coast would have favored the emplacement of N-S trending feeder dikes of the 

middle and lower formations. By the time of the Poladpur formation, stresses related to 

the plume head could have overridden the effects of pre-existing structures, leading to 

emplacement of an important swarm of poorly oriented feeder dikes in the Nasik-Pune 

area feeding voluminous, widespread lava flows (e.g., Self et al., 2006) over very short 



73 

periods of time (Chenet et al., 2008). The transition between the middle and upper 

formations is also marked by important chemical and isotopic variations indicating 

changes in source processes and magma pathways to the surface (e.g., Lightfoot & 

Hawkesworth, 1988; Peng et al., 1994). The Ambenali formation’s chemical 

characteristics, for instance, indicate that these magmas were formed by relatively high 

degrees of partial melting beneath relatively thin lithosphere (e.g., Peng & Mahoney, 

1995; Melluso et al., 1995; Sen, 1995), consistent with the idea that the upper formations 

coincide with a surge in magmatic activity expressed in the form of very large flow 

volumes (Self et al., 2006), very high eruption rates during short-duration eruptions 

(Chenet et al., 2008) and a randomly oriented feeder system (Beane et al., 1986; this 

study). 

In this view of the plume-head scenario, the main phase of volcanism can be 

followed by E-W rifting and sea-floor spreading as a result of lithospheric thinning and 

tensions caused by surface uplift above the plume head; stressed produced by the uplift 

are, by themselves, thought to be insufficient to produce runaway extension (Campbell & 

Griffiths, 1990), but can favor sea-floor spreading coupled with external plate-tectonic 

forces. Collier et al. (2008) proposed that E-W rifting occurred along the west coast as a 

result of external plate-boundary forces and was accompanied by minor magmatism 

along the rift zone. Alternatively, E-W rifting could have been favored as a consequence 

of N-S stretching or smearing of the plume head in response to the fast northward motion 

of the Indian plate; N-S stretching of the plume would lead to an elongate zone of uplift 

along a N-S axis, which in turn would favor E-W rifting, provided external stresses were 

sufficient to induce runaway extension and breakup. A late phase of magmatism would 
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also be observed in the Narmada-Tapi region, where ongoing N-S extension would still 

control dike orientation. 

 

CONCLUSIONS 

Study of the elemental and isotopic signatures of dikes of the Deccan Traps allows 

us to correlate a substantial subset of dikes with flow formations, and places important 

constraints on the location, geometry and evolution of the feeder systems to the lava pile. 

In particular, it provides the following information regarding the relative timing of dike 

emplacement with respect to regional directed lithospheric extension. 

 

* Inferred feeders of the three main upper formations (Poladpur, Ambenali, and 

Mahabaleshwar) are found in all three dike swarms, their greatest concentration being 

between Nasik and Pune, where they do not show a marked preferred orientation. 

 

* Multiple inferred feeder dikes of the lower and middle formations are found in the E-W 

oriented Narmada-Tapi swarm. Ray et al. (2007) suggest that this area was actively 

rifting N-S at the time, and that dike emplacement was not controlled significantly by 

pre-existing geological structures. 

 

* Few probable feeder dikes to the lower and middle formations are found in the coastal 

and Nasik-Pune swarms. The few that are present display an overall preferred N-S strike. 
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* The inferred lower- and middle-formation feeder dikes remain few in comparison with 

upper formation feeders, possibly as a result of poor to nonexistent exposure in most 

areas and unfavorable exposure even in the northern Konkan plain. 

 

* Geochemical similarities between several sampled dikes of the Narmada-Tapi swarm 

and lavas of the Mandla lobe (Fig. 1.2) and the northern Deccan near Toranmal suggest 

this swarm might have acted as a feeder system for flows spreading to the north and 

northeastern reaches of the province. 

 

* Widespread tholeiitic feeder dikes with chemical affinities to the Western Ghats lava 

formations (the Thakurvadi and Khandala formations, in particular) cross-cut and thus 

post-date flows and probable feeders of stratigraphically higher formations. These dikes 

have isotopic signatures different than those observed in the Western Ghats formations. 

This group of dikes strikes E-W in the Narmada-Tapi swarm and N-S everywhere else, 

and does not seem to have fed significant volumes of lava. The strong N-S trend of these 

dikes outside the Narmada region indicates that they are contemporaneous with late-stage 

rifting along the west coast, which eventually led to the breakup of the Seychelles Bank 

from India. 

 

* An even later phase of syn-rift magmatism is recognized in acidic, lamprophyric and 

other alkalic dikes in the coastal swarm. This phase may have persisted until ~60 Ma 

(Sheth et al., 2001). 
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Despite the apparent absence of pre-volcanic uplift (Sheth 1999; 2007), a plume-

head model for the formation of the Deccan should be preferred. It best accounts for the 

observed feeder dike patterns: (1) the lack of preferred orientation of the inferred upper-

formation feeder dikes and (2) the main phase of volcanism preceded the main phase of 

rifting along the Indian west coast. Rifting models fail to account for these observations. 

Although rift-related precursory magmatic events and a rifting-controlled emplacement 

of the inferred lower and middle formation feeder dikes seem to favor rifting models, 

they do not discount plume-head models, as rifting was active for millions of years prior 

to the onset of volcanism. Although the possibility that directed extension triggered large-

scale volcanism cannot be ruled out, it appears that another mechanism(s) must be 

invoked to account for the voluminous upper formations. The fact that the graben regions 

of the northern Deccan had been tectonically active for 55-145 Myr prior to the onset of 

Deccan volcanism (i.e., since the Late Triassic for the Katchchh rift and the Early 

Cretaceous for the Cambay graben) and had not previously been the site of voluminous 

volcanism is another indication that rifting alone did not generate the flood basalt event. 

The most likely scenario involves the arrival of a plume head under a region already 

undergoing rifting. 
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INTRODUCTION 

Despite the overwhelming predominance of tholeiitic lavas in the Deccan volcanic 

province, the volumetrically minor occurrences of acidic, lamprophyric and other alkalic 

lavas and intrusions have historically garnered disproportional scientific attention 

(Mahoney, 1988). These rocks (Fig. 3.1) have been known to occur both at the early 

Deccan stages, like the Mundwara and Barmer intrusions of the Cambay graben (e.g., 

Basu et al., 1993; Simonetti et al., 1995) and the alkalic rocks of Katchchh (alternatively 

spelled “Kutch”, “Kutchchh”, “Katch”, “Kuch” or “Kachchh”; e.g., Paul et al., 2008; Sen 
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et al., submitted), and in the Deccan’s late stages, cross-cutting or overlying local flows, 

such as the intrusive complex of Mt. Girnar (e.g., Bose, 1973; Murali et al., 1976; Paul et 

al., 1977), the Rajpipla intrusive suite, 60 km west of Rangpur (e.g., Krishnamurthy & 

Cox, 1980; Mahoney et al., 1985), the alkalic, acidic and carbonatitic rocks of the Phenai 

Mata and Amba Dongar complexes of the Narmada graben (e.g., Sukheswala & Avasia, 

1972; Simonetti et al., 1995; 1998) and the acidic, lamprophyric and other alkalic 

intrusive and extrusive rocks of the Bombay, Murud, Janjira and Trombay region, along 

India’s west coast (e.g., Sethna & Battiwala, 1980; Mahoney et al., 1985; Melluso et al., 

2002; Hooper & Widdowson, submitted). Although lamprophyres have been reported in 

the Murud-Janjira region (Melluso et al., 2002), they are much less common than 

melanephelinites and nephelinites found in the area. 

Alkalic rocks occur in many continental large igneous provinces, typically at the 

early or late stages of volcanism (e.g., Paraná-Etendeka, Peate, 1997; Karoo, Eales et al., 

1984; Siberian Traps, Sharma, 1997). In the Deccan, these occurrences are commonly 

explained by a combination of melting of metasomatized lithospheric mantle and low 

degrees of partial melting (e.g., at the edge of the hotspot) (e.g., Mahoney et al., 1984; 

Simonetti et al., 1998; Melluso et al., 2002). 

During the course of our study of dikes of the Deccan Traps, we encountered 

numerous acidic, lamprophyric and other alkalic dikes of varying geochemistry and 

mineralogy. Because these dikes cannot be considered to be feeders to the voluminous 

tholeiitic lava pile, they do not receive nearly as much attention in our work as their 

tholeiitic counterparts. Nevertheless, we present here geochemical analyses of scattered 
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dikes from the west coast north and south of Bombay and from the Narmada-Tapi rift 

system and compare them to other acidic and alkalic rocks of the Deccan Traps. 

 

SAMPLES AND METHODS 

The dike samples from the coastal area south of Bombay were taken from the 

collections of Beane (1988), Hooper & Widdowson (submitted) and their coworkers. 

Data for the major elements and a group of trace elements analyzed by X-ray 

fluorescence spectrometry (XRF), and, for some samples, additional trace element data 

(determined by inductively coupled plasma mass spectrometry (ICP-MS)), were already 

available for these samples. In addition, we collected samples from the Narmada-Tapi 

swarm near Rangpur (Fig. 3.2) and Dediapada (Fig. 2.2) and the coastal swarm in the 

northern Konkan plain, near Umbargaon (Fig. 3.1), between 2003 and 2005. Although 

generally fine-grained and aphyric or sparsely phyric, one sample is porphyritic with 

biotite and cm-sized plagioclase (RD-1), and some other samples are plagioclase-phyric 

with trachytic textures (DDH-159; UDD-03). The lamprophyres, on the other hand, are 

dominated by assemblages of clinopyroxene (cm-sized), biotite and plagioclase. 

Major elements in our recently collected samples (UDD-03, DD-04 and the RD 

sample suite) were measured by XRF on fused disks at the University of Hawaiʻi, 

following Eason & Sinton (2006). Concentrations of trace elements were determined by 

ICP-MS following a procedure similar to that of Pyle et al. (1995) and Neal (2001). 

Detailed analytical procedures are described in chapters 1 and 2. Isotope ratios of three 

samples were analyzed at the University of Alberta, following Creaser et al. (1997); for 
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age-correcting these ratios, we have used the corresponding XRF and ICP-MS 

concentration data for parent and daughter elements. 

 

RESULTS 

The acidic, lamprophyric and other alkalic dikes encountered in the present study 

broadly fall in four geographic categories: (1) the mafic, intermediate and acidic dikes of 

the Rangpur area (Fig. 3.1 and 3.2), (2) lamprophyric dikes of the west coast south of 

Bombay, (3) other alkalic dikes of the west coast, from Murud to Umbargaon (Fig. 3.1), 

and (4) a single alkalic dike (DD-04) of the Narmada-Tapi graben, sampled near 

Dediapada (Fig. 2.2). Mineralogical observations and major and trace element 

concentrations (Table 3.1; Fig. 3.3) further subdivide these dikes into multiple categories. 

(1) The coastal lamprophyres are melanocratic with dominant biotite and clinopyroxene 

mafic phases. (2) The alkalic dikes of the west coast comprise both silica-oversaturated 

acidic rocks that have either a potassic affinity (DDH-159 and UDD-03), are barely 

silica-undersaturated (mugearite) with a sodic affinity (DDH-014), or are very silica-

undersaturated phonotephrites (DDH-006A and -006B). (3) The alkalic dike near 

Dediapada is a trachybasalt with sodic affinity (i.e., hawaiite; DD-04). (4) The Rangpur 

dike suite is very diverse, including mafic, intermediate and acidic dikes that are 

subalkalic (RD-3, -5, -7 and -8) and belong to the high-K series of Peccerillo & Taylor 

(1976), as well as alkalic basalts, shoshonites and latites (i.e., with a potassic affinity; 

RD-1, -2, -4 and -6). 

Three samples from dikes in the western coastal zone were analyzed for Sr, Nd and 

Pb isotopes at the University of Alberta (Table 3.2; Fig. 3.4). Data show that, not 
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Table 3.1: Major element (wt%) and trace element (ppm) compositions of alkalic and lamprophyric Deccan dikes.
Calculated CIPW normative mineral abundances (wt%) of major phases are reported at the bottom.
Abbreviations are as in Appendix A.
Sample DDH-004 DDH-007 DDH-012 DDH-020 DDH-021 DDH-006A DDH-006B DDH-014 DDH-159  
Swarm Coast Coast Coast Coast Coast Coast Coast Coast Coast
Strike 177 15 10 20 40? 20 20 160
Thickness (m) 1 1 1 0.5 1 20 25 3

Category Lampro. Lampro. Lampro. Lampro. Lampro. Phono-
tephrite

Phono-
tephrite Mugearite Trachyandes./ 

latite
Lab WSU WSU WSU WSU WSU WSU WSU WSU WSU

SiO2 44.58 41.51 47.61 43.97 43.05 52.39 48.66 53.30 58.19
TiO2  4.09 5.51 3.34 5.09 5.30 0.35 0.99 3.00 0.98
Al2O3 8.97 7.82 11.16 8.73 9.09 20.59 14.88 14.37 17.82
FeO (t) 14.38 16.47 12.18 15.24 15.76 6.27 13.16 11.90 6.55
MnO   0.34 0.36 0.20 0.38 0.30 0.21 0.20 0.17 0.08
MgO   10.38 11.40 9.93 9.12 9.69 2.53 6.47 4.02 3.41
CaO   12.82 12.76 9.70 12.22 12.37 7.15 7.30 5.91 5.68
Na2O  2.11 1.75 2.85 2.68 2.47 4.97 3.96 5.48 4.42
K2O   1.50 1.72 2.32 1.74 1.08 4.59 3.97 1.39 2.65
P2O5  0.82 0.71 0.72 0.82 0.87 0.95 0.41 0.46 0.22
Total
LOI

Sc 36 38 29 38 35 12 25 24 18
V     310 331 245 315 330 80 231 308 100
Cr 742 694 455 268 208 35 149 64 61
Co 49 57 44 48 48 12 28 32
Ni 248 235 228 114 90 32 86 47 68
Cu 241 320 157 175 219 16 68 38 120
Zn 137 136 137 174 184 106 143 136 74
Ga 16 18 15 15 16 23 15 25 20
Rb 33 71 40 59 30 75 39 27 65
Sr 812 1184 1912 1547 873 3149 858 433 580
Y 29 28 25 32 34 21 20 39 15
Zr 398 360 367 535 485 362 131 238 174
Nb    152.8 222.6 151.1 260.2 252.1 84.1 20.4 23.7 21.9
Ba 8920 830 1056 1152 646 710 622 298 599
Li 28 14 32 43 24 26 12 9

La 205 16 29
Ce 378 31 61
Pr 39.1 4.0 7.9
Nd 142 17 36
Sm 23.0 4.0 9.5
Eu 6.1 1.2 3.1
Gd 15.4 3.5 9.5
Tb 1.90 0.59 1.52
Dy 9.1 3.6 8.9
Ho 1.47 0.69 1.69
Er 3.3 2.0 4.2
Tm 0.41 0.30 0.58
Yb 2.2 1.9 3.3
Lu 0.33 0.31 0.5
Hf 12.8 6.1 6.5
Ta 15.3 4.7 1.4
Pb 12 16 4.2
Th 23.1 3.4 2.9
U 4.84 0.30 0.65

Quartz 2.15
Plagioclase 15.79 8.40 25.32 11.20 17.11 40.06 19.15 55.85 58.36
Orthoclase 8.86 1.63 13.71 10.28 6.38 27.13 23.46 8.21 15.66
Nepheline 6.84 8.02 5.20 9.82 7.76 12.09 13.79 0.56
Leucite 6.69
Diopside 39.13 41.23 26.67 40.07 37.17 7.55 18.79 13.32 4.82
Hypersthene 16.65
Olivine 19.71 21.93 21.11 17.06 19.49 10.31 21.99 15.30
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Table 3.1 (Cont.): Major element (wt%) and trace element (ppm) compositions of alkalic and lamprophyric dikes.
Sample UDD-03 DD-04 RD-1 RD-2 RD-3 RD-4 RD-5 RD-6 RD-7 RD-8
Swarm Coast Narm.-Tapi Narm.-Tapi Narm.-Tapi Narm.-Tapi Narm.-Tapi Narm.-Tapi Narm.-Tapi Narm.-Tapi Narm.-Tapi
Strike 90 20 100 60 80 130 80 80 75
Thickness (m) 2 1.4 0.7 0.4 0.35 1.5 0.9 1.8 2

Category Trachy-
dacite Hawaiite Trachyande

s./ latite
Alkali 
basalt

Subalkalic 
high-K 
basalt

Alkali 
basalt

High-K 
dacite Shoshonite Subalkalic high-

K basalt
High-K 

andesite

Lab UH UH UH UH UH UH UH UH UH UH

SiO2 69.28 50.39 54.27 46.89 50.52 46.58 64.36 54.17 50.01 57.32
TiO2  1.03 2.95 1.16 1.12 1.29 1.14 1.07 1.74 1.34 1.12
Al2O3 14.14 13.13 19.33 15.82 15.18 12.36 13.88 14.60 16.79 15.13
FeO (t) 4.32 14.59 7.16 11.05 11.02 9.20 6.94 11.53 10.75 8.53
MnO   0.06 0.20 0.15 0.20 0.16 0.15 0.11 0.15 0.16 0.13
MgO   0.90 4.74 2.22 7.31 5.77 12.23 1.88 3.49 4.74 4.14
CaO   1.71 7.73 5.31 13.31 9.75 15.31 4.28 5.57 9.76 6.58
Na2O  3.36 3.44 3.75 1.60 2.13 1.38 1.81 2.62 2.32 2.19
K2O   4.90 2.30 5.19 1.41 2.15 .62 4.53 4.67 2.04 3.26
P2O5  0.28 0.40 0.62 0.42 0.30 0.32 0.30 0.47 0.32 0.27
Total 99.96 100.73 99.12 99.10 98.24 99.27 99.13 99.01 98.23 98.65
LOI 3.13 2.87 2.62 4.65 2.26 2.42 2.90 1.89

Sc 11 35
V     
Cr 10 79
Co 6 36
Ni 42
Cu 133
Zn 54 123
Ga
Rb 188 61
Sr 207 337
Y 45 36
Zr 390 121
Nb    23.7 16.8
Ba 888 298
Li

La 75 22
Ce 132 48
Pr 15.3 6.2
Nd 54 27
Sm 9.4 6.1
Eu 2.3 1.9
Gd 9.4 6.6
Tb 1.29 1.04
Dy 7.0 6.1
Ho 1.32 1.16
Er 3.8 3.
Tm 0.58 0.41
Yb 3.4 2.7
Lu 0.51 0.39
Hf 9.0 3.3
Ta 1.5 1.0
Pb 10 5.1
Th 24.2 2.7
U 3.34 0.59

Quartz 23.89 22.24 0.89 9.64
Plagioclase 35.09 42.64 50.29 42.52 44.22 32.40 31.91 36.74 49.84 40.85
Orthoclase 28.96 13.59 30.91 8.39 12.88 3.66 26.95 27.83 12.23 19.50
Nepheline 0.06 1.34 1.75 2.82
Leucite
Diopside 18.71 1.51 26.30 17.60 38.99 2.46 8.76 14.30 7.64
Hypersthene 8.59 17.54 12.21 18.92 14.90 17.78
Olivine 18.46 12.30 17.91 2.23 17.26 3.09
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surprisingly, all three dikes are isotopically distinct from any of the Western Ghats flow 

formations. Although the majority of published data for alkalic complexes (Barmer, 

Mundwara, Katchchh, Amba Dongar, Trombay and two samples from Murud-Janjira; 

Mahoney et al., 1985; Simonetti et al., 1998; Melluso et al., 2002) fall on or near Trend 1 

of Peng et al. (1994) (see Ch. 2), only lamprophyre DDH-021 comes close to that trend 

among the present group of samples. The other two samples (DDH-006A and -014) have 

noticeably low εNd (-17.6 and -6.7, respectively). Among Deccan-related alkalic rocks, 

such low εNd values have only been observed in nearby nephelinites of Murud and Janjira 

island (Melluso et al., 2002). The very low 206Pb/204Pb for DDH-014 (16.575) is also 

uncharacteristic of other alkalic samples of the Deccan. Pb isotope data are not available 

for the Murud-Janjira rocks studied by Melluso et al. (2002), unfortunately. 

 

DISCUSSION 

Our analyses of lamprophyres of the west coast, south of Bombay in the vicinity of 

Murud, show that they are distinct from previously studied alkalic rocks, including 

lamprophyres, from the same area (Melluso et al., 2002). Most notably, the lamprophyres 

of Murud-Janjira have a potassic affinity, whereas our samples are sodic. Isotopically, 

our lamprophyre analysis (DDH-021) falls close to that for a lamprophyre from Murud-

Janjira (Melluso et al., 2002) and to a lamprophyric dike from Trombay Island (Mahoney 

et al., 1985) in 87Sr/86Sr, but are distinct in εNd. However, the composition of DDH-021 

conspicuously fall at the tip of the array defined by data for the Barmer intrusion (some 

835 km farther north; Fig. 1.2 and 2.1). This array, which points toward low-87Sr/86Sr and 

low-εNd, is like other parallel isotopic data arrays defined by basalts interpreted to be 
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contaminated by Lewisian-like granulites (e.g., Peng et al., 1994). Although previous 

lamprophyre data showed that the rocks were more or less uncontaminated by crust and 

had isotopic ratios close to recent products of the Réunion hotspot (Fig. 3.4), 

lamprophyres studied here appear to be contaminated with the material that also affected 

the nephelinitic magmas of Murud-Janjira. 

Other alkalic rocks from the Murud area are phonotephrites (DDH-006A and -

006B). These differ from previously studied Murud-Janjira alkalic rocks, which are 

dominantly melanephelinites and nephelinites. The closest equivalent is a tephrite from 

Melluso et al. (1998), markedly different in its alumina and alkali content (9.66 wt% 

Al2O3 in the tephrite, ~14-20 wt% in the phonotephrites; 4.92 wt% total alkali in the 

tephrite, 8-9 wt% in the phonotephrites). Isotopic data for phonotephrite DDH-006A also 

differ from any other alkalic rock from Murud and other rocks from the Deccan plateau. 

Isotopically somewhat similar in Sr and Nd isotopes to the nephelinites of Murud, it falls 

well off any possible contamination path with granulites of Lewisian-like Pb isotopic 

composition. Further isotopic comparisons with other low-87Sr/86Sr, low-εNd rocks (like 

the Murud-Janjira nephelinites) cannot be made until the Pb isotope ratios of the Murud-

Janjira alkalic suite are available. 

The mugearite sample DDH-014 also represent a rare rock type in this area. In 

terms of Pb isotope ratios, it is the most distinct sample of our study, having no 

equivalent near or far in the isotopic field of Deccan alkalic rocks. With very low 

206Pb/204Pb values (16.575), its closest isotopic resemblance is to the (tholeiitic) lavas of 

the Mahabaleshwar formation, which has long been postulated to represent the mixing of 

an Ambenali-like isotopic end-member with either old granulitic crust (e.g., Mahoney et 
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al., 1982) or old continental lithospheric mantle (e.g., Lightfoot & Hawkesworth, 1988; 

Lightfoot et al., 1990). In either case, the isotopic composition of this mugearite records a 

contamination process involving a low-206Pb/204Pb and low-208Pb/204Pb component that 

had previously not been observed in the Deccan’s alkalic rocks. 

The trachyandesite (DDH-159, found just north of Bombay) and trachydacite 

(UDD-03, sampled near Umbargaon) are similar in composition to trachytes and rhyolites 

(though the terms now reflect outdated definitions of these rocks) of the Bombay 

volcanic series (Sethna & Battiwala, 1977; Lightfoot et al., 1987; Sheth & Ray, 2002). If 

these rocks are related, the Bombay acidic volcanic series would extend some ~100 km 

farther north than originally thought. 

Sample DD-04, collected near Dediapada (Fig. 2.2), is also an oddity. To our 

knowledge, no other alkalic dike has been reported in the vicinity, and indeed, the great 

majority of dikes in the area are tholeiitic. This hawaiite is also sodic in nature, in stark 

contrast with the potassic suite of Rajpipla (Mahoney et al., 1985), located just 25 km 

farther north. It also stands in sharp contrast with the highly silica-undersaturated alkalic 

rocks and carbonatites of Phenai Mata and Amba Dongar (Simonetti et al., 1998), located 

only 70 km to the north-east. 

The proximity of the Phenai Mata and Amba Dongar alkalic intrusions (e.g., 

Sukheswala & Avasia, 1972; Gwalani et al., 1995; Simonetti et al., 19995; 1998; Ray & 

Shukla, 2004) to the Rangpur dike suite may suggest a petrogenetic relationship between 

the alkalic dikes and these intrusions. However, these two intrusions are prominently 

carbonatitic and highly silica-undersaturated, unlike our dike samples, half of which are 

only mildly alkalic and half subalkalic. Our samples also have a strongly marked potassic 
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affinity, whereas existing data for the two intrusions (e.g., Gwalani et al., 1993; Simonetti 

et al., 1998) indicate a sodic affinity. The dikes certainly cannot be considered feeders to 

the carbonatitic complexes. Any petrological connection, let alone synchronicity, 

between the alkalic/acidic dikes and the subalkalic ones also needs to be established. 

 

CONCLUSIONS 

Dikes, lavas and intrusive complexes with alkalic affinities occur in the Deccan 

Traps and are closely associated with rift zones (Cambay graben, Narmada-Tapi rift, 

Panvel flexure and west coast rift, Katchchh rift). Besides their tectonic characteristic, 

these intrusive and extrusive rocks display little compositional similarities. Some (e.g., in 

the Katchchh rift, and in the Barmer and Mundwara intrusions of the Cambay graben) are 

thought to have been intruded in the Deccan’s early stages (e.g., Basu et al., 1993; 

Simonetti et al., 1995). Others (like the Amba Dongar and Phenai Mata intrusions, others 

along the Narmada rift zone, and the alkalic dikes of the west coast south of Bombay) 

have been shown to have been emplaced in the late stages of volcanism (e.g., Sukheswala 

& Avasia, 1972; Simonetti et al., 1995; 1998). Our geochemical study shows that our 

acidic and alkalic samples cover nearly the whole spectrum of alkalic rocks, from mafic 

(alkalic basalts, hawaiites) to intermediate (mugearites, shoshonites, latites, andesites) to 

acidic (dacites, trachydacites) to strongly silica-undersaturated (phonotephrite) to 

lamprophyric. 

Previous isotopic studies of the alkalic rocks of Mundwara, Barmer and Katchchh 

as well as of lamprophyres at Trombay and Murud-Janjira, showed that the sources of 

these magmas isotopically resembled the source of recent products of the Réunion 
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hotspot (Fig. 3.4) (e.g., Mahoney et al., 1985; Peng & Mahoney, 1995; Simonetti et al., 

1998; Melluso et al., 2002), representing a narrow range of values compared to the much 

wider range of isotopic compositions observed in the tholeiitic lava pile. New isotopic 

data confirm that the Murud lamprophyres had a mantle source with limited isotopic 

variability, but also reveal a very wide range of isotopic values for our other alkalic dikes, 

unlike any seen in the Western Ghats flows and alkalic complexes. 

The Rangpur dike suite, despite its close proximity to the carbonatitic complexes of 

Phenai Mata and Amba Dongar, is geochemically distinct, in that it is subalkalic to 

mildly alkalic, and dominantly potassic whereas the two intrusive complexes are sodic. 

Future efforts should involve the characterization of the Pb isotope ratios of the Murud-

Janjira dikes, in order to constrain the nature of mantle and crustal components involved 

in the petrogenesis of the magmas and compare them with the end-members inferred to 

play a part in the evolution of the tholeiitic series. Furthermore, field, petrological, 

chemical and isotopic work is required to determine the relative timing of the subalkalic 

and alkalic dikes of Rangpur, and their timing and petrogenesis relative to the 

neighboring carbonatitic complexes. 
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CHAPTER 4 

PETROGENETIC PROCESSES OF THE LOUISVILLE SEAMOUNT CHAIN 

AND GEOCHEMICAL EVOLUTION OF ITS MANTLE SOURCE 
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2. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 

92093, USA 

 

a. Current address: College of Oceanic and Atmospheric Sciences, Oregon State 

University, Corvallis, OR 97331, USA 

 

 

INTRODUCTION 

The Louisville Seamount Chain (LSC) is a 4300 km long chain of seamounts and 

guyots (Lonsdale, 1988) in the South Pacific Ocean, extending from 138.1º W, 50.9° S at 

its eastern end, in the vicinity of the Heezen Fracture Zone, to the Tonga-Kermadec 

Trench at its western edge (175.3° W, 25.7° S), where it is subducted (Fig. 4.1). Menard 
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et al. (1964) first reported the existence of an 1100 km long section of the chain. Its 

origin was linked to the Eltanin transform fault system, which includes the Heezen and 

Tharp fracture zones (Fig. 4.1; Hayes & Ewing, 1971; Larson & Chase, 1972). Over the 

years, however, the hypothesis of a hotspot origin for the Louisville chain has become 

prevalent (e.g., Hawkins, 1973; Epp, 1978; Jurdy, 1978; Lonsdale, 1988; Clague & 

Jarrard, 1973; Molnar et al., 1975; Vogt et al., 1976; Cheng et al., 1987; Koppers et al., 

2004). Geochronological studies (Watts et al., 1988; Koppers et al., 2004, Koppers et al., 

2007b) have shown the existence of a progression, though not linear, in seamount ages, 

going from the oldest (78 Ma) at the northwestern, Tonga Trench end of the chain to the 

youngest dated seamount (1.1 Ma) at 139º 9’ W. Two first-order bends (~47 and 25 Ma) 

have been recognized in the chain (at 169º W and 159º W; Lonsdale, 1988). These are 

coeval with similar bends in the Hawaiʻi-Emperor chain (e.g., Lonsdale, 1988; Sharp & 

Clague, 2002; Koppers et al., 2004), and are interpreted as recording changes in Pacific 

plate motion. 

The LSC represents an ideal site to study hotspot-related petrogenetic processes 

because it is the only other long-lived hotspot trail on the Pacific plate besides the 

Hawaiʻi-Emperor seamount chain. As a result, study of the LSC is of critical importance 

to test models based on the study of the Hawaiʻi hotspot trail, such as Pacific plate 

absolute motion (e.g., Wessel & Kroenke, 2008), evolution of ocean island volcanism 

(e.g., Stearns, 1966; Macdonald, 1968) and genesis of ocean island basalts (OIB). 

Previous geochemical studies of ocean islands have presented compelling evidence for 

the presence of compositional heterogeneity in the mantle sources of OIB (e.g., Rhodes & 

Hart, 1995; Lassiter & Hauri, 1998; Hauri et al., 1996; Sobolev et al., 2000; Regelous et 
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al., 2003; Devey et al., 2003); such heterogeneity is thought to result from recycled 

oceanic crust, lower continental crust, sediments and/or lithospheric mantle. These 

recycled materials are generally imagined to be in the form of blobs, streaks or veins 

(ibid.) within a peridotitic mantle matrix. The matrix in itself is heterogeneous because of 

the presence of variably aged residues of diverse amounts of partial melting of the 

mantle, some perhaps dating back to early Earth differentiation before plate tectonics 

(e.g., Weaver, 1991; Hofmann & White, 1982; Chauvel et al., 1992; Pilet et al., 2005; 

Boyet & Carlson, 2006). How much of the range observed in the isotopic composition of 

Hawaiʻian lavas (the present-day εNd value of the Koʻolau shield-stage lavas alone range 

from -1.9 to +6.7; Roden et al., 1984; 1994; Jackson et al., 1999) and other OIB reflects 

variations in the composition of the mantle source, as opposed to variations in melting 

conditions, remains uncertain (e.g., Rhodes & Hart, 1995; Lassiter et al., 1996; Keller et 

al., 2000; Blichert-Toft et al., 2003; Regelous et al., 2003; Kurz et al., 2004; Ito & 

Mahoney, 2005a, b; Abouchami et al., 2005; Huang et al., 2005; Marske et al., 2007). 

One of the factors influencing melting conditions is the thickness of the lithosphere, and 

hence, the crustal age at the time of the emplacement of ocean islands (e.g., Ito & 

Mahoney, 2005a). The Louisville volcanoes appear to have been emplaced on oceanic 

crust of relatively constant age, 40-55 Myr old for much of the chain’s history. 

Exceptions are seamounts just west of the Wishbone Scarp (see Fig. 4.1), emplaced on 

60-Myr-old or older crust, and the westernmost seamounts, emplaced on crust ≤30 Myr 

old close to the Osbourn Trough fossil spreading center (Lonsdale, 1988; Watts et al., 

1988; Lyons et al., 2000; Worthington et al., 2006). This contrasts with the Hawaiʻi-

Emperor chain, where the age of the crust at the time seamounts were emplaced varies 
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between the northern (near-ridge) and southeastern seamounts (100 Ma). Detroit 

Seamount, located at the northern end of the chain, appears to have been emplaced very 

close to a paleo-spreading centre (e.g., Cottrell & Tarduno, 2003), whereas modern 

Hawaiʻian volcanoes are emplaced on old, Cretaceous crust (~100 Myr old; e.g., 

Waggoner, 1993; Müller et al., 1997). 

The LSC also presents some characteristics that sets it apart from other hotspot 

chains. Lonsdale (1988) noted that southeast of the 159º W bend (i.e., seamounts younger 

than ~25 Ma), seamount average size, and therefore, volcanic production rates decline 

sharply, coupled with a doubling in average spacing between volcanic centers. Magma 

supply rates prior to 25 Myr appear to have been rather uniform. These characteristics, in 

combination with evidence from seismic tomography (Montelli et al., 2004), indicate that 

Louisville hotspot activity is waning and that the mantle plume presumed to feed it may 

be dissipating, or might have already died – possibly the only case worldwide. 

The LSC lacks any emergent volcano and, with a ~2500 km section of the chain 

located in the latitudes of the “roaring forties”, has proven difficult to study. Prior to 

2002, chemical analyses existed for only 22 samples, dredged on eleven volcanoes 

(Hawkins et al., 1987). The are overwhelmingly alkalic, consisting of alkalic basalts, 

basanites, trachybasalts and basaltic trachyandesites with sodic affinity (i.e., hawaiites 

and mugearites). Strontium and Nd isotopic analyses of 15 samples from six seamounts, 

and eight Pb isotope analyses, were reported by Cheng et al. (1987). The dredge hauls 

were generally located close to or at the tops of guyots and the summits of non-guyot 

seamounts, and were taken during four cruises (1961 Monsoon: Menard et al., 1964; 

1971 Southtow: Hawkins, 1973; 1979 Vema-36-02: Watts et al., 1988; 1984 Marathon: 
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Lonsdale, 1988). Cheng et al. (1987) suggested that the Louisville mantle source may 

have remained extraordinarily homogeneous over more than 60 Myr (nearly its entire 

history). However, because the rocks were overwhelmingly alkalic and came from the 

upper parts of seamounts, it was unclear whether sampling was biased and lacked 

tholeiitic shield-stage lavas. In 2002, additional samples were collected during cruise 167 

of the German research vessel F.S. Sonne; these rocks are currently being processed 

(Stoffers et al., 2003; Worthington et al., 2006). 

We dredged samples during Leg 02 of the AMAT expedition of the R.V. Revelle of 

the Scripps Institution of Oceanography in the Spring of 2006. This was a site survey 

cruise for drilling of the LSC by the Integrated Ocean Drilling Program (IODP proposal 

#636). Here we present results of a geochemical investigation of major and trace element 

and Pb-Nd-Sr isotopic compositions of dredged lavas from 19 seamounts (ranging from 

~72-24 Ma; Koppers et al., 2004), only three of which had been sampled prior to 2002. 

The aims of the study were to (1) compare the chemical and isotopic differences (if any) 

between shield phase and post-shield lavas of the Louisville volcanoes, (2) recognize 

systematic variations in composition, particularly with respect to the “dying end” of the 

chain, and (3) assess components involved in the mantle source of Louisville magmatism. 

We use our results to draw comparisons between the LSC and other hotspot tracks, 

evaluate existing petrogenetic models, and discuss implications for other Pacific hotspots 

and hotspots elsewhere around the world. We also evaluate a proposed genetic link 

between the Louisville hotspot and the greater Ontong Java Plateau (OJP) (e.g., Mahoney 

& Spencer, 1991; Richards et al., 1991; Tarduno et al., 1991). 
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SAMPLING 

Thirty-three stations were dredged during AMAT Leg 02, targeting 22 seamounts. 

Specific care was taken to dredge sharply defined landslide scarps and deep incisions on 

the steep flanks of volcanoes. Our aim was to ensure as representative a sampling of 

volcanic units as possible by tapping the inner, shield-phase of volcanoes, as opposed to 

only the alkalic, post-shield carapaces, assuming that Louisville volcanoes follow the 

Hawaiʻian island evolutionary model of tholeiitic shield to alkalic post-shield to alkalic 

rejuvenated-stage volcanic development. A few dredge hauls (2D, 3D, 8D, 9D, 18D, 

19D, 21D and 23D) targeted parasitic cones or summit pinnacles to sample products of 

the later phase(s) of activity; in all but one case (19D), these dredge hauls yielded only 

sedimentary rocks (foraminiferous and nummulitic (9D) limestone), foraminifer ooze, 

whip and branching corals, and sea stars. 

Other dredge hauls recovered a few ~5- to 50-cm-size volcanic rocks of varied 

mineralogy, which were coated with 1-3 mm (and up to 3 cm) of botryoidal 

ferromanganese crust. The rocks were sawed and split, and then described onboard using 

a binocular microscope. Dredge 20D, targeting the steep slopes of a gully on the 

seamount’s flanks, was by far the most successful, recovering ~50 kg of volcanic rocks 

from seven visually recognizable lava groups differing in phenocryst assemblage and 

texture. 

The samples were typically fine-grained aphyric or olivine- and clinopyroxene-

phyric basaltic rocks. The primary mineral assemblage was olivine, clinopyroxene and 

plagioclase, which were found in varying amounts and sizes. Phenocrysts, when present, 

were found to range up to 30% for olivine, 25% for clinopyroxene and 10% for 
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plagioclase. Phenocryst sizes ranged from 1-18 mm, 1-11 mm and 1-3 mm for olivine, 

clinopyroxene and plagioclase, respectively. 

 

METHODS 

All samples showed varying degrees of alteration. To limit the effects of alteration 

on our analyses, the least altered, inner cores of samples were preferentially selected for 

analysis. Major element compositions and some trace element concentrations were 

determined, respectively, on fused glass disks and pressed powder pellets by X-ray 

fluorescence (XRF) spectrometry at Washington State University (Norrish & Chappell, 

1977; Johnson et al., 1999). Powders were prepared using a tungsten carbide mill 

(Table 4.1). Other trace element concentrations were determined by inductively coupled 

plasma mass spectrometry (ICP-MS) in the same laboratory (Knaack et al., 1994). 

Analytical precision (2σ) is estimated to be 2-6% based on repeated analyses of standards 

(ibid.). 

Sample preparation and mass spectrometric procedures for Sr, Nd and double-spike 

Pb isotopic measurements and corresponding parent-daughter isotope-dilution 

measurements were carried out on a VG Sector multi-collector thermal-ionization mass 

spectrometer at the University of Hawaiʻi following Mahoney et al. (1991) and Sheth et 

al. (2003), except that Pb isotopic measurements were carried out by multi-collector 

dynamic routine rather than static mode. Analyses were performed on splits prepared 

from small (1-2 mm) rock chips from the interiors of acid-cleaned samples; the chips 

were picked to avoid alteration and phenocrysts and acid-cleaned prior to dissolution. 

Although concentrations of Pb, Th, U, Sr, Nd and Sm determined by isotope dilution are 
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generally in good agreement (≤10%) with ICP-MS data,. Rb shows greater variation. 

Isotope-dilution values are used only for age correction of the Pb, Sr and Nd isotope 

ratios because concentrations of picked grains are not strictly representative of the whole-

rocks. An exception was made for sample 13D-1; the split of this sample and sample 

16D-1 measured by ICP-MS were contaminated with Pb, as shown by anomalously high 

Pb concentrations of 15.36 and 13.10 ppm, respectively. 

 

RESULTS 

Effects of alteration 

All samples displayed varying degrees of alteration. Apart from the ferromanganese 

coating and iddingsitization of olivines, which were found in all samples, visual and 

binocular microscope examination revealed vesicle fillings of carbonate and phosphate 

(e.g., 6D-3), hydration and devitrification of volcanic glass (e.g., 10D-5) and replacement 

of plagioclase and groundmass phases by clay minerals. Some samples also displayed a 

thin palagonite rind, up to 3 mm in thickness. 

Chemically, alteration is expressed in our samples by anomalous peaks and/or 

troughs in some elements (e.g., Rb, K, U, P, Sr) in primitive-mantle-normalized 

incompatible element patterns, uncharacteristically high La/Ta ratios (>14, La peak) 

and/or elevated weight loss on ignition (2.7-11.2 wt%, largely associated with alteration 

of primary phases to clay minerals) (Fig. 4.2A). More rarely, it is also expressed by 

elevated CaO and Na2O (5D-1, 30D-3), and negative Ce anomalies (5D-1, 6D-3, 6D-6, 

16D-1, 19D-1, 24D-2, 28D-1, 30D-5, 32D-5). For the purpose of this study, we have 

classified samples using four categories of alteration (Table 4.1). Samples with “low” 
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observed variation among lightly to highly altered samples. (C) Patterns of all samples deter-
mined to have undergone low degrees of alteration.
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Table 4.1: Major and trace element compositions of Louisville lavas. Major element 
concentrations are given in wt% of oxide on a volatile-free basis, trace elements in ppm. LOI 
stands for (weight) loss on ignition at 900°C for 8 hours. “Moderate” alteration is indicated by 
anomalous peaks and/or troughs in some incompatible-element patterns (e.g., Rb, K, U); “high” 
is expressed by an anomalously high P concentration as a result of secondary phosphate 
precipitation, a high relative Sr content, uncharacteristically high La/Ta ratios (>14), and/or 
elevated LOI (>4). “V. high” (very high) indicates samples for which all of the above 
geochemical characteristics are observed. CIPW norm is given for samples with low or moderate 
alteration. † indicates samples for which Pb concentration appears to reflect major Pb 
contamination of the split analyzed by ICP-MS. Pb isotope dilution value is substituted for 
sample 13D-1.



Table 4.1: Major and trace element compositions of Louisville lavas
1D-2 1D-3 5D-1 6D-3 6D-6 7D-1 7D-3 7D-5 7D-6 10D-1 10D-2

Lat. S 27º 30.9' 27º 30.9' 29º 38.1' 35º 50.55' 35º 50.55' 38º 2.3' 38º 2.3' 38º 2.3' 38º 2.3' 38º 10.25' 38º 10.25'
Long. W 174º 20.3' 174º 20.3' 173º 22.8' 169º 53.7' 169º 53.7' 168º 15.8' 168º 15.8' 168º 15.8' 168º 15.8' 168º 39.45' 168º 39.45'
Max. depth (m) 2498 2498 2237 2067 2067 1950 1950 1950 1950 1535 1535
Seamount 27.6 27.6 29.6 35.8 35.8 168.3 168.3 168.3 168.3 168.6 168.6
Alteration Low Moderate V. high High High Moderate Moderate Moderate Moderate High High

 SiO2  46.37 47.31 25.32 47.58 46.72 43.71 45.22 46.92 46.07 44.16 45.15 
 TiO2  2.39 3.02 4.53 3.80 3.78 3.03 2.91 3.37 3.35 4.39 4.30
 Al2O3 13.68 15.35 12.65 16.00 15.90 11.86 12.76 15.42 15.42 16.87 16.44 
 FeO* 11.12 11.26 14.58 12.03 11.80 12.57 10.72 11.46 11.82 13.56 10.54 
 MnO   0.17 0.17 0.16 0.17 0.06 0.19 0.19 0.17 0.16 0.18 0.13
 MgO   11.10 6.38 2.79 2.67 3.03 13.78 9.50 5.21 5.20 2.82 2.31 
 CaO   10.92 11.40 19.57 9.60 10.13 9.97 13.25 11.82 11.77 9.34 10.66 
 Na2O  2.12 2.90 1.36 3.49 3.51 2.12 2.46 2.66 2.61 3.57 3.65 
 K2O   0.70 1.00 1.22 1.80 2.22 1.00 1.09 1.11 1.14 1.73 2.02 
 P2O5  0.32 0.44 12.29 2.31 2.47 0.54 0.40 0.53 0.57 2.44 2.32
 Sum 98.89 99.23 96.02 99.72 99.88 98.77 98.51 98.68 98.13 99.44 97.53 
LOI (%) 3.11 1.78 11.21 3.20 3.58 1.40 7.06 2.65 3.24 3.48 3.59

XRF
 Ni    280  76  169  44  41  351  238  75  86  32  21  
 Cr    692  101  241  72  50  684  665  80  78  4  5  
 Sc 32  30  22  33  29  23  30  30  30  17  16  
 V     277  328  283  298  268  259  274  326  334  208  212  
 Ba 145  190  272  173  217  274  141  216  205  489  475  
 Rb 9  16  25  30  37  18  26  30  32  22  26  
 Sr 373  514  10725  645  637  632  375  573  570  1379  1408  
 Zr 169  223  387  294  265  249  196  235  232  307  300  
 Y 23  27  86  91  77  23  26  30  29  44  42  
 Nb 23.2 30.7 57.5 36.7 34.0 43.1 25.6 35.1 34.4 62.5 60.6
 Ga 20  25  16  24  23  20  19  24  24  26  27  
 Cu 92  92  202  69  70  60  51  50  53  30  27  
 Zn 99  105  247  169  108  113  145  149  167  180  161  

ICP-MS
La 18.9 26.9 76.3 58.8 53.0 34.1 20.0 27.9 27.8 60.1 58.7
Ce 43.1 60.6 110 72.0 64.7 73.4 45.9 62.7 62.3 134 131
Pr 5.74 7.97 16.41 13.10 11.35 9.35 6.23 8.25 8.21 17.66 17.20
Nd 24.7 34.3 69.0 57.4 49.5 38.5 27.6 35.6 35.3 77.4 75.5
Sm 5.79 7.93 14.41 12.81 11.10 8.21 6.84 8.44 8.27 16.90 16.48
Eu 1.95 2.61 4.48 4.03 3.51 2.66 2.33 2.80 2.76 5.57 5.41
Gd 5.66 7.56 13.86 13.68 11.50 7.41 6.71 8.07 8.04 15.36 15.09
Tb 0.89 1.15 1.90 2.11 1.76 1.07 1.04 1.24 1.23 2.09 2.05
Dy 4.97 6.34 10.07 12.27 10.05 5.57 5.81 6.77 6.79 10.56 10.47
Ho 0.92 1.16 1.94 2.54 2.06 1.00 1.06 1.25 1.24 1.84 1.79
Er 2.29 2.82 4.88 6.70 5.23 2.26 2.52 2.99 3.00 4.19 4.07
Tm 0.31 0.37 0.62 0.88 0.70 0.28 0.33 0.39 0.39 0.51 0.51
Yb 1.77 2.08 3.54 5.10 4.00 1.57 1.85 2.26 2.19 2.78 2.71
Lu 0.26 0.31 0.59 0.79 0.63 0.22 0.27 0.32 0.33 0.39 0.39
Ba 133 180 246 160 198 267 128 205 194 471 458
Th 1.78 2.71 5.60 3.40 3.14 3.31 1.89 2.84 2.77 4.82 4.75
Nb 21.7 30.7 45.0 35.8 33.0 43.2 24.0 34.5 34.5 61.1 60.4
Y 22.2 27.5 81.0 92.2 77.3 23.4 25.0 29.8 29.6 44.5 44.5
Hf 4.09 5.43 8.84 7.12 6.52 5.86 4.63 5.82 5.81 7.35 7.10
Ta 1.51 2.11 3.33 2.44 2.30 2.93 1.63 2.37 2.36 4.22 4.13
U 0.43 0.39 3.83 1.32 1.42 0.93 0.59 0.82 0.74 2.51 1.51
Pb 1.41 1.69 6.47 5.03 6.01 1.94 1.26 1.87 1.89 3.56 3.00
Rb 8.38 15.62 24.13 28.07 34.32 18.05 23.79 29.36 31.98 22.37 27.01
Cs 0.33 0.69 0.77 1.58 0.64 0.28 1.25 2.60 2.64 0.74 0.62
Sr 365 508 9325 660 622 650 359 577 576 1394 1422
Sc 33.6 32.6 22.4 35.5 31.5 25.8 31.8 32.6 32.5 18.8 18.7
Zr 157 215 340 274 244 242 176 224 223 298 295

Plagioclase 44 48 31 28 49 48
Orthoclase 4 6 6 7 7 7
Nepheline 1 4 8 0 1
Diopside 22 23 21 35 24 23
Hypersthene 1
Olivine 22 13 29 16 10 11
Ilmenite 5 6 6 6 7 7
Magnetite 2 2 2 0 2 2
Apatite 1 1 1 1 1 1
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Table 4.1 (continued): Major and trace element compositions of Louisville lavas
10D-3 10D-4 13D-1 14D-5 14D-6 14D-11 15D-1A 15D-2 16D-1 17D-1 19D-1

Lat. S 38º 10.25' 38º 10.25' 39º 5.3' 39º 12.8' 39º 12.8' 39º 12.8' 39º 31.1' 39º 31.1' 39º 40.3' 39º 51.8' 40º 25.65'
Long. W 168º 39.45' 168º 39.45' 167º 31.5' 167º 37.1' 167º 37.1' 167º 37.1' 167º 15.0' 167º 15.0' 166º 38.6' 166º 2.65' 165º 41.0'
Max. depth (m) 1535 1535 1920 2335 2335 2335 2318 2318 2462 2439 1262
Seamount 168.6 168.6 167.4 167.4 167.4 167.4 167.3 167.3 166.6 166.1 165.7
Alteration High High Moderate Moderate High High High High V. high Moderate High

 SiO2  42.30 42.93 44.80 45.54 43.74 44.53 47.43 46.40 46.36 47.20 42.96 
 TiO2  4.69 4.43 4.07 3.68 4.28 4.41 2.88 2.93 4.32 3.26 4.18
 Al2O3 17.91 17.13 16.41 15.14 16.40 15.54 19.14 19.41 15.35 14.94 14.13 
 FeO* 14.29 14.45 14.42 13.15 13.92 13.78 11.75 12.42 11.36 10.62 15.03 
 MnO   0.14 0.17 0.21 0.21 0.19 0.17 0.12 0.21 0.14 0.13 0.25
 MgO   2.14 2.50 4.29 7.36 3.57 4.71 2.62 2.87 3.94 5.61 9.89 
 CaO   9.47 10.54 8.40 10.58 10.98 10.95 8.55 8.48 11.08 11.57 8.70 
 Na2O  3.24 3.27 3.03 2.78 3.33 2.71 3.66 3.41 3.16 2.87 2.54 
 K2O   1.89 1.69 1.69 1.00 1.59 1.14 1.68 1.61 1.49 1.13 0.95 
 P2O5  2.70 2.56 0.81 0.59 1.12 0.67 1.55 1.77 1.10 0.57 0.68
 Sum 99.16 100.07 98.14 100.35 99.41 98.62 99.74 99.88 98.30 97.92 99.60 
LOI (%) 6.20 5.46 4.52 2.78 6.06 2.72 6.60 8.24 3.58 1.71 8.06

XRF
 Ni    28  30  107  116  34  44  28  58  74  69  232  
 Cr    5  3  71  311  4  11  8  10  95  139  48  
 Sc 18  16  25  25  22  25  8  8  25  31  31  
 V     253  237  382  291  334  381  154  160  374  308  335  
 Ba 432  432  272  233  280  284  569  564  257  160  285  
 Rb 29  26  32  17  19  22  25  27  35  41  10  
 Sr 1380  1501  530  667  740  707  907  910  634  582  493  
 Zr 324  304  330  287  318  301  471  478  320  197  256  
 Y 45  43  31  30  36  32  40  40  46  28  30  
 Nb 65.0 60.9 49.7 43.0 52.0 45.6 80.2 82.3 43.1 26.2 34.1
 Ga 26  24  24  24  25  26  29  30  28  20  22  
 Cu 26  24  72  61  51  70  36  50  102  71  59  
 Zn 172  164  172  129  135  146  201  213  190  98  187  

ICP-MS
La 61.0 57.8 38.3 34.0 42.4 36.5 65.5 65.5 41.9 23.4 27.0
Ce 136 129 80.4 75.4 86.8 80.5 134 133 84.5 53.8 58.2
Pr 17.98 17.01 10.58 9.77 11.24 10.57 16.44 16.35 11.51 7.35 8.36
Nd 78.9 74.3 44.4 41.6 46.8 45.5 64.9 64.5 49.4 32.5 36.2
Sm 17.06 16.34 10.13 9.61 10.37 10.62 13.43 13.13 11.13 7.84 8.66
Eu 5.65 5.33 3.25 3.13 3.36 3.46 4.30 4.26 3.65 2.70 3.14
Gd 15.75 14.93 9.53 9.02 9.61 9.93 11.74 11.70 11.00 7.92 8.39
Tb 2.14 2.03 1.40 1.33 1.45 1.47 1.73 1.67 1.59 1.17 1.21
Dy 10.79 10.36 7.42 7.05 7.94 7.75 9.01 8.91 8.79 6.35 6.66
Ho 1.88 1.80 1.30 1.23 1.48 1.35 1.61 1.56 1.63 1.17 1.20
Er 4.29 4.06 3.11 2.90 3.45 3.10 3.80 3.71 4.04 2.82 2.88
Tm 0.52 0.50 0.39 0.36 0.46 0.39 0.49 0.48 0.51 0.37 0.37
Yb 2.84 2.67 2.12 2.02 2.60 2.12 2.70 2.73 2.92 2.09 2.11
Lu 0.41 0.39 0.31 0.28 0.39 0.31 0.40 0.39 0.43 0.30 0.31
Ba 406 405 253 217 263 262 537 515 235 151 253
Th 4.94 4.68 3.92 3.36 4.02 3.69 7.44 7.46 4.00 2.25 2.51
Nb 63.4 60.2 49.1 42.4 51.1 45.5 79.1 76.8 41.3 26.8 32.5
Y 46.1 43.9 32.7 29.9 36.8 33.1 40.5 39.6 45.5 28.4 29.2
Hf 7.53 7.07 7.68 6.86 7.35 7.43 9.81 9.78 7.80 4.98 6.02
Ta 4.28 4.04 3.27 2.87 3.52 3.11 5.14 5.05 2.92 1.86 2.23
U 1.57 1.29 1.88 0.87 1.04 0.62 1.17 1.53 0.87 0.62 1.80
Pb 3.14 2.93 2.24† 2.30 3.40 2.39 4.87 5.92 13.10† 1.51 5.13
Rb 29.28 26.44 31.96 16.86 18.32 22.71 23.95 24.95 33.31 40.42 10.97
Cs 1.05 0.98 0.68 0.38 0.23 1.25 0.54 0.48 1.66 3.31 0.34
Sr 1350 1492 542 677 740 732 894 867 624 596 474
Sc 20.1 19.1 26.2 29.2 24.0 27.4 9.1 8.4 26.1 33.0 31.2
Zr 309 293 318 276 301 293 445 437 299 189 233

Plagioclase 51 47 48
Orthoclase 10 6 7
Nepheline 1 2 1
Diopside 9 19 24
Hypersthene
Olivine 17 16 10
Ilmenite 8 7 6
Magnetite 2 2 2
Apatite 2 1 1
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Table 4.1 (continued): Major and trace element compositions of Louisville lavas
20D-1 20D-2 20D-3 20D-5 20D-8 20D-9 20D-15B 20D-17 22D-1 22D-3 22D-4

Lat. S 40º 26.5' 40º 26.5' 40º 26.5' 40º 26.5' 40º 26.5' 40º 26.5' 40º 26.5' 40º 26.5' 40º 44.5' 40º 44.5' 40º 44.5'
Long. W 165º 44.2' 165º 44.2' 165º 44.2' 165º 44.2' 165º 44.2' 165º 44.2' 165º 44.2' 165º 44.2' 165º 27.6' 165º 27.6' 165º 27.6'
Max. depth (m) 2179 2179 2179 2179 2179 2179 2179 2179 1899 1899 1899
Seamount 165.7 165.7 165.7 165.7 165.7 165.7 165.7 165.7 165.4 165.4 165.4
Alteration High Moderate Moderate Moderate Moderate Moderate Moderate High High Moderate Moderate

 SiO2  46.51 46.76 47.71 46.63 46.90 47.58 45.09 44.52 44.45 45.78 46.89 
 TiO2  4.08 3.83 3.63 3.58 3.45 4.28 3.03 3.02 3.88 3.69 3.70
 Al2O3 15.97 15.64 15.93 15.30 16.63 15.93 14.46 14.65 18.45 17.72 18.09 
 FeO* 11.34 11.22 11.16 10.84 10.85 8.74 13.87 13.01 13.40 12.71 11.65 
 MnO   0.15 0.13 0.14 0.15 0.15 0.15 0.19 0.22 0.19 0.19 0.17
 MgO   6.27 4.45 4.18 7.25 6.19 3.91 6.10 6.27 3.85 3.68 3.47 
 CaO   7.72 9.88 10.83 10.45 10.46 12.28 13.27 12.16 10.57 10.25 10.96 
 Na2O  3.61 3.57 3.32 3.81 2.89 3.38 2.61 2.73 3.04 3.27 3.26 
 K2O   2.02 2.16 1.34 0.97 1.16 1.55 1.10 1.08 0.92 1.31 1.33 
 P2O5  1.04 0.82 0.54 0.40 0.43 0.58 0.56 0.56 0.70 0.61 0.61
 Sum 98.71 98.44 98.79 99.39 99.13 98.38 100.61 98.24 99.75 99.47 100.38 
LOI (%) 4.73 4.88 1.80 3.71 3.30 3.94 3.86 2.76 3.40 2.44 2.90

XRF
 Ni    69  50  69  119  106  41  182  246  36  23  26  
 Cr    50  12  79  174  134  31  547  922  3  3  3  
 Sc 22  19  26  29  23  27  30  33  19  18  18  
 V     278  273  289  325  292  332  281  334  289  266  263  
 Ba 329  383  217  144  178  260  240  194  237  257  261  
 Rb 38  46  29  19  23  36  19  18  14  27  27  
 Sr 705  781  575  426  573  617  595  667  1058  738  724  
 Zr 274  317  271  183  228  274  234  213  290  279  277  
 Y 31  30  32  25  26  34  25  25  35  32  32  
 Nb 44.0 54.3 42.1 26.0 34.6 42.4 40.4 35.1 53.0 50.5 51.4
 Ga 26  27  25  22  24  26  21  20  23  24  26  
 Cu 46  39  42  77  55  88  96  83  25  22  24  
 Zn 252  143  124  141  115  103  153  157  135  119  121  

ICP-MS
La 36.9 41.7 31.1 18.0 25.0 31.8 29.0 24.7 36.3 35.0 35.1
Ce 83.1 90.3 69.2 42.5 55.6 71.0 61.9 53.9 78.1 76.2 75.5
Pr 11.13 11.56 9.18 5.97 7.30 9.45 8.03 7.04 10.12 9.85 9.77
Nd 47.8 48.6 39.1 26.6 31.2 40.9 33.7 30.3 42.4 41.3 41.3
Sm 10.57 10.58 9.09 6.60 7.48 9.57 7.60 7.03 9.66 9.53 9.31
Eu 3.69 3.57 3.12 2.35 2.56 3.35 2.59 2.45 3.34 3.18 3.17
Gd 9.80 9.85 8.92 6.70 7.26 9.43 7.32 7.01 9.39 9.02 9.12
Tb 1.38 1.36 1.33 1.01 1.09 1.41 1.08 1.04 1.40 1.34 1.34
Dy 7.30 7.09 7.48 5.59 5.97 7.78 5.83 5.73 7.66 7.37 7.37
Ho 1.26 1.21 1.37 1.00 1.06 1.42 1.03 1.06 1.42 1.36 1.35
Er 2.86 2.82 3.29 2.35 2.57 3.42 2.43 2.50 3.42 3.34 3.37
Tm 0.36 0.34 0.44 0.30 0.34 0.44 0.32 0.33 0.47 0.44 0.43
Yb 1.99 1.92 2.49 1.73 1.93 2.51 1.83 1.83 2.66 2.51 2.54
Lu 0.28 0.27 0.36 0.25 0.27 0.37 0.25 0.27 0.39 0.37 0.36
Ba 304 347 205 135 165 250 222 183 222 246 248
Th 3.34 4.32 2.95 1.76 2.50 3.12 2.99 2.43 3.65 3.58 3.50
Nb 42.4 52.2 41.5 24.8 34.2 41.7 39.7 34.0 52.5 51.0 50.7
Y 30.2 29.9 33.2 23.7 25.9 34.3 25.1 25.4 35.7 33.2 34.0
Hf 6.39 7.12 6.56 4.49 5.41 6.56 5.55 5.12 6.74 6.46 6.43
Ta 2.88 3.54 2.84 1.75 2.33 2.84 2.70 2.31 3.60 3.48 3.43
U 1.02 1.21 0.88 0.82 0.69 1.06 0.99 0.99 0.77 1.01 1.20
Pb 1.81 2.37 1.70 1.22 1.26 1.81 1.55 1.42 2.15 2.00 2.10
Rb 35.85 43.20 28.55 19.26 22.25 34.84 18.97 18.16 13.51 26.19 26.63
Cs 1.55 1.59 0.88 1.50 0.71 1.16 0.31 0.20 0.36 0.94 1.03
Sr 689 768 587 420 571 615 591 678 1063 754 736
Sc 22.8 20.9 28.5 31.9 25.2 29.5 32.5 36.7 20.9 20.3 20.6
Zr 253 296 262 169 214 260 220 203 277 271 269

Plagioclase 41 50 42 53 45 36 54 55
Orthoclase 13 8 6 7 9 7 8 8
Nepheline 5 2 7 1 4 6 3 2
Diopside 20 22 22 17 28 31 15 16
Hypersthene
Olivine 10 9 13 14 2 11 11 8
Ilmenite 7 7 7 7 8 6 7 7
Magnetite 2 2 2 2 1 2 2 2
Apatite 2 1 1 1 1 1 1 1
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Table 4.1 (continued): Major and trace element compositions of Louisville lavas
24D-2 24D-6 25D-1 26D-1 26D-3 27D-1 27D-7 27D-13 28D-1 30D-2 30D-3

Lat. S 41º 52.6' 41º 52.6' 42º 46.9' 43º 34.45' 43º 34.45' 43º 59.5' 43º 59.5' 43º 59.5' 44º 16.35' 44º 50.4' 44º 50.4'
Long. W 163º 41.7' 163º 41.7' 161º 58.2' 161º 29.1' 161º 29.1' 160º 37.0' 160º 37.0' 160º 37.0' 159º 48.8' 158º 28.35' 158º 28.35'
Max. depth (m) 1390 1390 1525 1514 1514 1435 1435 1435 1685 1504 1504
Seamount 163.6 163.6 162.0 161.5 161.5 160.7 160.7 160.7 159.8 158.5 158.5
Alteration V. high Low V. high Low High Moderate High High High High High

 SiO2  42.13 46.91 37.38 46.17 45.55 45.27 44.27 45.58 49.06 47.95 43.21 
 TiO2  4.03 3.78 5.19 3.78 3.84 3.16 3.63 3.34 3.86 3.98 3.82
 Al2O3 17.72 16.99 18.06 15.72 17.64 12.51 16.92 15.35 17.31 16.82 16.25 
 FeO* 13.30 11.44 18.30 12.04 12.00 12.09 13.78 12.77 7.68 8.76 9.86 
 MnO   0.40 0.17 0.15 0.16 0.13 0.17 0.14 0.27 0.52 0.11 0.18
 MgO   3.20 4.69 3.65 4.89 5.11 11.31 4.11 5.04 4.24 4.25 5.29 
 CaO   11.20 9.07 10.54 10.77 8.71 10.80 10.16 10.72 10.78 11.50 15.67 
 Na2O  3.50 3.65 2.69 3.20 3.60 2.51 3.30 3.45 3.66 3.63 2.92 
 K2O   1.21 1.42 0.62 1.32 1.31 0.93 1.26 1.35 1.59 1.41 1.89 
 P2O5  2.98 0.86 2.07 0.64 1.03 0.54 1.14 0.79 0.83 0.88 0.90
 Sum 100.20 98.99 99.18 98.70 98.94 99.29 98.71 98.66 99.54 99.29 100.30 
LOI (%) 4.71 2.27 8.23 1.63 4.06 1.15 3.35 3.17 2.80 4.08 10.23

XRF
 Ni    65  16  191  57  41  317  134  193  179  50  100  
 Cr    43  3  466  38  3  663  403  391  178  43  50  
 Sc 17  16  29  24  16  26  24  23  36  29  24  
 V     292  247  388  330  248  259  349  290  290  308  256  
 Ba 381  328  272  244  325  238  268  245  239  215  293  
 Rb 15  27  5  24  24  16  11  23  24  26  53  
 Sr 2608  878  1948  601  727  623  717  654  604  820  702  
 Zr 379  367  379  283  366  243  327  298  264  256  300  
 Y 50  35  39  30  36  26  35  30  52  37  29  
 Nb 60.0 55.5 55.8 39.5 55.5 37.5 44.0 39.8 33.5 34.7 48.9
 Ga 24  27  22  24  26  20  22  23  21  23  24  
 Cu 30  25  83  31  26  59  55  50  68  51  55  
 Zn 177  137  192  132  169  117  144  135  184  143  302  

ICP-MS
La 50.0 43.3 42.1 32.4 42.3 29.2 36.6 33.4 35.6 30.5 35.2
Ce 102 95.0 93.2 72.2 90.7 64.2 81.6 74.9 64.3 69.3 75.9
Pr 13.57 12.41 12.55 9.60 11.66 8.39 10.81 9.87 9.67 9.56 9.93
Nd 57.2 52.7 54.3 41.4 49.1 35.9 46.2 42.1 42.5 42.3 41.8
Sm 12.73 11.76 12.76 9.79 11.15 8.44 10.67 9.77 10.23 10.26 9.59
Eu 4.23 3.89 4.30 3.24 3.65 2.81 3.49 3.21 3.40 3.47 3.18
Gd 12.20 11.05 12.15 9.36 10.31 7.88 9.93 8.90 10.53 9.95 8.92
Tb 1.78 1.58 1.70 1.38 1.53 1.17 1.45 1.32 1.61 1.50 1.28
Dy 9.72 8.45 8.73 7.51 8.26 6.26 7.93 7.28 9.39 8.31 6.77
Ho 1.80 1.51 1.48 1.31 1.47 1.09 1.42 1.28 1.79 1.51 1.16
Er 4.44 3.52 3.31 3.16 3.52 2.53 3.44 3.04 4.59 3.66 2.63
Tm 0.57 0.45 0.40 0.40 0.45 0.32 0.43 0.39 0.60 0.47 0.33
Yb 3.27 2.56 2.16 2.19 2.57 1.75 2.48 2.17 3.39 2.65 1.78
Lu 0.47 0.36 0.31 0.32 0.37 0.26 0.37 0.32 0.52 0.39 0.25
Ba 351 311 238 231 293 228 253 229 224 197 261
Th 4.78 4.48 4.37 3.45 4.60 3.16 3.92 3.60 2.95 2.93 3.80
Nb 58.6 55.8 52.4 39.3 51.6 37.8 42.6 39.2 33.2 33.3 43.7
Y 51.6 36.8 39.1 32.2 36.5 26.0 35.8 31.1 54.3 38.6 28.4
Hf 8.61 8.26 8.80 6.91 8.14 5.98 7.76 7.08 6.62 6.22 6.46
Ta 3.93 3.76 3.58 2.72 3.49 2.60 2.94 2.72 2.27 2.30 2.89
U 3.76 1.07 3.32 1.11 0.88 0.68 2.27 0.99 4.73 2.91 2.08
Pb 10.53 2.89 2.84 2.41 3.05 1.81 2.55 2.68 2.87 3.69 2.34
Rb 15.81 26.17 5.29 22.47 22.59 15.67 11.55 22.70 22.63 25.64 52.37
Cs 0.70 1.17 0.14 0.15 1.75 0.28 0.08 0.14 0.24 0.55 2.62
Sr 2572 898 1914 616 707 634 721 664 600 799 659
Sc 18.6 18.7 31.9 24.7 16.2 28.1 26.1 25.0 41.8 32.7 25.3
Zr 366 358 357 273 339 236 315 286 250 244 267

Plagioclase 54 47 35
Orthoclase 9 8 6
Nepheline 2 3 3
Diopside 11 21 24
Hypersthene
Olivine 13 11 22
Ilmenite 7 7 6
Magnetite 2 2 2
Apatite 2 2 1
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Table 4.1 (continued): Major and trace element compositions of Louisville lavas
30D-5 30D-15B 30D-15C 31D-2 31D-5 31D-7 32D-5 33D-1 33D-2 33D-3

Lat. S 44º 50.4' 44º 50.4' 44º 50.4' 45º 22.85' 45º 22.85' 45º 22.85' 46º 13.4' 46º 13.1' 46º 13.1' 46º 13.1'
Long. W 158º 28.35' 158º 28.35' 158º 28.35' 157º 43.75' 157º 43.75' 157º 43.75' 155º 52.75' 155º 52.75' 155º 52.75' 155º 52.75'
Max. depth (m) 1504 1504 1504 1560 1560 1560 1369 1128 1128 1128
Seamount 158.5 158.5 158.5 157.7 157.7 157.7 155.9 155.9 155.9 155.9
Alteration High High V. high Low Moderate Moderate Moderate Low Low High

 SiO2  46.76 47.86 41.28 46.47 46.31 47.32 45.42 46.13 46.01 42.42 
 TiO2  3.42 2.90 4.22 2.99 3.08 2.86 3.66 2.70 2.81 3.39
 Al2O3 15.68 17.34 15.23 15.53 15.97 14.73 15.33 11.86 12.36 14.00 
 FeO* 13.76 11.69 11.46 10.81 11.15 10.83 14.28 12.31 12.53 14.81 
 MnO   0.56 0.44 0.62 0.16 0.14 0.16 0.15 0.15 0.16 0.20
 MgO   4.84 2.25 5.37 6.02 5.80 7.27 3.91 13.31 12.12 9.44 
 CaO   8.95 7.07 12.00 13.29 12.73 12.53 9.89 8.77 9.23 11.47 
 Na2O  3.21 4.67 4.91 2.50 2.48 2.49 3.48 2.46 2.58 2.29 
 K2O   2.08 2.58 0.76 0.90 0.96 0.83 1.86 0.94 0.94 0.97 
 P2O5  1.02 2.48 3.04 0.44 0.52 0.34 0.85 0.50 0.54 0.86
 Sum 100.65 99.61 99.18 99.11 99.15 99.36 99.25 99.13 99.28 100.18 
LOI (%) 5.75 5.76 9.17 2.50 2.11 1.56 2.75 2.06 2.54 6.69

XRF
 Ni    291  135  226  125  101  118  239  387  364  343  
 Cr    505  3  12  214  131  226  728  558  560  457  
 Sc 27  12  20  34  36  35  30  19  22  25  
 V     326  191  299  378  376  351  313  203  214  270  
 Ba 273  351  168  145  150  153  296  218  223  231  
 Rb 36  47  5  16  16  14  38  12  13  11  
 Sr 559  569  616  512  550  490  708  569  598  569  
 Zr 251  471  316  187  185  178  301  239  249  256  
 Y 39  55  49  25  25  24  37  22  23  26  
 Nb 35.2 64.2 51.2 25.5 25.9 23.8 46.2 34.6 36.5 35.5
 Ga 21  27  23  21  23  22  25  20  20  23  
 Cu 85  54  40  79  79  91  66  42  36  65  
 Zn 232  358  257  115  119  97  149  125  125  185  

ICP-MS
La 34.7 54.8 49.5 20.6 21.0 20.1 41.8 28.9 29.9 29.3
Ce 67.6 120 110 46.9 47.8 45.6 83.6 62.4 64.8 64.4
Pr 9.45 15.63 15.24 6.34 6.41 6.12 11.27 8.06 8.36 8.54
Nd 40.5 65.7 65.5 27.8 28.3 26.9 47.3 33.7 35.0 37.0
Sm 9.36 15.22 14.23 6.79 6.90 6.59 10.69 7.61 7.81 8.58
Eu 3.18 4.79 4.49 2.28 2.34 2.23 3.52 2.48 2.61 2.85
Gd 8.94 14.25 13.12 6.65 6.82 6.48 10.16 7.04 7.21 8.12
Tb 1.32 2.14 1.84 1.02 1.03 0.98 1.46 1.03 1.04 1.16
Dy 7.40 11.79 9.86 5.69 5.79 5.54 8.02 5.40 5.63 6.14
Ho 1.33 2.16 1.76 1.04 1.04 1.01 1.43 0.95 0.97 1.06
Er 3.24 5.22 4.19 2.49 2.54 2.44 3.46 2.20 2.26 2.40
Tm 0.41 0.68 0.52 0.32 0.33 0.32 0.44 0.28 0.29 0.30
Yb 2.30 3.87 2.85 1.84 1.86 1.79 2.50 1.56 1.59 1.65
Lu 0.35 0.57 0.41 0.27 0.27 0.26 0.36 0.22 0.23 0.23
Ba 251 324 149 139 140 139 280 207 208 203
Th 3.04 6.20 3.71 2.22 2.25 2.15 4.29 3.29 3.42 2.98
Nb 33.9 62.2 45.8 25.1 25.5 24.4 46.6 35.1 36.3 35.1
Y 39.2 55.9 47.1 25.1 25.7 24.4 38.8 23.2 23.9 26.8
Hf 6.04 10.79 6.80 4.64 4.75 4.61 7.60 5.72 5.94 6.10
Ta 2.29 4.12 2.82 1.72 1.76 1.67 3.17 2.37 2.45 2.31
U 2.26 2.96 1.76 0.74 0.81 0.88 2.13 0.90 0.92 1.37
Pb 4.08 5.39 6.92 1.47 1.51 1.44 3.61 2.00 2.10 2.34
Rb 34.55 44.57 5.74 15.90 15.81 14.42 38.90 12.43 12.75 10.24
Cs 0.68 0.69 0.23 0.81 0.70 0.48 0.83 0.45 0.33 0.41
Sr 551 558 585 514 562 498 739 585 607 571
Sc 28.5 13.0 20.5 39.4 39.2 37.6 31.9 22.9 23.3 26.4
Zr 234 443 286 177 177 172 300 232 241 244

Plagioclase 45 48 46 42 40 40
Orthoclase 5 6 5 11 6 6
Nepheline 3 2 1 5 1
Diopside 29 25 27 20 18 19
Hypersthene
Olivine 10 11 13 11 29 26
Ilmenite 6 6 5 7 5 5
Magnetite 2 2 2 2 2 2
Apatite 1 1 1 2 1 1
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degrees of alteration do not present any obvious disruption of their incompatible element 

patterns. Samples with “moderate” alteration display disturbed patterns in the more fluid-

mobile elements (e.g., Rb, K, U, Ba; e.g., Humphries & Thompson, 1978; Seyfried & 

Bischoff, 1979), whereas “highly” altered samples show elevated La/Ta ratios (>14), 

possibly as a result of marine sediment contamination (e.g., Hole et al., 1984), peaks at Sr 

and P (resulting from precipitates of secondary phosphate and carbonate), and occasional 

negative Ce anomalies (generally interpreted as evidence of subaerial alteration in 

oxidizing, low-temperature conditions; e.g., Cotten et al., 1995). “Very highly” altered 

samples show all the signs mentioned above, with pronounced enrichments of P and Sr. 

In the figures used for interpretation of mantle source and petrogenesis, we do not include 

data for the highly and very highly altered samples, in order to minimize the alteration 

signal in our data. 

Several of the highly and very highly altered samples that we analyzed isotopically 

display slightly elevated (>0.7038, vs. 0.7035-0.7039 for most lightly altered samples) 

age-corrected (87Sr/86Sr)t relative to εNd(t) (+1.3 to +6.0), which can be attributed to 

seawater alteration (e.g., Menzies & Seyfried, 1979). In addition, five samples have 

elevated values of measured and age-corrected 207Pb/204Pb and, for some of them, 

208Pb/204Pb, compared to their 206Pb/204Pb (6D-3, 10D-3, 14D-11, 16D-3 and 28D-1). This 

is a common occurrence among highly altered oceanic basalts, as a result of Pb 

contamination derived from pelagic sediments, ferromanganese crust and/or phosphates, 

which have Pb concentrations orders of magnitude larger than basement basalts (e.g., De 

Carlo et al., 1987; Ingram et al., 1990; Baturin & Yushina, 2007). Out of these five, three 

(6D-3, 10D-3, 16D-3) have the highest (87Sr/86Sr)t ratios analyzed, as well as the lowest 
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(<+4) εNd(t) and 206Pb/204Pb(t) (<19.0) values. Although 143Nd/144Nd is typically 

unaffected by moderate levels of seawater alteration (e.g., Mahoney et al., 1987; 1998), 

Cheng et al. (1987) noted that some of their most-altered samples had anomalously low 

εNd, and attributed it to rare-earth element (REE) mobility during prolonged low-

temperature alteration and/or REE loss during palagonitization of basaltic glass (e.g., 

Ludden & Thompson, 1979; Staudigel & Hart, 1983). 

 

Major and trace elements 

Major element analyses (Table 4.1) show that the majority of samples are 

nepheline-normative alkalic basalts (Fig. 4.3) and a few are basanites. Our data overlap 

substantially with those of Hawkins et al. (1987). Major element trends (Fig. 4.4) include 

an increase in Na2O, K2O, TiO2 and Al2O3 wt% as MgO wt% decreases, whereas CaO 

shows no systematic behavior. 

Six moderately to lightly altered samples (1D-2, 7D-1, 7D-3, 27D-1, 33D-1, 33D-2) 

have elevated MgO concentrations (>8 wt%); we henceforth refer to these as the high-

MgO group; similar rocks were also observed in Hawkins’s et al. (1987) sample suite. 

These rocks are also characterized by the presence of large (4-18 mm) olivine 

phenocrysts and, in some cases (7D-1, 7D-3), cm-size clinopyroxene, noticeably high 

values of compatible trace elements (e.g., Cr>400 ppm, Ni>200 ppm), and high 

MgO/total iron as FeO (FeO*) ratios (0.89-1.10 in the high-MgO group, 0.25-0.67 in 

other samples). In diagrams of alteration-resistant incompatible vs. compatible trace 

elements (e.g., Ni vs. Th, Cr vs. Th; Fig. 4.4), the high-MgO group falls off the trend 

displayed by most of our other samples, which otherwise decrease in compatible element 
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concentrations as incompatible element concentrations increase. Interestingly, another 

group of samples (three among moderately or lightly altered ones: 13D-1, 20D-15B and 

32D-5; eleven in total) has, like the previous group, noticeably high Ni concentrations 

(130-300 ppm). Unlike the high-MgO group, however, it does not have noticeably high 

MgO concentrations (3.9-6.1 wt%) or MgO/FeO* (0.27-0.44). These rocks often have 

high (> 350 ppm) Cr concentrations as well, but some do not (e.g., 13D-1 has 71 ppm 

Cr). Other transitions metals (e.g., FeO*, MnO, Cu, V) do not display any degree of 

enrichment. This group, termed high-Ni group, is unrepresented in the Hawkins et al. 

(1987) dataset. 

Primitive-mantle-normalized incompatible element patterns (Fig. 4.2B) show 

variations bounded by three extreme compositions. One (e.g., that of sample 1D-2) is 

characterized by a relatively flat pattern (mantle-normalized (Nb/Zr)N < 2.5 and 

(Sm/Lu)N < 4) showing modest overall enrichment of incompatible trace elements 

relative to model primitive-mantle values (e.g., Nb<45, Zr<19 and Lu<4.5 times the 

primitive mantle estimates of Sun & McDonough, 1989). Another (e.g., 6D-3) has a 

similarly flat patterns, (Sm/Lu)N < 4, (Nb/Zr)N < 2.5, but greater absolute enrichment 

(e.g., Lu>9 times primitive mantle estimates). A third (e.g., 15D-2, 20D-2) has more 

steeply sloping patterns overall, (Sm/Lu)N > 5.5 and (Nb/Zr)N > 2.6. Interestingly, the full 

range of variation can be observed in a single seamount (e.g., 20D-2 and 20D-5, which 

have (Sm/Lu)N = 6.6 and 4.5 and Nb = 52 and 25 ppm, respectively; Fig. 4.2B). 

In a Zr/Y vs. Nb/Y diagram (Fig. 4.5), the Louisville data define an array, parallel 

to and within that for Icelandic lavas, that is particularly short and narrow relative to the 

fields defined by many other hotspot-related island groups and chains. Because Zr and 
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Fig. 4.4: Variation of some major and trace elements in the LSC. Mg# is defined as 
(MgO/MgO+FeO*)*100. Arrows indicate the direction of magmatic evolution caused by removal of olivine 
(ol), clinopyroxene (cpx) and plagioclase (pl), and are based on the mineral analyses of Hawkins et al. 
(1987). Arrows in the two bottom panels represent model Rayleigh fractionation paths for a mineral 
assemblage of 30% olivine and 70% clinopyroxene, using Kd values of 10 and 1 for Ni and 1 and 8 for Cr 
in olivine and cpx, respectively (Duke, 1976), with Th assumed to be extremely incompatible in both 
minerals (Beattie, 1993). Data for highly altered samples (as defined in the text) are not shown 
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Nb are both highly incompatible elements and behave very similarly during melting of 

mantle rock compared to Y, varying amounts of partial melting of a single peridotitic 

source will produce an array approximately parallel to the Icelandic array. Variability of 

mantle source composition can be expressed by variations in Nb/Zr (Fitton et al., 1997). 

Fractional crystallization, on the other hand, will have little (or no) effect on these ratios 

as long as the melts are zircon-unsaturated, which is generally the case in basalts (e.g., 

Hoskin & Schaltegger, 2003; Belousova et al., 2002). The restricted field of LSC data 

thus suggests a homogeneous mantle source and quite limited variation in the amount of 

partial melting. 

 

Isotopic composition 

Despite the fact that the samples represent a nearly 50 Myr span of Louisville 

hotspot volcanism, their age-corrected isotopic ratios define a narrowly restricted field in 

all three isotopic systems (Fig. 4.6), overlapping substantially with the data of Cheng et 

al. (1987). For example, excluding the three highly altered samples noted above, our 

measured εNd(t) ranges from +4.0 to +6.0, whereas theirs ranges from +4.9 to +6.1 

(recalculating their εJUV to εNd for a present-day chondritic average of 0.51264). Variation 

in age-corrected (206Pb/204Pb)t is only 0.322 (from 19.061 to 19.383) whereas the total 

range in (87Sr/86Sr)t is 0.70345 to 0.70427, the higher values likely reflecting greater 

amounts of seawater alteration. Cheng et al.’s (1987) Pb isotope data were not age-

corrected but cover a range in measured 206Pb/204Pb of 19.128 to 19.452, similar to our 

present-day values of 19.222-19.606. 
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The maximum variation in (206Pb/204Pb)t was observed among five rocks recovered 

from the same seamount (dredge 20D). There is no apparent isotopic difference between 

the alkalic basalts and the high-MgO group (Fig. 4.7B), or the basanites (Fig. 4.7C). 

There is also no systematic variation of isotopic ratios with the amount of enrichment of 

incompatible trace elements or with indicators of the degree of partial melting (e.g., 

(Dy/Yb)N, Fig. 4.7D; La/Yb, Fig. 4.8A; Pb and Nd, Fig. 4.8B and C). Indeed, the 

maximum range in εNd(t) is seen in samples with a very small range in La/Yb of 17-18. 

 

DISCUSSION 

The behavior of the major elements is consistent with control by fractional 

crystallization of olivine and clinopyroxene (Fig. 4.4), as concluded by Hawkins et al. 

(1987). The trend observed in CaO/Al2O3 precludes plagioclase from having played an 

important role in the fractionating assemblage. Using the Rayleigh fractionation equation 

and Ni, Cr and Th, one can estimate the fractionating mineral assemblage to be ~30% 

olivine and ~70% clinopyroxene (Fig. 4.4, bottom panels). The high-MgO group of rocks 

with elevated Cr and Ni concentrations, however, do not fit on the fractionation trend. 

Rocks of the high-MgO group also have rather elevated concentrations of very 

incompatible elements (e.g., Nb>35 and Th>3 ppm), which discounts them as being 

parental to the rest of the rocks. Rather, we interpret the high-MgO samples as evolved 

basalts with accumulated olivine, which is consistent with their mineralogy. The high-Ni 

group also falls off fractionation trends (Fig. 4.4). Unlike the high-MgO group, however, 

the high-Ni samples do not have peculiar mineral abundances, and thus cannot be 

explained by the accumulation of a mineral phase. Neither can they be explained by 
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Fig. 4.8: (A) (206Pb/204Pb)t and εNd(t) variation as a function of La/Yb. (B) and (C) Pb and Nd 
isotopic variation as a function of Pb and Nd concentration, resp., which shows no systematic 
variation. Data for highly altered samples are not included in any of the panels.
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alteration, as trace element patterns for three of them appear undisturbed, or by 

contamination by ferromanganese crust, as they have normal MnO, FeO* and P2O5 

concentrations. A re-analysis of these samples is likely required to rule out analytical 

problems, and an in-depth study of their mineralogy would help uncover any possible 

exotic alteration phase. Until then, the origin of the high-Ni samples remains an open 

question. 

A principle component analysis (Fig. 4.9) of major and trace elements of 

moderately and lightly altered samples confirms the relationships between different 

elements noted above. This statistical method reduces (i.e., projects) a dataset to its 

components that display the greatest variance. This analysis shows clusters of elements 

that behave similarly: Cr, Ni and MgO, which can be related to fractional crystallization 

of olivine; Ca and Sc, which are compatible in clinopyroxene but not in olivine, and thus 

record the fractional crystallization of that phase; Si, Cs and V, which are anti-correlated 

with the MgO-Ni-Cr group and are most affected by olivine fractionation; and a large 

group of highly to moderately incompatible elements that forms an elongated array 

resulting from their varying degrees of incompatibility during melting. 

As our samples come from 22 seamounts, a single parental mama could not have 

existed for all of them. The sample showing the least effects from fractionation and no 

sign of olivine accumulation is 31D-7 (MgO = 7.27 wt%, MgO/FeO* = 0.67, Ni = 

118 ppm and Cr = 226 ppm). As such, it is the closest example to potential parental 

compositions. 

Both incompatible element and isotopic ratios hint at the extreme homogeneity of 

the Louisville mantle source over the course of its history, which isotopically reflect a 
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broadly “C”, or “FOZO” type of mantle-source compositions (e.g., Hart et al., 1992; 

Hanan & Graham, 1996; Stracke et al., 2005). Such mantle compositions, argued by 

Hanan & Graham (1996) to be fed to the upper mantle by deep-sourced mantle plumes, is 

thought by some workers to represent lower mantle material that underwent some form of 

depletion early in the Earth’s history (e.g., Hart et al., 1992; Boyet & Carlson, 2006), 

although an origin as a highly heterogeneous and well-stirred mixture of recycled oceanic 

crust has also been proposed (e.g., Kellogg et al., 2004). The small variation in isotopic 

ratios is particularly stunning when the LSC results are compared to data for other Pacific 

hotspot chains (Fig. 4.6A, B, and C). For comparison, the total observed variation in 

(206Pb/204Pb)t (0.324) along the LSC over the ~48 Myr of its history covered by our 

samples is comparable to the variation (0.302) observed at the Kilauea volcano of 

Hawaiʻi since 1917 (Pietruszka & Garcia, 1999). 

Nevertheless, small isotopic variations are present along the LSC (Fig. 4.6B and 

4.6D). In the coming sections, we will explore hypotheses of the phenomena that may 

control these small isotopic variations. 

 

Lithospheric thickness at the time of volcanism 

To test the hypothesis that the geochemical signature of LSC seamounts was related 

to variations in melting conditions, it is necessary to estimate the age of the crust upon 

which each seamount was emplaced, as this determines the thickness of the lithosphere 

and thus depth of the top of the melting region. We estimated the age of the lithosphere at 

the time of seamount emplacement and calculated lithospheric thickness at a given age 

using a simple half-space cooling model, employing the solution of Turcotte & Schubert 
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(1982) and defining the lithosphere’s lower boundary as the 1200ºC isotherm. The age of 

each seamount was extrapolated from Koppers et al. (2004), except for those for which 

new 40Ar-39Ar ages have been presented (Koppers et al., 2007b). The age of the crust to 

the east of the Wishbone Scarp (dredge stations 24D and higher) was extrapolated from 

seafloor ages estimated from magnetic anomalies by Lonsdale (1988), Watts et al. (1988) 

and Lyons et al. (2000). The origin and history of the Wishbone Scarp and Osbourn 

Trough are currently matter of debate because of the lack of magnetic anomalies in this 

region of the seafloor (either unresolved or wholly located in the Cretaceous Long 

Normal period to the west of the scarp; e.g., Lonsdale, 1997; Billen & Stock, 2000; 

Mortimer et al., 2006; Worthington et al., 2006; Downey et al., 2007). We accept the 

interpretation of Lonsdale (1997) that the Osbourn Trough is a paleo-spreading center 

and the Wishbone Scarp represents a paleo-plate boundary. If this interpretation is found 

by future workers to be incorrect and the crust west of the Wishbone Scarp formed at the 

East-Pacific Rise, our estimated lithospheric ages and thicknesses for this part of the LSC 

would be vastly underestimated; for example, our ~92 Ma estimate for the age of the 

crust at our oldest dredged seamount would be closer to ~120 Ma (leading to estimated 

lithospheric thicknesses of 63 km and 97 km at the time of volcanism, respectively). To 

estimate the age of the crust at the time the Louisville seamounts were emplaced on the 

Osbourn-Trough-generated oceanic crust, we assume that spreading initiated at 118 Ma 

and stopped at 86 Ma (Table 4.2), as proposed by Worthington et al. (2006). 
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Melting model 

We calculated primitive-mantle-normalized (Dy/Yb)N and (Yb/Sm)N for aggregated 

(accumulated) fractional melts (Shaw, 1970) of a single source for a range (1-15%) of 

partial melting (Fig. 4.10). These particular elements were chosen because of their 

moderate incompatibility, resistance to alteration and, in the case of Yb and Dy, 

compatibility with garnet, which permits a test for the presence of garnet in the source. 

This differs from the approach of Hawkins et al. (1987), who modeled partial melting 

assuming fractional melting of a garnet lherzolite source to account for their Zr/Nb and 

Zr/Y data. They estimated a range of 5% to 9% of partial melting. 

Two different sets of parameter values (summarized in Appendix B) yielded 

satisfactory fits to our data. In the model summarized in Fig. 4.10A, we used a source 

composition with 53% olivine, 30% orthopyroxene (opx), 10% clinopyroxene (cpx) and 

7% of variable amounts of garnet and spinel. Phases were assumed to enter the melt in 

the following proportions: 10% for olivine, 10% for opx, 40% for cpx and 40% for 

garnet/spinel (both solid and liquid modal abundances are after Janney et al., 2000). 

Melt/solid partition coefficients (Kd) were taken from Salters & Stracke (2004), with the 

exception of the Kd of Dy in garnet, for which a value of 1.65 was adopted, after Zack et 

al. (1997). The source was assumed to have primitive mantle ratios (Sun & McDonough, 

1989) of Dy/Yb = 1.53 and Yb/Sm = 1.09. Results of this model show that our data do 

not follow a path parallel to a melting curve for any single amount of garnet in the source, 

indicating that melting likely occurred both in the garnet and spinel stability zones. This 

result is unexpected considering our estimates of 90- to 120-km-thick lithosphere at the 

time of emplacement of the majority of seamounts (Table 4.2). If all melting takes place 
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Fig. 4.10: Aggregated fractional melt model of (Dy/Yb)N and (Yb/Sm)N for various degrees of 
partial melting of a peridotitic source. Model parameters are detailed in the text and summarized 
in Appendix B. Crosses represent our LSC data. (A) Black curves represents 1-15% of partial 
melting. Kd values are from Salters & Stracke (2004), with the exception of Kd of Dy in garnet, 
assumed to be 1.65 (Zack et al., 1997). Lines labeled grt-0%, grt-50% and grt-100% are 
modeled assuming 0%, 50% and 100% of garnet as an accessory phase in the unmelted 
source, respectively. Gray transverse lines represent lines of constant fraction (1%, 5%, 10% 
and 15%) of partial melting. (B) Black curves represent 1-9% of partial melting, using Kd values 
of Salters & Stracke (2004) and McKenzie & O’Nions (1991). Lines labeled grt-0%, -50% and 
-100% are modeled assuming 0%, 1.5% and 3% of garnet in the unmelted source, respectively. 
Gray transverse curves represent lines of equal degrees (1%, 5% and 9%) of partial melting.
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at the base of the lithosphere, melting should occur at pressures of ~2.7-3.6 GPa, squarely 

in the garnet zone (e.g., O’Hara et al., 1971). This consideration would imply that our 

lithospheric thicknesses are overestimates, perhaps because the lithosphere was thinned 

by some unknown thermal event prior to passing over the hotspot or by the thermal effect 

of the Louisville plume – more or less consistently before formation of the magmas 

represented by our samples. In any case, our estimates of the amount of partial melting 

with this model are in the 1-5% range, smaller than the estimates of Hawkins et al. 

(1987), who used a simpler batch melting equation. 

For the second model, we adopted source modal abundances with less garnet (after 

Dawson, 2004; Maaløe & Aoki, 1977; Dawson et al., 1980), with 57% olivine, 30% opx, 

10% cpx and 3% of variable amounts of garnet and spinel. The phases were again 

assumed to enter the melt in the following proportions: 10% for olivine, 10% for opx, 

40% for cpx and 40% for garnet/spinel (Janney et al., 2000). We again used Kd values of 

Salters & Stracke (2004), with the exception of the Kd for Sm (0.22) and Dy (1.06) for 

garnet, which were from the compilation of McKenzie & O’Nions (1991). The source 

was assumed to have (Dy/Yb)N = 0.91 and (Yb/Sm)N = 0.84. Although mathematically 

feasible, this model is geologically improbable. Despite the fact that a (Dy/Yb)N value of 

0.91 is plausible for depleted mantle sources (e.g., the model depleted mid-ocean ridge 

basalt (MORB) mantle of Workman & Hart (2005) has (Dy/Yb)N = 0.91), processes that 

would lead to the depletion of Dy relative to Yb are just as likely to deplete Sm relative to 

Yb, producing (Yb/Sm)N > 1. Thus, it is not clear why a mantle source would have both 

(Dy/Yb)N and (Yb/Sm)N <1. 
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No pyroxenite or eclogite was used in the model source because (a) there is very 

little isotopic evidence for a two-component source or melting of a recycled oceanic 

crustal component (though some authors have proposed C-type mantle to be a well-

stirred mix of recycled materials; e.g., Kellogg et al., 2004) and (b) experimental melts of 

pyroxenite and eclogite tend to be silica-rich (e.g., O’Hara, 1986; Green et al., 1967), 

which is incompatible with the markedly silica-undersaturated character of the LSC rocks 

(although Hirschmann et al. (2003) obtained alkalic melts from garnet pyroxenite at 

pressures above 3 GPa). 

 

Systematic geochemical variations 

Our data, combined with those of Cheng et al. (1987), show that there has been no 

systematic variation of either chemical or isotopic composition in LSC lavas over a large 

portion of the hotspot’s history (e.g., Fig. 4.7A, in which age is indicated by the present 

distance of seamounts from the inferred location of the hotspot), despite the abrupt drop 

in magma productivity over the past 25 Myr. Similarly, there is no observable systematic 

isotopic variation either with indicators of the degree of magmatic evolution (e.g., 

Fig. 4.7B) or degree of partial melting (e.g., Fig. 4.7D). These results indicate that the 

small isotopic variations are more likely to be related to small variations in source 

composition or, as proposed by Ito & Mahoney (2005a; 2005b), small variations in 

melting conditions. Analyses of samples from dredge 20D, which were all collected from 

the same seamount but show a wide range in isotopic compositions (Fig. 4.7A), favor the 

former hypothesis, as melting conditions are unlikely to vary substantially under a single 

seamount. 
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A very rough overall positive correlation can be observed between age-corrected 

208Pb/204Pb and the age (and thus, thickness) of the lithosphere at the time of a seamount’s 

emplacement (Fig. 4.11A and C). In contrast, Nd, Sr or other Pb isotopic ratios are 

uncorrelated with lithospheric thickness at the time of volcanism (Fig. 4.11B and D). 

Similarly, indicators of degree of partial melting (e.g., (Dy/Yb)N, Fig. 4.11E) and ratios 

of very incompatible elements to moderately incompatible elements (e.g., La/Yb; 

Fig. 4.11E), which are affected both by degree of partial melting and source 

heterogeneity (e.g., Fitton et al., 1997), do not show any clear systematic evolution as a 

function of lithospheric thickness at the time of volcanism. 

These results may indicate that (1) although the Louisville source mantle is mostly 

homogeneous (at the scale of the melting zone), a few relatively small heterogeneities are 

more or less evenly scattered in the melting region. The wide range of isotopic 

compositions observed among samples of the same seamount (dredge 20D; Fig. 4.11) 

offers the best evidence in support of this hypothesis, as lithospheric thickness can be 

assumed to have remained constant. The weak correlation between the age of the 

lithosphere at the time of volcanism and 208Pb/204Pb could suggest that these 

heterogeneities cross the solidus at higher pressure, and thus enter the melt phase in 

greater proportion at higher pressure than at lower pressure, where melting of the 

volumetrically predominant, more refractory, lower-208Pb/204Pb mantle component 

prevails. The lack of correlation of lithospheric thickness at the time of seamount 

emplacement with other isotopic ratios, on the other hand, suggests that lithospheric 

thickness was not a dominant factor controlling the isotopic composition of the LSC. 

Furthermore, the range in (Dy/Yb)N observed in samples of dredge 20D (Fig. 4.11E), 
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where we can assume the lithospheric thickness to have been constant during 

construction of the seamount, do not correlate with isotopic ratios, indicating that there 

was not much difference in fusibility of isotopically different regions of the mantle 

source. In any case, the quantity of these heterogeneities is small in the Louisville source 

in comparison to those of other Pacific hotspots, which display a much wider variation in 

isotopic composition. For comparison, the Cook-Austral volcanoes were emplaced on a 

~35 Myr old crust at the time of volcanism; for Pitcairn, ~20 Myr old crust; for Society, a 

very constant ~65 Myr old crust throughout the chain; for Hawaiʻi, volcanoes have been 

emplaced on crust of extremely varied age, ranging from <10 to ~100 Myr old; and 

sampled portions of the Easter-Salas y Gomez chain have been built on ~2-15 Myr old 

crust (Waggoner, 1993; Cottrell & Tarduno, 2003; Müller et al., 1997). 

 Alternatively, (2) the Louisville source mantle is just as heterogeneous as that of 

any other Pacific hotspot, but the heterogeneities are not expressed prominently in the 

isotopic signatures of LSC lavas because the consistently thick lithosphere at the time of 

seamount emplacement along most of the chain has prevented significant melting of the 

more refractory components in the source mantle. This explanation is unlikely because 

(a) lavas from seamounts that were emplaced close to a recently active spreading center 

(Osbourn Seamount at the western end of the chain and the 27.6°S seamount, where we 

conducted dredge haul 1D) are not isotopically distinct in (87Sr/86Sr)t, εNd(t), or age-

corrected 206Pb/204Pb or 207Pb/204Pb from samples taken at other dredge sites and have 

only marginally lower (208Pb/204Pb)t. (b) Moreover, volcanoes of some other hotspots, 

such as the Cook-Austral, Society and Pitcairn, have also been emplaced on crust of 
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relatively constant age (Müller et al., 1997), yet display wide ranges in isotopic 

compositions. 

In summary, our results support the idea that the Louisville source mantle is 

surprisingly homogeneous, with few scattered heterogeneities in the melting zone. This 

indicates that, unlike other hotspots, the Louisville plume originates from a well stirred 

portion of the mantle, for instance, located well above the D” layer (e.g., Courtillot et al., 

2003; Montelli et al., 2004), a region originally proposed by Hart et al. (1992) to host 

FOZO-type compositions. 

 

The Louisville hotspot as the source of the Greater Ontong Java Plateau 

The plume head of the Louisville hotspot has been suggested as a possible source 

for the Ontong Java Plateau (OJP) (e.g., Mahoney, 1987; Mahoney & Spencer, 1991; 

Tarduno et al., 1991; Richards et al., 1991) and, by extension, for the Hikurangi and 

Manihiki plateaus, recently postulated to have originally been part of a single gigantic 

plateau termed the Greater OJP (Taylor, 2006; Worthington et al., 2006). Because 

portions of the Louisville hotspot trail older than about 80 Myr have been subducted at 

the Tonga-Kermadec Trench, it is not possible to physically track the hotspot seafloor 

trace to any specific Early Cretaceous plateau. Most current plate motion models (e.g., 

Wessel & Kroenke, 2008) fail to place the Louisville hotspot in the vicinity of the OJP at 

~120 Ma, although Antretter et al. (2004) concluded that the 9° latitudinal discrepancy 

between the present location of the Louisville hotspot and the inferred source of the OJP 

at ~120 Ma can be accommodated by allowing for a combination of true polar wander 

and southward motion of the Louisville hotspot by up to 6° in the past 120 Myr. 



143 

Our data for LSC lavas overlap with OJP basalts in age-corrected Nd and Sr isotope 

ratios. However, the Pb isotopic compositions of 72-24 Myr (Koppers et al., 2004; 

2007b) LSC lavas are distinct from those of either of the two principal magma types of 

the ~120 Myr OJP proper (e.g., Mahoney et al., 1993; Tejada et al., 2004). Isotopic 

evolution in the LSC mantle source, resulting from radioactive decay of Th and U and 

ingrowth of radiogenic Pb isotopes, cannot account for or explain these differences 

(Fig. 4.12). The slope of the age-correction/evolution vector for the LSC data in 

206Pb/204Pb vs. 207Pb/204Pb space (Fig. 4.12) depends upon the present-day 238U/235U ratio, 

137.88, which is invariant in natural materials in the solar system. This vector not only 

fails to intersect the OJP data fields, but would also require very high 238U/204Pb (=µ) 

ratios (40-80) in the mantle source in order to explain the difference in age-corrected 

(206Pb/204Pb)t between the LSC and OJP rocks. Such µ values are higher than in almost all 

LSC samples (90% of those presented in Table 4.2 have µ between 15 and 43). Further, 

because U is more incompatible than Pb (e.g., Tatsumoto, 1988) and the LSC lavas 

appear to be products of relatively small amounts of partial melting, µ should be lower in 

the Louisville mantle source than in LSC lavas. 

Few isotopic data have been published for the Hikurangi Plateau (Mortimer & 

Parkinson, 1996), but those that are available are rather similar to those for the 

Kwaimbaita-type of OJP basalt and thus also distinct from Louisville compositions. The 

207Pb/204Pb ratio of LSC lavas is also too high to match the compositions measured for 

Manihiki Plateau samples drilled on DSDP site 317, which are similar to the Singgalo 

magma type of the OJP. Inter-laboratory measurement bias cannot explain the observed 

differences between LSC and OJP (sensu stricto) lavas, as the great majority of the OJP 
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(and Manihiki) isotopic data were acquired in the same laboratory as that used in the 

present study, and include a number of double-spike measurements (Tejada et al., 2004). 

On the other hand, data for two glassy samples from a dredge haul in the Danger Islands 

Troughs of the Manihiki Plateau (Mahoney & Spencer, 1991) fall exactly on the LSC 

age-correction vector in Fig. 4.12. This implies that a LSC-like composition exists in 

some parts of the Greater OJP, but has so far been found only in a deeply dissected part 

of the Manihiki Plateau and remains to be discovered in the OJP proper. As a result, a 

genetic link between the Louisville hotspot and the OJP can therefore not be ruled out. A 

shift in isotopic composition between a plume-head and plume-tail stage would also not 

be entirely unexpected considering the very high degrees of partial melting estimated for 

OJP basalts (18-30%; e.g., Mahoney et al., 1993; Tejada et al., 1996; Neal et al., 1997), 

which could have swamped any Louisville-like isotopic signal through the melting of 

refractory, volumetrically dominant, mantle components. 

 

CONCLUSIONS 

Study of the major element, trace element and isotopic composition of samples 

dredged from seamounts of the Louisville hotspot trail reveals that Louisville lavas are 

typically undersaturated in silica. By selecting dredge sites on steep slopes, landslide 

scarps, and in deep incisions in the volcanic edifices, we attempted to reach the inner, 

shield-stage lavas. Our new sample suite is similar to most of those described by 

Hawkins et al. (1987), which were mostly collected on pinnacles, peaks or parasitic cones 

that dot many of the seamounts’ summits and that, from their morphology, appear to have 

formed late in the history of the volcanoes. Our dataset, combined with that of Hawkins’ 
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et al. (1987), indicates either that (1) despite our best attempts, shield-stage lavas were 

not recovered or (2) the Louisville volcanoes do not follow the textbook, Hawaiʻian style 

of evolution characterized by geochemically distinct shield and post-shield stages. 

Overall, samples collected on the flanks of the volcanoes are geochemically 

indistinguishable from those collected on late-stage peaks (Hawkins et al., 1987; Cheng 

et al., 1987), suggesting that phases in the life of LSC volcanoes are geochemically 

identical. This issue, however, cannot be entirely resolved until the Louisville seamounts 

are drilled. 

Major and compatible trace elements show patterns consistent with the fractionation 

of an olivine-dominated mineral assemblage. Some samples with anomalous MgO and Ni 

show clear chemical and mineralogical indications of having accumulated olivine. 

Incompatible trace elements indicate that the melts were at least partly formed in the 

garnet stability zone by the partial melting of 1-7% of a peridotitic source with a C-like 

isotopic composition. As suspected by Cheng et al. (1987), the Louisville mantle source 

appears to have remained extraordinarily homogeneous over the last ~70 Myr. Magma 

fluxes from the hotspot have decreased sharply in the past 25 Myr (e.g., Lonsdale, 1988; 

Montelli et al., 2004), which has been interpreted as evidence for a waning mantle plume. 

Surprisingly, this decline of hotspot activity has not been accompanied by any change in 

chemical or isotopic composition of Louisville lavas, indicating that the mantle source 

and melting conditions have both remained much the same. The lack of systematic 

variation along the chain is epitomized by the fact that nearly the entire range of 

geochemical characteristics (alkalinity, isotopic ratios, degree of magmatic evolution, 

partial melting) can be observed in a single seamount. 
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Small isotopic variations appear unrelated either to the degree of partial melting or 

magmatic evolution. Correlation between lithospheric thickness at the time of volcanism 

and 208Pb/204Pb is crude, at best, and absent from other isotopic systems. Rather, the 

entire range of degrees of partial melting and isotopic variability can be observed in a 

single seamount (dredge 20D). This suggests that isotopic variability was not controlled 

by changes in melting conditions, but instead by the amount of isotopically distinct 

heterogeneities present in the melting zone. The absence of correlation between degree of 

partial melting and isotopic ratios also implies that isotopically different regions of the 

mantle source had similar fusibility. In any case, the range of isotopic compositions 

observed along the LSC remains small, a characteristic which sets it apart from other 

Pacific hotspot tracks. 

The isotopic signature of the Louisville lavas is absent in OJP basalts (as well as in 

the few Hikurangi Plateau lavas for which analyses have been published). We cannot 

completely discount that the Louisville hotspot was the source of these Cretaceous 

Pacific plateaus, but it would require a shift in mantle source composition between the 

plume head and plume tail stages of the hotspot’s activity. This change would be 

particularly striking in light of the homogeneity of Louisville lavas for the past ~70 Myr 

(cf. Mahoney, 1987). Alternatively, the isotopic differences may be attributed to the 

vastly different degrees of partial melting inferred for LSC (1-9%) and OJP (18-30%) 

lavas, such that more-refractory mantle components are not expressed at the LSC. Lastly, 

the Pb isotopes age-correction vector of the Louisville seamounts, as well as the range of 

their Sr and Nd isotopic ratios, appear to match the values of some lavas of the Manihiki 

Plateau dredged in the Danger Islands Troughs, but to be dissimilar to values for 
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Manihiki basalts cored at DSDP site 317. Because the Manihiki Plateau has been 

postulated to originally have been part of the OJP (Taylor, 2006), the evidence of a LSC-

like mantle source for at least some Manihiki Plateau lavas may indicate a stronger link 

between the Louisville hotspot and the OJP than suggested by most recent plate motion 

models. 
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CHAPTER 5 

CONCLUSIONS 

 

Our geochemical study of volcanic rocks from the Louisville Seamount Chain 

(LSC) and the Deccan Traps of India has both regional and global implications for 

understanding hotspot initiation and activity, which I will summarize in the present 

chapter. In addition, the discussion will be broadened to consider outstanding questions 

regarding these volcanic provinces and models for their origin, along with future avenues 

for research. 

 

DIKES OF THE DECCAN TRAPS 

Our study of the geochemical signature of dikes of the Deccan Traps enabled us to 

correlate dikes with flow formations and place constraints on the locations of active dike 

swarm systems feeding the lava pile at different stages of the flood basalt event. In turn, 

we recognized multiple stages in feeder dike swarm activity: (1) Probable feeder dikes to 

the lower and middle formations were found in the Narmada-Tapi swarm system, and 

were emplaced when the two grabens were actively undergoing N-S extension. Five 

probable N-S-striking feeder dikes for the lower and middle formations were also 

identified as much as 300 km farther south. (2) Inferred feeder dikes for the three main 

upper formations (Poladpur, Ambenali and Mahabaleshwar) were found in all three 

swarms, but in greater numbers within the Nasik-Pune swarm where they do not display a 

strong preferred orientation. Geochemical similarities among several dikes of the 

Narmada-Tapi swarm and lavas of the northern and northeastern Deccan suggest that, 
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perhaps simultaneously, the Narmada-Tapi swarm acted as a feeder system for flows 

found in those areas. (3) North-south-striking tholeiitic dikes chemically similar to the 

Thakurvadi formation found along the west coast are isotopically distinct from any lava 

flow of the Deccan Traps yet analyzed and thus, cannot be considered as feeders to the 

lava pile. This fact strengthens the observations of Hooper & Widdowson (submitted), 

who documented that these dikes cross-cut flows and probable feeder dikes of the upper 

formations. This implies the existence of a tholeiitic, late-stage of Deccan volcanism 

controlled by E-W extension along the coast. (4) Dikes of diverse acidic and alkalic 

compositions, striking N-S, are also found along the west coast, documenting an even 

later phase of Deccan volcanism and, according to Hooper & Widdowson (submitted), a 

syn-rift phase of magmatism. 

The main implications of my research are: (1) rifting models (e.g., White & 

McKenzie, 1989) generally fail to account for the scattered orientations of the inferred 

feeders of the upper lava formations, which are considered by several authors to represent 

the volumetric peak of Deccan volcanism (e.g., Self et al., 2006); and (2) the main phase 

of volcanism preceded the main phase of rifting along the Indian west coast, which 

eventually led to the splitting of the Seychelles Bank from mainland India (e.g., Collier et 

al., 2008). These findings favor a plume-head model (e.g., Campbell & Griffiths, 1990) 

for the origin of the Deccan Traps. Although plume-head models alone do not predict 

tectonic control during emplacement of the lower- and middle-formation feeder dikes, 

tectonic control could be explained if active rifting occurred contemporaneously along 

the Narmada and Tapi grabens, which indeed had been active well prior to the onset of 

Deccan volcanism. The outstanding weakness of the plume-head model is the apparent 
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absence of evidence for a pre-volcanic uplift that the model predicts (e.g., Sheth, 1999; 

2007). 

Numerous aspects about the Traps’ feeder system remain open and offer future 

perspectives for research in the province. 

 

* The submarine section of the province is poorly studied, in part because the thickness 

of the Indus sediment fan makes imaging or accessing the basement in the Arabian Sea 

difficult, and in part because much of India’s continental shelf is under concession for oil 

exploration and drilling and thus, available geophysical and well-logging data are 

proprietary. Recently, Collier et al. (2008) imaged substantial volumes of seaward-

dipping reflectors along the Indian continental margin and its conjugate margin on the 

Seychelles Plateau. Besides the obvious importance of the offshore portion of the 

province for understanding the Deccan’s original volume and spatial extent, and the 

timing of rifting along the west coast relative to the main phase of volcanism, the 

offshore sequence holds the answers to at least two questions regarding the feeder dike 

systems and the locus of the Deccan’s main vents. (1) How much of the feeder system 

lies offshore? Could the paucity of likely feeder dikes for the lower and middle 

formations found on land mean that the majority of such dikes are now underwater? (2) 

Considering that roughly 40% of the dikes analyzed for Pb-Nd-Sr isotope ratios have 

compositions distinct from those of lavas found anywhere in the Deccan, how many of 

these dikes are hypabyssal and how many actually fed flows that now lay offshore? Did 

the phase of volcanism that produced the late-stage chemically Thakurvadi-like dikes 

along the west coast also produce associated lava flows that are now underwater? 
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* A few dikes with chemical similarities to the lava flows of the northern and 

northeastern Deccan have been found in the Narmada-Tapi swarm, but abundant feeders 

for these flows remain to be found. Future efforts should focus on locating the feeder 

systems for the geochemically distinct flows of the northern and northeastern reaches of 

the province, such as recent work by Sheth et al. (submitted) on an eastern section of the 

Narmada-Tapi swarm system, near Pachmarhi. 

 

* Unlike the better-studied complexes of Katchchh and the Narmada-Tapi grabens 

(Mundwara, Barmer, Rajpipla and Amba Dongar; e.g., Mahoney et al., 1985; Simonetti 

et al., 1995; 1998), the alkalic rocks of the west coast are comparatively less well-

characterized isotopically, particularly for the Pb system (e.g., Melluso et al., 2002). Nd 

and Sr isotopic data seem to indicate that alkalic rocks, and more specifically 

lamprophyric rocks, bear some isotopic affinity with a Réunion-like mantle source. This 

is of no small importance considering that a Réunion-like isotopic signature is absent 

from other Deccan-related rocks, with but a few exceptions (cf. Peng & Mahoney, 1995; 

Mahoney et al., 2002). Continued studies of the alkalic rocks of the province may yield 

critical information regarding the inferred link between the Réunion hotspot and the 

Deccan Traps, and the evolution of the mantle source during the transition from the 

plume-head to plume-tail phases of volcanism. 
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THE LOUISVILLE SEAMOUNT CHAIN 

Study of the major element, trace element and isotopic composition of samples 

dredged from seamounts of the Louisville hotspot trail reveal that Louisville lavas are 

typically undersaturated in silica and alkalic. When comparing the geochemical data for 

our samples, thought to mostly represent the inner, shield-stages of the seamounts, with 

those of Hawkins et al. (1987), thought to represent the post-shield stages of volcanism, 

we find no measurable chemical or isotopic difference between the samples. Based on 

their geochemical signature, LSC lavas can be interpreted as having been generated at 

least partly in the garnet stability zone by the partial melting of 1-7% of a peridotitic 

source with a C-like isotopic composition, melts which then evolved by fractional 

crystallization of an assemblage dominated by olivine and clinopyroxene. 

Our isotopic data show that the LSC mantle source is distinct from the sources that 

produced Ontong Java Plateau (OJP) and Hikurangi Plateau lavas and lavas of the 

Manihiki Plateau drilled by the Deep Sea Drilling Project at Site 317. Although these 

data do not rule out the Louisville hotspot as the source of the OJP, a shift in isotopic 

composition between magmas produced during the plume head and plume tail stages of 

the hotspot is required to explain the discrepancy in Pb isotopes between the LSC and 

OJP data (e.g., Mahoney, 1987). Such a shift could be attributed, for instance, to the 

vastly different degrees of partial melting of the mantle source inferred for the LSC (1-

7%) and OJP (18-30%) (e.g., Mahoney et al., 1993; Tejada et al., 1996; Neal et al., 

1997). Our data also shows that the LSC source is isotopically similar to the source of 

two Manihiki lavas dredged in the Danger Islands Troughs (Mahoney & Spencer, 1991). 

If Taylor’s (2006) hypothesis that the Manihiki, OJP and Hikurangi plateaus were once a 



154 

single plateau is correct, these two samples suggest that a shift in isotopic composition of 

the hotspot source between the plume head and tail stages may no longer be required. The 

implication would be that a LSC-like composition exists in some parts of the Greater 

OJP, but has so far been found only in a deeply dissected part of the Manihiki Plateau and 

remains to be discovered in the OJP proper. 

Our isotopic data, combined with those of Cheng et al. (1987), also show that the 

Louisville mantle source appears to have remained extraordinarily homogeneous over the 

last ~70 Myr, despite a sharp decrease in magma fluxes from the hotspot in the past 

25 Myr (e.g., Lonsdale, 1988). The absence of systematic variation in isotopic 

composition, estimates of the amount of partial melting or incompatible element ratios 

indicative of source heterogeneity as a function of distance along the chain, alkalinity, or 

thickness of the lithosphere at the time of volcanism suggest either that heterogeneities 

are absent from the mantle source or that heterogeneities are present in the source but are 

not melting. Considering that the Cook-Austral and Society hotspot chains were 

emplaced on crust roughly the same age as the LSC, but display a much wider range of 

isotopic compositions (e.g., Devey et al., 1990; Hemond et al., 1994; Chauvel et al., 

1997; Lassiter et al., 2003), the former hypothesis has to be preferred. 

The main outstanding question is, of course, why is the LSC markedly more 

homogeneous than other Pacific hotspots? The simple answer – heterogeneities are 

simply not present in the mantle source – leads to further hypotheses and conjectures that 

can be stated but might prove difficult to test. One such hypothesis is that no significant 

heterogeneity is present at the root of the Louisville mantle plume and thus no 

heterogeneity can be entrained by the plume on its way to the surface. Another 
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hypothesis is that heterogeneities are present at the base of the plume, but fail to be 

entrained in the plume; for instance, because of density contrasts. Studies of the 

topography of the core-mantle boundary from seismic tomography suggest that there is 

no substantial difference either in density or seismic velocity between the root of a 

possible deep-seated Louisville mantle plume and the roots of other South Pacific 

hotspots (e.g., Boschi & Dziewonski, 2000; Yoshida, 2008). One would therefore not 

expect drastic differences in the major element composition of source materials at the 

roots of Pacific plumes, thus favoring the second hypothesis. Recent numerical and 

experimental modeling of thermo-chemical plumes (e.g., Lin & van Keken, 2006; Harris 

et al., 2007) has shown that small viscosity and density contrasts can lead to radically 

different chemical structures in model plumes and that, depending on conditions, dense 

heterogeneities present at the plume root may not be entrained at all. These studies show 

that it is not an unreasonable hypothesis to explain the observed >70-Myr homogeneity of 

the Louisville mantle source. Finally, it is possible that the Louisville plume does not 

originate from the core-mantle boundary, but rather from a well stirred region of the 

lower mantle located well above the D” layer. The FOZO-like compositions observed at 

the LSC fit well with this hypothesis, as FOZO compositions have been originally 

hypothesized by Hart et al. (1992) to be hosted in a well stirred region of the lower 

mantle. 

Future research on the LSC would greatly benefit from the drilling program 

outlined in IODP proposal #636. Not only would it help resolve outstanding geochemical 

questions regarding the differences between shield, post-shield and rejuvenated phases of 

volcanism and further test whether such small isotopic variability persists throughout the 
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full growth history of Louisville seamounts, but it would also allow more accurate dating 

of the bends observed in the chain and of the chain itself, thus impacting models of plate 

motion and hotspot fixity (e.g., Koppers et al., 2004; 2007b). Future research should also 

focus on the young end of the chain. In recent years, estimates of the exact location of the 

Louisville hotspot have varied by as much as 200 km depending on the authors (e.g., 

Lonsdale, 1988; Koppers et al., 2004; Wessel & Kroenke, 2008). The issue can only be 

resolved by detailed geophysical and bathymetric surveying, coupled with sampling of 

the seamounts and any recent lava flow-fields on the seafloor in this area for geochemical 

and geochronological work. In the same area, the geochemical and structural effects of 

the proximity of the Eltanin Fracture Zone system and Hollister Ridge should also be 

studied. Hollister Ridge, the mid-ocean spreading center located at the boundary between 

the Pacific and Antarctic plates, is of particular interest, as it displays structural evidence 

of migrating towards the Louisville hotspot (Small, 1995), and geochemical evidence of 

contribution of the Louisville plume in the magmas produced at the mid-ocean ridge 

(e.g., Vlastélic & Dosso, 2005). 
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Appendix B: model parameters used to estimate
degrees of partial melting at the LSC in chapter 4

Model 1
Olivine Cpx Opx Garnet Spinel

Kd - Sm 0.001 0.15 0.02 0.23
Kd - Tb 0.02 0.25 0.08 5.5
Kd - Dy 0.0027 0.17 0.065 1.65
Proportion in source 0.53 0.1 0.3 0.07 (0.07-grt)

0.1 0.4 0.1 0.4 (0.4-grt)

Sm Yb Dy
Unmelted source starting
concentrations (ppm) 0.406 0.441 0.674

Model 2
Olivine Cpx Opx Garnet Spinel

Kd - Sm 0.001 0.15 0.02 0.22
Kd - Tb 0.02 0.25 0.08 5.5
Kd - Dy 0.0027 0.17 0.065 1.06
Proportion in source 0.57 0.1 0.3 0.03 (0.03-grt)

0.1 0.4 0.1 0.4 (0.4-grt)

Sm Yb Dy
Unmelted source starting
concentrations (ppm) 0.4 0.365 0.505

Proportion entering the melt

Proportion entering the melt
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APPENDIX C 

PRINCIPLES OF DISCRIMINANT FUNCTION ANALYSES 

 

The aim of this appendix is to present the basic principles of discriminant function 

analyses, a statistical method used in chapter 2 to discriminate between groups of Deccan 

Traps lavas on the basis of their major and trace element compositions. 

 

Discriminant function analysis (DFA) is a statistical tool with two common usages: 

(1) determine which variables discriminate between two or more naturally occurring 

groups and (2) predictive classification. In a sense, DFA is a reversed multivariate 

analysis of variance (MANOVA) because, unlike for MANOVA, the independent 

variables in the DFA are considered as the predictors and the dependent variables as the 

groups. 

Discriminant function analysis can be broken into a two-step process: (1) testing 

significance of a set of discriminant functions, and (2) classification. The first step 

determines whether or not two or more groups are statistically significantly different from 

one another with respect to the mean of a particular variable. Computationally speaking, 

matrices of variances and covariances are calculated both across the dataset and within 

each group. The matrices are then compared via multivariate F tests in order to determine 

whether or not there are any significant differences (with regard to all variables) between 

groups. The multivariate tests are performed first and, if statistically significant, the 

analysis proceeds to determine which of the variables have significantly different means 

across the groups. Once group means are found to be significantly different statistically, 
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the DFA classifies the variables. The DFA calculates a set of functions called 

discriminant functions (or canonical roots or functions) representing optimal 

combinations of variables (in which variables are weighed by discriminant coefficients) 

so that the first function provides the most overall discrimination between groups, the 

second provides second most, and so on. In our case, eight canonical functions were 

calculated. The first function encompasses the most variation, the second function covers 

the greatest part of the remaining unexplained variation, etc. 

Classification is possible from the canonical functions. For each sample, the 

discriminant score is calculated by applying the discriminant function formula to the 

sample’s data. This score is also called “Z score” if data is standardized, which it is in our 

particular case (i.e., the discriminant coefficients are determined to weigh the relative 

classifying importance of variables). The mean discriminant score for each group is 

called the group centroid, and the distance (in a n-dimensional space defined by n 

variables) between a sample’s score and a group centroid is called Mahalanobis distance. 

A sample will be classified as belonging to the group to which its Mahalanobis distance 

is shortest. The shorter the Mahalanobis distance, the higher the probability that a sample 

belongs to a group. 

In our case, group centroids were calculated for nine different groups, each 

representing a lava flow formation (with the exception of the Igatpuri and Jawhar 

formations, which form a single group), from a standard set of 624 lava flow analyses 

from the Deccan “type” sections of the Western Ghats. SiO2, Al2O3, TiO2, CaO, K2O, 

P2O5, Ni, Ba, Sr, Zr, Y and Nb were chosen as our predictor variables. 

 



Appendix D: Measurements of standards by ICP-MS. Legend as in Appendix A.
Standard K-1919 K-1919 K-1919 K-1919 K-1919
Lab UH-Quadrupole UH-Quadrupole UH-Quadrupole UH-Quadrupole UH-Quadrupole
Date 12/22/2005 12/22/2005 12/22/2005 06/17/2006 06/17/2006

Sc 35 32 34 35 36
Cr 290 287 288 285 333
Co 51 48 50 51 47
Ni 112 109 111 113 112
Cu 135 132 135 140 138
Zn 103 103 104 109 109
Rb 13 12 13 14 14
Sr 424 413 420 425 434
Y 28 27 27 27 27
Zr 185 181 185 183 182
Nb 20 20 20 20 19
Cs 0.12 0.10 0.11 0.10 0.10
Ba 177 176 178 208 203
La 19 19 19 18 18
Ce 42 42 42 43 44
Pr 5.4 5.4 5.4 5.6 5.4
Nd 26 26 26 26 26
Eu 2.0 1.9 2.0 2.0 2.0
Gd 6.0 5.9 6.0 6.3 6.1
Tb 0.96 0.92 0.95 1.0 0.97
Dy 5.2 5.1 5.2 5.4 5.4
Ho 0.97 0.98 0.97 1.0 0.98
Er 2.3 2.4 2.4 2.5 2.5
Tm 0.42 0.41 0.41 0.37 0.37
Yb 2.0 2.0 2.0 2.2 2.1
Lu 0.29 0.30 0.30 0.32 0.30
Hf 4.5 4.5 4.5 4.4 4.4
Ta 1.4 1.4 1.4 1.4 1.4
Pb 1.1 1.1 1.1 1.3 1.3
Th 1.6 1.6 1.6 1.3 1.4
U 0.54 0.56 0.54 0.45 0.47
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Appendix D (Cont.): Measurements of standards by ICP-MS. Legend as in Appendix A.
Standard K-1919 K-1919 K-1919 K-1919 K-1919 K-1919
Lab UH-Element2 UH-Element2 UH-Element2 UH-Element2 UH-Element2 UH-Element2
Date 11/20/2006 11/20/2006 11/20/2006 11/20/2006 11/20/2006 11/20/2006

Li 4.8 4.7 4.8 4.8 5.0 4.9
Sc 35 35 36 36 43 37
Cr 280 279 281 281 342 281
Co 56 56 56 56 56 56
Ni 112 112 112 112 111 112
Cu 163 160 159 160 158 158
Zn 137 130 132 132 128 130
Rb 11 11 11 11 11 11
Sr 435 438 440 443 439 442
Y 31 31 31 31 31 31
Zr 203 186 203 190 207 203
Nb 22 21 22 22 22 22
Cs 0.12 0.12 0.12 0.12 0.12 0.12
Ba 154 152 152 152 149 149
La 17 17 17 17 17 17
Ce 44 43 42 42 42 42
Pr 6.2 6.1 6.0 6.0 6.0 5.9
Nd 28 28 27 27 27 27
Sm 7.0 6.9 6.7 6.7 6.6 6.6
Eu 2.2 2.2 2.2 2.2 2.1 2.1
Gd 7.0 6.7 6.8 6.7 6.5 6.5
Tb 1.1 1.1 1.1 1.0 1.0 1.0
Dy 6.0 5.8 5.8 5.7 5.6 5.6
Ho 1.1 1.1 1.1 1.1 1.0 1.0
Er 2.9 2.8 2.8 2.7 2.7 2.7
Tm 0.41 0.40 0.39 0.38 0.38 0.38
Yb 2.4 2.3 2.2 2.2 2.1 2.1
Lu 0.34 0.32 0.32 0.32 0.31 0.31
Hf 5.2 4.7 5.0 4.8 5.2 5.0
Ta 1.5 1.5 1.5 1.5 1.5 1.4
Pb 1.0 1.1 1.0 1.1 1.1 1.0
Th 1.4 1.4 1.4 1.4 1.4 1.4
U 0.50 0.48 0.48 0.48 0.48 0.47
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Appendix D (Cont.): Measurements of standards by ICP-MS. Legend as in Appendix A.
Standard K-1919 K-1919 K-1919 K-1919 K-1919 K-1919
Lab UH-Element2 UH-Element2 UH-Element2 UH-Element2 UH-Element2 UH-Element2
Date 11/20/2006 11/20/2006 11/20/2006 11/20/2006 11/20/2006 11/20/2006

Li 4.8 4.9 4.9 4.4 4.9 5.0
Sc 37 37 37 33 35 36
Cr 280 276 275 253 272 275
Co 55 55 55 51 54 55
Ni 111 100 110 102 108 109
Cu 158 119 153 146 148 156
Zn 130 107 130 119 118 128
Rb 11 11 11 11 11 11
Sr 444 437 439 412 435 441
Y 31 31 31 29 31 31
Zr 204 191 200 191 210 206
Nb 22 21 22 20 21 22
Cs 0.12 0.12 0.12 0.11 0.12 0.12
Ba 149 148 149 141 147 150
La 17 17 17 16 17 17
Ce 42 42 42 39 41 42
Pr 5.9 5.9 5.9 5.6 5.8 6.0
Nd 27 26 27 25 26 27
Sm 6.6 6.5 6.5 6.2 6.5 6.6
Eu 2.1 2.1 2.1 2.0 2.1 2.1
Gd 6.5 6.5 6.5 6.2 6.4 6.5
Tb 1.0 1.0 1.0 1.0 1.0 1.0
Dy 5.6 5.6 5.6 5.4 5.6 5.7
Ho 1.0 1.0 1.0 1.0 1.0 1.1
Er 2.7 2.6 2.7 2.5 2.6 2.7
Tm 0.38 0.37 0.37 0.36 0.37 0.38
Yb 2.2 2.1 2.1 2.1 2.1 2.2
Lu 0.31 0.30 0.31 0.29 0.30 0.31
Hf 5.0 4.9 5.0 4.7 5.3 5.2
Ta 1.5 1.5 1.5 1.3 1.5 1.5
Pb 1.0 1.0 1.1 1.1
Th 1.4 1.4 1.4 1.3 1.4 1.4
U 0.47 0.48 0.47 0.45 0.47 0.48
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Appendix D (Cont.): Measurements of standards by ICP-MS. Legend as in Appendix A.
Standard K-1919 K-1919 BHVO-1 BIR-1 BCR-2
Lab UH-Element2 UH-Element2 UH-Element2 UH-Element2 WSU
Date 11/20/2006 11/20/2006 11/20/2006 11/20/2006 10/19/2006

Li 4.9 5.0 4.7 3.1
Sc 36 35 32 44 33
Cr 275 273 286 367
Co 55 54 45 50
Ni 109 108 117 164
Cu 154 155 146 115
Zn 128 131 123 64
Rb 11 11 10 1.0 45
Sr 439 440 401 111 334
Y 31 31 28 16 35
Zr 198 199 183 26 172
Nb 21 22 20 0.89 11
Cs 0.12 0.12 0.12 0.02 1.1
Ba 150 151 140 11 673
La 17 17 16 0.76 25
Ce 42 42 39 2.3 53
Pr 6.0 6.0 5.6 0.45 6.9
Nd 27 27 25 2.5 29
Sm 6.6 6.7 6.2 1.1 6.8
Eu 2.1 2.2 2.0 0.51 2.1
Gd 6.6 6.7 6.3 1.8 6.9
Tb 1.0 1.0 1.0 0.36 1.1
Dy 5.7 5.8 5.3 2.5 6.9
Ho 1.0 1.0 1.0 0.56 1.4
Er 2.7 2.7 2.5 1.6 3.8
Tm 0.39 0.38 0.36 0.26 0.54
Yb 2.2 2.2 2.1 1.6 3.3
Lu 0.32 0.31 0.30 0.25 0.51
Hf 4.9 4.9 4.6 0.81 4.9
Ta 1.4 1.4 1.2 0.05 0.78
Pb 1.1 1.0 2.0 4.4 6.0
Th 1.4 1.4 1.3 0.03 11
U 0.47 0.48 0.45 0.01 1.7
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Appendix D (Cont.): Measurements of standards by ICP-MS. Legend as in Appendix A.
Standard BCR-2 AGV-2 AGV-2 BHVO-2 BHVO-2
Lab WSU WSU WSU WSU WSU
Date 10/19/2006 10/19/2006 10/19/2006 10/19/2006 10/19/2006

Sc 33 12 12 31 31
Rb 45 64 64 9 9
Sr 332 632 635 383 382
Y 35 19 19 26 25
Zr 171 211 212 159 157
Nb 11 13 13 17 17
Cs 1.1 1.1 1.1 0.11 0.10
Ba 668 1105 1111 133 130
La 25 38 38 16 15
Ce 52 68 69 38 37
Pr 6.9 8.1 8.2 5.4 5.3
Nd 29 30 30 25 24
Sm 6.7 5.7 5.7 6.3 6.1
Eu 2.1 1.6 1.6 2.2 2.2
Gd 6.9 4.7 4.7 6.4 6.3
Tb 1.1 0.66 0.67 0.99 0.99
Dy 7.1 3.7 3.8 5.7 5.6
Ho 1.4 0.71 0.70 1.1 1.0
Er 3.7 1.8 1.8 2.5 2.5
Tm 0.53 0.26 0.26 0.33 0.33
Yb 3.2 1.5 1.6 1.9 1.9
Lu 0.50 0.24 0.25 0.28 0.28
Hf 5.0 5.1 5.1 4.4 4.3
Ta 0.76 0.81 0.82 1.1 1.1
Pb 6.1 6.2 6.3 1.4 1.3
Th 11 13 13 2.6 2.5
U 1.7 1.9 1.9 0.46 0.43
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