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Abstract

Seamounts are underwater volcanic constructs that form in three tectonic settings:

near-ridge, island-arc, and intraplate environments. While underwater volcanism at

ridges and island-arcs is concentrated along these tectonic boundaries, intraplate vol-

canism is ubiquitous on the seafloor. Locations of seamounts and the lithospheric

deformation they cause provide an important window for Earth scientists seeking

to understand variations in intraplate volcanism through time and space. Here, I

propose a new dense core flexure model that approximates the e↵ect of observed het-

erogeneous internal seamount structures and develop an automated inversion method

to detect and characterize potential seamounts globally from the revised altimetry-

derived vertical gravity gradient (VGG) data. The dense core model is first evaluated

with analytic solutions derived for plate flexure beneath axisymmetric dense core

loads. I confirm that the conventional flexure model with uniform seamount load

underestimates elastic thicknesses of the lithosphere by at least 25% for a given dense

core load. The dense core model is applied to predict lithospheric flexure beneath

Howland Island in the Tokelau seamount chain. After examining synthetic and real

cases, I conclude the dense core model approximates the true mass distribution of a

seamount better than the uniform density model. Next, I approximate VGG anoma-

lies at seamounts as sums of individual, partially over-lapping, elliptical polynomial

functions and form a nonlinear inverse problem that minimizes the misfit between

model and observed VGG data. The automated inversion is guided by two model

selection criteria (i.e., Akaike Information Criteria and F -tests) that examine the sta-

tistical significance of potential seamounts. My global search produced morphology

parameters (i.e., height, geographical location, axes of the basal ellipse, and azimuth

of its major axis) for 24,643 potential seamounts with height � 0.1 km. Considering

the ambiguity of gravity due to small seamounts and the overlap in scale with abyssal
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hills, I have tentatively estimated a new global seamount census of 40,000–55,000

(h � 0.1 km). Finally, I use my new seamount database to estimate the intraplate

volcanic budget and explore how the seamount distribution varies with seafloor prop-

erties such as age, spreading rate, and spreading direction.
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Chapter 1

Introduction

A seamount is traditionally defined as “a more or less isolated elevation of the sea floor

with a circular or elliptical plan, at least 1 km of relief, comparatively steep slopes, and

relatively small summit area” [Menard, 1964]. This traditional height threshold (1

km), chosen to distinguish seamounts from other non-volcanic geologic features (e.g.,

uplifted abyssal hills), has been revised down to 100 m, depending on the resolution

limit of available bathymetry data [e.g., Fornari et al., 1987; Rappaport et al., 1997;

Behn et al., 2004]. Whether small or large, seamounts play an important role in

the accretion processes of oceanic crust and their spatial and temporal distributions

provide crucial information about undersea volcanism and plate kinematics [Wessel,

1997; Koppers & Watts, 2010].

There are three major tectonic environments associated with underwater volcan-

ism: near-ridge, island-arc, and intraplate settings (Figure 1.1). Each tectonic set-

ting exhibits a unique environment for seamount birth and growth. In the near-ridge

setting (Figure 1.1b), seamounts tend to be clustered near transform and fracture

zones, large overlapping spreading centers, and ridge segments elevated by anoma-

lously abundant magma supply [Batiza, 1982; Fornari et al., 1987; Smith & Cann,

1990]. Most seamounts produced in this environment are small (< 1 km high), while

some may continue to grow as they move away with the plate. Such close proximity

of seamounts to active spreading boundaries indicates that the structural controls

and magma supply systems of the ridge environment largely govern the seamounts

formation and growth. Furthermore, the focused distribution of small seamounts im-

plies that the near-ridge underwater volcanism is another important mechanism for

oceanic crust accretion, in addition to the generation of crust by seafloor spreading
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itself. In the island-arc setting (Figure 1.1c), seamounts and volcanic islands form an

arc parallel to the subduction zone, where an oceanic plate subducts beneath the ad-

jacent oceanic plate and produces magma at depth under the overriding plate [Stern,

2002; Tatsumi, 2005].

As such, both near-ridge and island-arc volcanism are genetically linked to partic-

ular tectonic boundaries (i.e., ridges and trenches, respectively). Intraplate volcanism

(Figure 1.1a), however, is a widespread phenomenon within all plates and hence the

spatial distribution of seamounts must be examined carefully to understand the na-

ture of the intraplate volcanism. Multiple mechanisms for intraplate volcanism have

been proposed, including upwelling plumes [Courtillot et al., 2003], small-scale sub-

lithospheric convection [Ballmer et al., 2007], and decompressional melting with litho-

spheric cracking [Forsyth et al., 2006]. Among these tectonic and magmatic causes,

the lithosphere has been recognized as a major factor influencing seamount birth and

growth in intraplate settings [Vogt, 1974; Batiza, 1982; Wessel, 2001; Hillier, 2007].

Watts [1978] showed that the elastic thickness reflects the thermal age of the litho-

sphere at the time of seamount emplacement. The elastic thickness of the lithosphere,

thus, as inferred via plate flexure modeling, has been used for indirect seamount dat-

ing [Watts et al., 2006; Hillier, 2007] because only a small number of seamounts

have been dated radiometrically [Clouard & Bonneville, 2005]. Typically, the flexural

model used to predict elastic thickness estimates approximates the volcanic load as a

simple homogeneous body. In contrast, seismic and geopotential surveys provide un-

equivocal evidence of a dense core within many seamounts [Robertson, 1967; Minshull

& Charvis, 2001; Contreras-Reyes et al., 2010]. Thus, it remains unsettled whether

elastic thicknesses estimated with the simple model may be biased significantly.

In this dissertation, I examine the following hypotheses.

• Seamounts, especially larger ones, have a non-uniform density structure that

can be inferred from flexural and potential field studies.

2



a)

b)

c)

CRUST

MANTLE

LITHOSPHERE

ASTENOSPHERE

HOTSPOT

Figure 1.1: Three major tectonic environments associated with underwater volcanism.
a) Intraplate volcanism over the Hawaii hotspot. A deep-seated plume feeds the active
volcanoes as the plate motion moves the volcanoes away from the hotspot (arrow
indicates current direction of plate motion) and forms a linear chain of islands and
seamounts . b) Near-ridge volcanism at the East Pacific Rise. Excessive magma
is diverted into feeder dikes that sustain seamount formation on ridge flanks. c)
Island-arc volcanism in the Kermadec trench. The magma at depth formed by the
subducting Pacific plate will eventually erupt to form an arc of volcanoes. Modified
from Wessel [2007].
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• Improved altimetry data and search algorithms can detect and characterize all

seamounts � 1 km tall.

• Initial intraplate volcanism makes the lithosphere more susceptible to later vol-

canic overprinting [Hillier, 2007].

• There are simple relationships between seamount locations and the age, spread-

ing rate, and spreading direction of the seafloor.

The above hypotheses are tested and explored in the following chapters. Here, I

briefly introduce the main topics of each chapter.

1.1 Flexure Modeling at Seamounts

In chapter 2, I develop a flexure model that includes a dense core inside an axisym-

metric seamount. Seismic and gravity surveys over several seamounts have revealed

that seamounts (including volcanic islands) do not have a homogeneous density struc-

ture [Ishihara, 1987; Kellogg et al., 1987; Hildebrand et al., 1989b; Contreras-Reyes

et al., 2010]. In flexure modeling, however, such an inhomogeneous body is often ap-

proximated as a homogeneous construct [Lambeck & Nakiboglu, 1980; Kruse et al.,

1997; Ali et al., 2003], which may distort elastic thickness estimates. Although this

possibility has been raised previously [Minshull & Charvis, 2001], no one has investi-

gated in detail the e↵ects of dense cores on the estimation of elastic plate thicknesses.

Therefore, in this chapter, I assess the e↵ects of dense cores on flexure modeling and

develop an e�cient modeling approach, in order to address the following questions:

• Is the uniform density seamount an adequate model or must a dense core be

included?

• What is the e↵ect of a dense core on elastic plate thickness estimates?
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• How accurate are seamount ages inferred from seamount gravity alone?

As a starting point, I find the analytic solutions for disc and parabolic loads

having dense cores and examine the model predictions using various synthetic cases.

I also propose a practical application of the dense core model by constructing a

uniform density load of the same mass as the dense core model. This approximation

allows us to compute the flexural deflection and gravity anomaly of a seamount in the

wavenumber domain and minimize the limitations recognized from the analytic tests.

Finally, the dense core model is applied to predict the lithospheric flexure beneath

Howland Island in the Tokelau seamount chain, showing that the elastic thickness

there is underestimated when the uniform model is employed.

1.2 New Global Seamount Census from Altimetry-

Derived Gravity Data

Statistical studies of seamount distributions have previously relied on counting the

isolated peaks of bathymetric charts [e.g., Batiza, 1982] and have focused mainly on

the mid-ocean ridge environment [e.g., Fornari et al., 1987; Smith & Cann, 1990;

Rappaport et al., 1997]. Because ship soundings cover only a small fraction of the

world’s ocean [Becker et al., 2009], the uniform coverage provided by satellite altime-

try has been a key reason to investigate global seamount distributions using such

remotely-sensed data [e.g., Craig & Sandwell, 1988; Wessel, 1997]. Recently, the

resolution of altimetry-derived gravity data has been improved by a factor of two fol-

lowing a rigorous re-tracking of the original radar altimetry waveforms [Sandwell &

Smith, 2005, 2009]. Therefore, this is a very opportune time to re-evaluate the global

distribution of seamounts using the newly revised satellite-derived vertical gravity

gradient (VGG) data and to explore the wider geophysical significance of seamounts

in reflecting spatial and temporal aspects of intraplate volcanism.
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In Chapter 3, I develop a non-linear inversion method to detect and characterize

seamounts from the new VGG 16.1 data, which reveal more detail of the seafloor

than previous releases. VGG anomalies over seamounts are approximated as sums of

individual, partially over-lapping, elliptical polynomial functions in order to form a

nonlinear inverse problem that minimizes the misfit between the polynomial seamount

model and observed VGG data. In addition, I use two model selection criteria, Akaike

Information Criterion and F -tests, to evaluate statistical significance of potential

seamounts. Then, a step-wise and fully automated inversion is executed to find

potential seamounts globally from the VGG grid; minor manual inspection was then

performed to weed out special cases.

Using the new global seamount database, I address the following questions in

Chapter 3:

• Does the size-frequency distribution of seamounts follow an exponential or

power-law curve? Can such an empirical statistical model predict the “true”

global seamount census?

• Can I reconcile the global seamount distribution from this study with the pre-

vious global studies [Wessel, 2001; Kitchingman & Lai, 2004; Hillier, 2007]?

• Can I automatically separate volcanic ridges from seamounts?

1.3 Seamount Volcanism and Its Modulation by

the Oceanic Lithosphere

In Chapter 4, I make a first-order analysis that compares geometric quantities (e.g.,

height and volume) determined from the new global seamount database with seafloor

age and examines the variation of underwater volcanism since the Upper Jurassic. In

addition, orientations of the basal ellipses of detected seamounts are compared with

6



the spreading directions at the time of seafloor formation in order to examine the

correlation, if any, between seafloor fabric and the orientation of seamounts. Using

the new digital grids of age and spreading rate [Müller et al., 2008], I address the

following questions in Chapter 4:

• How many global pulses in seamount production have been recorded?

• Is the seafloor formed by fast spreading more susceptible to seamount volcanism

than that formed by intermediate and slow spreading?

• Are the orientations of elongated seamounts determined by the pre-existing

seafloor fabrics?
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Chapter 2

Flexure Modeling at Seamounts

This chapter was published as

Kim, S.-S., and P. Wessel (2010), Flexure modelling at seamounts with

dense cores, Geophys. J. Int., 182, 583-598.

The lithospheric response to seamounts and ocean islands has been successfully

described by deformation of an elastic plate induced by a given volcanic load. If the

shape and mass of a seamount are known, the lithospheric flexure due to the seamount

is determined by the thickness of an elastic plate, T

e

, which depends on the load

density and the age of the plate at the time of seamount construction. We can thus

infer important thermo-mechanical properties of the lithosphere from T

e

estimates at

seamounts and their correlation with other geophysical inferences, such as cooling of

the plate. Whereas the bathymetry (i.e., shape) of a seamount is directly observable,

the total mass often requires an assumption of the internal seamount structure. The

conventional approach considers the seamount to have a uniform density (e.g., density

of the crust). This choice, however, tends to bias the total mass acting on an elastic

plate. In this study, I will explore a simple approximation to the seamount’s internal

structure that considers a dense core and a less dense outer edifice. Although the

existence of a core is supported by various gravity and seismic studies, the role of

such volcanic cores in flexure modeling has not been fully addressed. Here, I present

new analytic solutions for plate flexure due to axisymmetric dense core loads and

use them to examine the e↵ects of dense cores in flexure calculations for a variety of

synthetic cases. Comparing analytic solutions with and without a core indicates that

the flexure model with uniform density underestimates T

e

by at least 25%. This bias
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increases when the uniform density is taken to be equal to the crustal density. I also

propose a practical application of the dense core model by constructing a uniform

density load of same mass as the dense core load. This approximation allows me to

compute the flexural deflection and gravity anomaly of a seamount in the wavenumber

domain and minimize the limitations recognized from the analytic tests. Then, the

dense core model is applied to predict the lithospheric flexure beneath Howland Island

in the Tokelau seamount chain; these results are compared with the predictions of the

uniform density model. Based on age dating of Howland and the age of the seafloor,

traditional T

e

vs age curves predict the elastic plate thickness beneath the seamount

to be around 20 km, which is comparable to the best dense core model of T

e

= 26

km. However, the best uniform density model is found at T

e

= 12 km, which is

significantly less than the predicted. From my investigations of synthetic and real

seamount cases, I conclude that the dense core model approximates the true mass

distribution of a seamount better than the uniform density model. Finally, I suggest

that the role of underplating in flexure modeling may need to be reexamined because

the dense core model predicts substantially less deflections than the uniform density

model without requiring additional buoyancy caused by underplated material.

2.1 Introduction

How the lithosphere responds to geologic loads (e.g., ice sheets and seamounts) has

been modeled using an elastic plate that can flex downward to support a given load

[Watts, 2001]. The mechanical behavior of elastic lithosphere is then simply expressed

in terms of the elastic plate thickness, T

e

. Numerous studies have been carried out in

order to understand lithospheric deformation of the oceanic crust, especially beneath

seamounts and ocean islands [e.g., Walcott, 1970; McNutt & Menard, 1978; Watts,

1978; Calmant, 1987; Wolfe & McNutt, 1991; Wessel, 1993; Collier & Watts, 2001;
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Adam & Bonneville, 2008]. As T

e

depends on the age of the oceanic plate at the time

of volcanic construction (�t), the relationship between T

e

and �t has been widely

applied to determine apparent ages of seamounts [e.g., Calmant et al., 1990; Watts

et al., 2006; Hillier, 2007]. In addition, new roles of the lithosphere in influencing the

location of intraplate volcanism [Hillier, 2007] and limiting the growth of seamounts

[Wessel, 2001] have been recently proposed.

T

e

at seamounts can be estimated by di↵erent methods with various geophysical

data [e.g., Wessel, 1996; Ramillien & Mazzega, 1999; Grevemeyer et al., 2001; Adam

& Bonneville, 2008]. However, a uniform seamount density structure is commonly

assumed regardless of modeling approach. This uniform density model simplifies

gravity anomaly prediction by requiring the density of materials inside the flexural

moat and the density of the seamount to be the same (Figures 2.1a and 2.1b). The

gravity anomaly is linearly proportional to the density contrast between two mate-

rials, which becomes constant along each boundary between the di↵erent materials

assumed in the uniform density model. For example, the flexed crust in Figure 2.1a

defines the boundary between the uniform load and the crust with a density contrast

of ⇢

c

� ⇢

l

. If one assumes ⇢

l

= ⇢

c

, this flexed crust boundary is no longer needed

for gravity prediction and hence the modeling becomes further simplified. The pre-

ferred choice for ⇢

l

, thus, has been the oceanic crustal density of 2800 kg m�3 [e.g.,

McNutt & Menard, 1978; Calmant, 1987]. In reality, the flexural moats that flank

seamounts and oceanic islands are filled with a mixture of volcanic, erosional, and

sedimentary materials and hence the peripheral (or moat) materials are less dense

than the seamount itself. If one selects a peripheral density, ⇢

s

, that di↵ers from the

seamount density, ⇢

t

, then the flexed crust boundary exhibits a radial variation of

density contrasts (i.e., ⇢

c

� ⇢

t

beneath the seamount and ⇢

c

� ⇢

s

inside the moat).

Although this two-boundary model (Figure 2.1b) complicates gravity prediction, it is

more realistic than the uniform density model [e.g., Smith et al., 1989; Wessel, 2001].
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Figure 2.1: Various flexure models. (a) Uniform density model assumes all loading
parts have a constant density, ⇢

l

, which can be fixed as the crustal density or deter-
mined by minimizing the misfits. (b) In the two-boundary model [Wessel, 2001], the
peripheral density, ⇢

s

di↵ers from the seamount density, ⇢

t

. (c) Dense core model.
In this study, I separate the seamount body into the outer edifice (with density ⇢

d

)
and the inner core (with density ⇢

a

), which reflect both geological (see Figure 15 in
Staudigel & Schmincke [1984]) and geophysical (see Figure 2 in Minshull & Charvis
[2001]) observations of internal seamount structure.

Many detailed gravity [e.g., Robertson, 1967; Kellogg et al., 1987; Hammer et al.,

1991; Araña et al., 2000; Camacho et al., 2009] and seismic [e.g., Hildebrand et al.,

1989a; Watts et al., 1997; Gallart et al., 1999; Weigel & Grevemeyer, 1999; Kopp et al.,

2004; Contreras-Reyes et al., 2010] surveys have provided evidence of dense cores

inside seamounts and ocean islands. Interestingly, such dense cores have only been

considered when computing gravity anomalies due to the volcanic construct, but not

when estimating the flexural deformation beneath it. Yet, lithospheric deformation

is often modeled by minimizing the di↵erences between the observed and predicted

gravity anomalies. Furthermore, many tools for computing gravity signals due to

arbitrary bodies are available [e.g., Talwani & Ewing, 1960; Nagy, 1966; Plou↵, 1976;

Blakely, 1996], but no methodology has been developed for flexure modeling with a

dense core. There is a possibility that the uniform seamount assumption distorts the

flexure analysis, and may in turn bias the results toward low T

e

estimates [Minshull

& Charvis, 2001]. Exploring such a possibility is long overdue.

In this study, I propose a new dense core seamount model incorporating a core

that is denser than the seamount edifice (Figure 2.1c) and its practical application

11



to predict flexure and gravity at seamounts. For direct comparison between di↵erent

seamount models in Figure 2.1, I first derive analytic solutions for plate flexure due to

axisymmetric dense core loads. Then, I explore the di↵erences between these models

using various synthetic loads and a case study of lithospheric flexure beneath Howland

Island in the northern Tokelau seamount chain.

2.2 Analytic Solutions for Axisymmetric Dense Core

Loads

As a first-order approximation to realistic internal seamount structures [Staudigel

& Schmincke, 1984; Minshull & Charvis, 2001], I first construct axisymmetric disc

and parabolic loads that have dense cores at their centers. Then, following previous

studies [Brotchie & Silvester, 1969; Brotchie, 1971; Lambeck & Nakiboglu, 1980], the

governing equation for the deflection, w(r), of an elastic plate of flexural rigidity, D,

on an inviscid fluid due to an axisymmetric load, q(r), is given as

Dr4

w(r) + ⇢

m

gw(r) = q(r), (2.1)

with

r2 ⌘ d

2

dr

2

+
1

r

d

dr

(2.2)

and

D =
ET

3

e

12(1� ⌫

2)
. (2.3)

The parameters not mentioned in the text are listed in Table 2.1. In eq. (2.1),

the right-hand side is the driving force flexing the elastic plate downward, whereas

the terms on the left-hand side represent the resisting forces arising from the finite

strength of the plate (first term) and the buoyancy of the mantle (second term).
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Through the balance between these forces, geological features achieve isostasy [Watts,

2001].

In order to simplify the derivation, I assume that the dense core has the same

shape as the edifice. The density variations of each part in the dense core disc and

parabolic loads are denoted as the core density, ⇢

a

, the edifice density, ⇢

d

, and the

peripheral density, ⇢

s

, respectively (Figure 2.2a). For further simplification, I assume

that the flexural moat is completely filled only up to the originally undeformed plane

(i.e., the reference level in Figure 2.2a). Also, it is mathematically convenient to

divide the load, q(r), into two components: one above the reference level and the

other between the reference level and the flexed crust (Figure 2.2). To be concise, I

use “surface” for any loading materials above the reference level and “subsurface” for

materials between the reference level and the flexed crust. The amount of subsurface

materials, therefore, becomes a function of the deflection, w(r). In flexure modeling,

however, the term “infill” has been widely used to describe this subsurface material

as it infills the flexed crust [Watts, 2001]. The uniform density model allows the

infill density to di↵er from the density of the topographic feature above the reference

level, however the model still requires a uniform density for the infill material [e.g.,

Hillier, 2007]. Although such separation between the surface and subsurface materials

can lead to better gravity and flexure predictions, it is incongruent with geological

views on seamount growth [Staudigel & Schmincke, 1984; Minshull & Charvis, 2001].

Thus, the subsurface material in the dense core model changes radially from the core

material beneath the core, the edifice material beneath the edifice, and the material

inside the flexural moat (Figure 2.2). This radial change of subsurface load requires me

to divide q(r) into three parts: the first for the radial extent of the core at 0  r  r

a

,

the second only under the edifice at r

a

 r  r

d

, and the third extending beyond the

edge of seamount at r � r

d

(while the uplifted bulge represents yet another domain,

I cannot include it in an analytic solution). The dense core disc and parabolic loads,

13
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Figure 2.2: Axisymmetric dense core loads. (a) Dense core disc load with labels for
the core (⇢

a

), edifice (⇢
d

), peripheral (⇢
s

), water (⇢
w

), and crust (⇢
c

). (b) Dense core
parabolic load with labels for the physical dimensions (i.e., height and radius) of the
core and the edifice. The surface load is the mass above the reference level (thick
solid line) and the subsurface load is the mass between the reference level and the
flexed crust, which depends on flexure, w.
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Table 2.1: Parameters used in flexure and gravity calculations.
Parameter Description Value Unit
⇢

d

Edifice density 2500 kg m�3

⇢

s

Peripheral density 2300 kg m�3

⇢

a

Core density 2900 kg m�3

⇢

m

Mantle density 3300 kg m�3

⇢

c

Crust density 2800 kg m�3

⇢

w

Water density 1000 kg m�3

⌫ Poisson’s ratio 0.25
E Young’s modulus 1011 Pa
g Normal gravity 9.81 m s�2

G Gravitational constant 6.673⇥10�11 m3 kg�1 s�2

q

D

(r) and q

P

(r) respectively, are defined as follows:

q

D

(r) =

8
>>>>>><

>>>>>>:

⇢

a

g[h
a

+ w(r)] + ⇢

d

g(h
d

� h

a

)� ⇢

w

gh

d

0  r  r

a

⇢

d

g[h
d

+ w(r)]� ⇢

w

gh

d

r

a

 r  r

d

,

⇢

s

gw(r) r � r

d

(2.4)

and

q

P

(r) =

8
>>>>>><

>>>>>>:

⇢

a

g[t
a

(r) + w(r)] + ⇢

d

g[t
d

(r)� t

a

(r)]� ⇢

w

gt

d

(r) 0  r  r

a

⇢

d

g[t
d

(r) + w(r)]� ⇢

w

gt

d

(r) r

a

 r  r

d

,

⇢

s

gw(r) r � r

d

(2.5)

with the parabolas of the core and the edifice defined as

t

x

(r) = h

x

(1� r

2

/r

2

x

) {x = a, d}. (2.6)

The heights of the edifice and the core are measured relative to the reference level

(Figure 2.2b).

When the shape of the surface load is relatively simple and axisymmetric, the

homogenous solution to eq. (2.1) becomes a combination of Bessel-Kelvin functions

[Brotchie & Silvester, 1969; Lambeck & Nakiboglu, 1980]. This solution is also valid
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for the dense core loads because both the core and the edifice have the same axisym-

metric shape. By equating eq. (2.1) with eqs. (2.4) and (2.5), I obtain the particular

solutions using the method of undetermined coe�cients. Customarily, the general

solution for a non-homogeneous equation is a sum of the homogeneous and particular

solutions that contain every solution satisfying eq. (2.1) over the interval of interest.

In flexure modeling, the general solution (i.e., deflection) for eq. (2.1) must satisfy

the following boundary conditions for continuity at each boundary, where the loading

material changes (Figure 2.2b):

Condition 1. At r = 0, dw/dr and shear stress are finite.

Condition 2. At r = r

a

, w, dw/dr, bending moments, and shear stresses are contin-

uous.

Condition 3. At r = r

d

, w, dw/dr, bending moments, and shear stresses are contin-

uous.

Condition 4. At infinity, w and dw/dr vanish.

Here, the corresponding axisymmetric bending moments, M(r), and shear stresses,

Q(r), are given by

M(r) = �D

 
d

2

w

dr

2

+ ⌫

1

r

dw

dr

!

(2.7)

and

Q(r) = �D

d

dr

r2

w. (2.8)

With boundary conditions 1 and 4 applied, the analytic solution to eq. (2.1) with

the dense core disc load is reduced to

w

D

(r) =

8
>>>>>><

>>>>>>:

↵[1 + C

1

ber(k
a

r) + C

2

bei(k
a

r)] 0  r  r

a

�[1 + C

3

ber(k
d

r) + C

4

bei(k
d

r) + C

5

ker(k
d

r) + C

6

kei(k
d

r)] r

a

 r  r

d

,

�[C
7

ker(k
s

r) + C

8

kei(k
s

r)] r � r

d

(2.9)
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where

↵ = [h
a

(⇢
a

� ⇢

d

) + h

d

(⇢
d

� ⇢

w

)]/(⇢
m

� ⇢

a

),

� = h

d

(⇢
d

� ⇢

w

)/(⇢
m

� ⇢

d

),
(2.10)

and C

1

– C

8

are non-zero integration constants. Here, ber, bei, ker, and kei are

Bessel-Kelvin functions of zero order [Abramowitz & Stegun, 1970], and k

a

, k

d

, and

k

s

are the radial flexural wave numbers defined as

k

x

=

"
(⇢

m

� ⇢

x

)g

D

#
1/4

{x = a, d, s}. (2.11)

These flexural wave numbers result from the radial change of subsurface material.

The eight arbitrary constants in eq. (2.9) are evaluated numerically by applying

boundary conditions 2 and 3.

Similarly, the analytic solution to eq. (2.1) with the dense core parabolic load is

obtained as

w

P

(r) =

8
>>>>>><

>>>>>>:

⌘[t
a

(r)(⇢
a

� ⇢

d

) + t

d

(r)(⇢
d

� ⇢

w

) + C

1

ber(k
a

r) + C

2

bei(k
a

r)] 0  r  r

a

⇣[t
d

(r) + C

3

ber(k
d

r) + C

4

bei(k
d

r) + C

5

ker(k
d

r) + C

6

kei(k
d

r)] r

a

 r  r

d

,

⇣[C
7

ker(k
s

r) + C

8

kei(k
s

r)] r � r

d

(2.12)

where

⌘ = 1/(⇢
m

� ⇢

a

) (2.13)

and

⇣ = (⇢
d

� ⇢

w

)/(⇢
m

� ⇢

d

). (2.14)

Boundary conditions 2 and 3 are also applied for the numerical determination of C

1

– C

8

. For the sake of minimizing symbols, I keep the same subscript numbers of Cs

in eq. (2.12) as in eq. (2.9), but their values are di↵erent. Although these constants

can be evaluated analytically, the analytic solutions become arduous and it is simpler
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Figure 2.3: Large dense core loads on an elastic plate of T

e

= 20 km. Analytic
deflections due to the dense core (a) disc and (c) parabolic loads are compared with
the numerical deflections of Bodine [1980]. The arrows in (a) and (c) indicate the
expected Airy-type flexural response for the applied dense core loads. (b) and (d) are
the di↵erences between the analytic and Bodine solutions and show a good agreement.

to assess them numerically.

I verify the analytic solutions for plate flexure due to the dense core loads in three

di↵erent ways. First, a case of no core (i.e., ⇢

a

= ⇢

d

) is considered. Then, eqs. (2.9)

and (2.12) must be equal to the solutions of Lambeck & Nakiboglu [1980]. With

no core, the first boundary in the dense core load presents no change in parameters

and hence the analytic solution for the first boundary condition is not needed. While

boundary condition 1 requires C

5

and C

6

to be zero, boundary condition 3 is necessary

to determine the other constants. Therefore, I obtain the same solutions as Lambeck

& Nakiboglu [1980]. This verification proves that my derivation is correct.

Second, when the surface load is very large (r
d

> 500 km), the lithosphere becomes

very weak compared to the given load and exhibits an Airy-type flexural response

regardless of elastic plate thickness [Watts, 2001]. In an Airy-type flexural response,
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the maximum deflection directly underneath the dense core loads in Figure (2.2)

becomes linearly proportional to the mass balance between the surface loads (i.e., the

core and the edifice) and the portion of the mantle displaced by the core; it is 17

km for the given dense core loads. To examine if my analytic solutions satisfy this

simple physics, I increase only the radii of the edifice and the core and fix all other

parameters including T

e

as in Figure 2.2; the core radius is half the edifice radius.

From Figures 2.3a and 2.3c, I find that both analytic solutions result in the expected

value. The stair-case feature in Figure 2.3a occurs because the edifice itself is large

enough to attain its own Airy-type flexural response.

Last, I compare the analytic solutions directly with the numerical solution of

Bodine [1980] using the dense core loads in Figure 2.3. For the Bodine solution, the

surface load is approximated by stacking the edifice and the core together so that

the total mass of the stacked parts is equal to that of the dense core load above the

reference level. In addition, the Bodine solution is adapted to include the subsurface

material changes at r = r

a

and r = r

d

. Both the analytic and Bodine solutions

are constrained by the boundary conditions listed above. Figures 2.3b and 2.3d

show the remainders after subtracting the numerically calculated deflections from the

analytical ones. Except the minimal di↵erences (< 10�4), both solutions exhibit a

good agreement. Therefore, I conclude that the analytic solutions for plate flexure

derived with the axisymmetric dense core loads are valid. Next, I will explore how

the dense core model di↵ers from the uniform density model when used to predict

deflections and the gravity anomalies using various synthetic data.
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2.3 Flexure and Gravity Calculations with a Dense

Core Load

2.3.1 Flexure modeling with a dense core load

The total mass of a uniform density load (i.e., the driving force) depends mainly on

the choice of density. Although the detailed internal structure of seamounts can be

constrained by, or inferred from, other data (e.g., seismic data), the load density, ⇢

l

,

has often been presumed to equal the crustal density (i.e., Figure 2.1a with ⇢

l

= ⇢

c

).

However, this choice tends to overestimate the driving force. For example, if I compare

the dense core parabolic load in Figure 2.2b with a uniform parabolic load of same

size and of crustal density, the mass above the reference level for the latter becomes

40% heavier than that for the former. Because of the overestimated mass, the uniform

density model results in more flexure relative to the dense core model for the same T

e

.

If we consider the parabolic seamount (i.e., bathymetry) in Figure 2.2b and the flexure

produced by the dense core load as the observed data, the uniform density model

requires a thicker elastic plate (larger T

e

) in order to compensate for the overestimated

load [Minshull & Charvis, 2001]. Therefore, a careful consideration of the load density

is necessary to prevent overestimating the driving force.

Rather than adjusting the load density alone [Minshull & Charvis, 2001], the load

overestimation can be mitigated by lowering the peripheral density relative to the

seamount density (Figure 2.1b). For instance, Wessel [2001] used a realistic peripheral

density (⇢
s

= 2300 kg m�3) with a constant seamount density (⇢
t

= 2800 kg m�3).

I compare this two-boundary model with the dense core and uniform density models

for a range of parabolic loads and elastic plate thicknesses. For this comparison, the

crustal density is used for the load density. Figure 2.4 shows the maximum deflections

obtained beneath the center of a given load as a function of parabolic seamount height

(i.e., h

d

). The edifice radius is determined by an empirical relationship between the
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height and radius of typical seamounts, i.e., r

d

= 4.5h
d

[Wessel, 2001]. The height and

radius of the core are set to be half of those of the edifice, which is my conservative

choice based on the previous studies [e.g., Robertson, 1967; Kellogg et al., 1987;

Gallart et al., 1999; Weigel & Grevemeyer, 1999]. As Wessel [2001] pointed out, the

two-boundary model (thick solid lines in Figure 2.4) produces less deflection than

the uniform model (dashed lines in 2.4). However, the two-boundary model predicts

more deflections than the dense core model (dotted lines in Figure 2.4) simply because

the seamount of the two-boundary model is heavier than the dense core seamount

(Figures 2.1b and 2.1c). The discrepancy between the two-boundary and dense core

models increases when the parabolic seamount grows large. For smaller seamounts

(Figure 2.4a) and thicker plates (Figure 2.4b), the di↵erences between the above three

models become negligible because the elastic plate is strong enough to support most

of the applied loads.

In addition, I examine a uniform load with a load density, 2600 kg m�3, which is

the average of the densities used in the dense core model (thin solid lines in Figure

2.4). Because the average density is estimated by taking into account the volumes

of the edifice and the core of the examined parabolic seamounts, the surface mass

of the “average” density load is the same as that of the dense core load. However,

this uniform case approximates closely the dense core model only for smaller parabolic

seamounts (h
d

< 3 km) on the thinnest plate (T
e

= 1 km). As the parabolic seamount

grows on the thinnest plate, the average density load produces significantly less flexure

than the dense core load. Although the total mass and volume of the surface load are

the same for both the average density and dense core loads, the dense core load is less

equally distributed than the average density load. In other words, the dense core load

becomes heavier than the average density load at the axis of the parabolic seamount,

where the core material is concentrated. The di↵erence between the subsurface loads

of these two models also contributes to the di↵erent flexure predictions, because the
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Figure 2.4: Maximum deflections for various parabolic seamounts. (a) Elastic plates
thinner than 10 km. (b) Elastic plates thicker than 10 km. The dashed lines are for
the uniform density model, the thick solid lines for the two-boundary model [Wessel,
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dense core model infills the flexure with heavier materials than the uniform density

model with the average density. For other cases (T
e

> 4 km), it falls between the

predictions of the uniform model with the crustal density and the two-boundary

model.

It is self-evident that the uniform density load with the crustal density is heavier

than the dense core load because di↵erent densities are used for each loading part.

If surface mass and peripheral density are the same for both flexure models, would

the predicted flexure di↵er? In Figure 2.5, the surface mass of the dense core disc

load is equated with the stacked uniform discs of the edifice density. For a simple

comparison, the peripheral density is equal to the edifice density. The disc placed

on top of the edifice disc has the same mass as the core above the reference level

(Figure 2.5b). Figure 2.5c shows relatively insignificant di↵erences between the de-

flections caused by the stacked uniform density discs and the dense core disc. The

dense core model results in slightly larger deflections because the core material is

assumed to extend down to the flexed crust and hence acts as an extra driving force.

The di↵erence between these models, however, increases when a realistic peripheral

density is considered [Wessel, 2001], as examined above. This particular test illus-

trates that the surface mass is the largest contributor to flexural deformation of the

plate [Menke, 1981]. However, constraining surface mass is complicated and requires

gravity modeling, as discussed in the following section.

2.3.2 Flexure modeling with gravity data

I have shown above that the uniform density model tends to overestimate flexural

deformation (Figure 2.4). Such bias, however, needs to be examined in light of the

gravity prediction because free-air gravity and geoid anomalies are the most widely

available data that are sensitive to both surface load and lithospheric flexure [Watts,

2001]. Using the Fourier transform approach of Parker [1972], I derive the gravity
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a
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between the predicted deflections obtained by subtracting the stacked disc model
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anomaly for a dense core load as a sum of the following attractions due to the edifice

(first term), the core (second term), the subsurface materials between the reference

level and the flexed crust (third term), and the Moho topography determined by the

flexure (fourth term):

F [�g] = 2⇡G exp(�|k|d)
1X

n=1

|k|n�1

n!

8
>>>>>><

>>>>>>:

(⇢
d

� ⇢

w

)F [hn

d

(r)]

+(⇢
a

� ⇢

d

)F [hn

a

(r)] + F [�⇢

i

(r)wn(r)]

+ exp(�|k|t)(⇢
m

� ⇢

c

)F [wn(r)]

9
>>>>>>=

>>>>>>;

,

(2.15)

where k is the wavenumber vector, r = (x, y) is the position vector in space, d is

the regional depth to the seafloor, t is the thickness of the oceanic crust, G is the

gravitational constant, and F is the two-dimensional Fourier transform of the given

layers of the edifice h

d

(r), the core h

a

(r), and the flexure w(r). Here, n accounts for

the linear (n = 1) and non-linear higher-order terms in eq. (2.15) and �⇢

i

(r) in the
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Figure 2.6: Flexure modeling using the gravity anomaly calculated from the dense
core parabolic load of Figure 2.2b as the true data. (a) The root-mean-square (RMS)
di↵erence between the true and predicted gravity using the uniform density model.
The free-air gravity anomalies over the parabolic seamount placed on the plate of
T

e

= 20 km are assumed to be the true data. (b) Residual gravity anomaly by
subtracting the predicted gravity by the uniform density model from the true data.
(c) Comparison between the true and predicted flexures by the uniform density model.

third term denotes the lateral variation in density contrast between the subsurface

(i.e., infill) materials and the flexed crust (e.g., it becomes (⇢
c

� ⇢

a

) beneath the

core). If the uniform density model uses the crustal density, then eq. (2.15) is

simplified because the second and third terms cancel. If the load density is di↵erent

from the crustal density, the third term of eq. (2.15), with the spatially invariant

density contrast, �⇢

i

(r) = ⇢

c

� ⇢

l

, is necessary for the gravity calculation. Because

this uniform model has been used most commonly in previous flexure studies [e.g.,

Watts et al., 1975; Calmant, 1987; Smith et al., 1989; Ito et al., 1995; Lyons et al.,

2000; Adam & Bonneville, 2008], my comparisons focus on di↵erences in the best T

e

estimated by the dense core and uniform density models constrained by gravity data.

For a simple comparison using synthetic data, I assumed that the dense core

parabolic load of Figure 2.2b is the observed seamount structure. Other key parame-

ters for gravity calculation were a regional water depth of 5 km and a crustal thickness
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of 7 km. With the density parameters as listed in Table 1, the flexural depression

for T

e

= 20 km was calculated analytically using eq. (2.12); this is what I define as

the “true” flexure model. To optimize the speed and accuracy of the Fast Fourier

Transform (FFT), a square grid of 512 by 512 nodes was used for all calculations in

eq. (2.15); this resulted in the true gravity anomaly over the parabolic seamount.

The deflections due to the uniform density loads were estimated analytically using

the solution of Lambeck & Nakiboglu [1980]. Then, the root-mean-square (RMS)

misfits between the predicted gravity anomaly using the uniform density model and

the observed data were computed for a range of elastic thicknesses and load densi-

ties. I kept up to the fifth-order term of Parker’s expansion for calculating both the

observed and predicted gravity anomalies.

This exercise shows that the uniform density model underestimates T

e

when mod-

eling is constrained by gravity data. The best T

e

value of the uniform density model

(Figure 2.6a; square and dashed lines) is 25% less than the true model (Figure 2.6a;

arrow). The overestimated surface mass of the uniform density model adds an ex-

cessive positive contribution to the gravity prediction, which is counteracted by a

negative contribution from the more flexed crust. As such, flexure modeling with

gravity data seeks the best trade-o↵ between the positive gravitational contribution

of the seamount and the negative e↵ect of the flexed crust. This trade-o↵, which is

presented in Figure 2.6c, shows that the uniform density model results in larger de-

flections than the true flexure. However, Figure 2.6b shows disturbingly insignificant

di↵erences between the true and predicted gravity anomalies with the best uniform

density model, reflecting the non-unique nature of gravity modeling [Al-Chalabi, 1971;

Blakely, 1996]. In other words, the same gravity signal can be produced by two dif-

ferent geological structures as the uniform density model predicts a gravity signal

relatively similar to the true data despite a heavier load density, underestimated T

e

(Figure 2.6a), and overestimated flexural deformation (Figure 2.6c).
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In addition, Figure 2.6b shows that the dense core model predicts positive gravity

contributions from both the surface and subsurface core materials, while the uni-

form density model is a↵ected by the negative contribution from the subsurface load

material. This is manifested as a positive di↵erence over the summit; however, di↵er-

ences due to peripheral densities are less distinct in this comparison. Such detailed

di↵erences are likely to be masked by noise in real gravity data over seamounts.

In order to make general comments about the biases observed in flexure modeling

using gravity data, I repeated the above exercise for a range of elastic thicknesses.

The dense core parabolic load in Figure 2.2b was again regarded as the observed

seamount structure. By placing this parabolic seamount on various elastic plates, I

calculated the true gravity anomaly for a given true T

e

and then determined the best

T

e

and ⇢

l

for the uniform density model that minimized the RMS misfits (green lines

in Figure 2.7). Because many previous T

e

estimates were obtained with ⇢

l

= ⇢

c

, I

also found the best T

e

when the load density was set to the crustal density (orange

line in Figure 2.7a). Upper and lower bounds of these T

e

estimates (shaded areas in

Figure 2.7a) were obtained at a 5% tolerance level from the minimum RMS [Watts

et al., 2006], but sampled along ⇢

c

and best ⇢

l

. Therefore, this uncertainty bound is

narrower than that of a 5% uncertainty ellipse.

If there were no shortcomings in the flexure modeling with the uniform density

model, the predicted T

e

values should follow the dashed 1:1 line in Figure 2.7a. In-

stead, I observe a significant underestimation of T

e

, as was also found by Minshull

& Charvis [2001]. For thin elastic plates (T
e

< 10 km), the uniform density model

with the crustal density predicts T

e

close to the true model. This is also reflected

in Figure 2.7b because the uniform density model with variable load density mini-

mizes the misfits with a higher load density for thinner plates. However, the best

load density determined by RMS minimization is too large so that the amount of the

flexure is significantly overestimated (e.g., Figure 2.6c). In gravity computation, the
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uniform density model with variable ⇢

l

still achieves a balance between the gravity

contributions from the load and the flexed crust, but results in largely underestimated

T

e

relative to the uniform density model with ⇢

l

= ⇢

c

.

For strong elastic plates, the underestimation of T

e

by the uniform density model

with ⇢

l

= ⇢

c

exacerbates further. Because the surface load is fixed and overestimated,

the only way to o↵set the extra positive gravity signals and minimize the misfits is

to decrease T

e

(Figure 2.7a). The uniform density model with variable ⇢

l

, however,

reduces the load density gradually to produce better gravity fits (Figure 2.7b) and

results in better T

e

estimates. Figure 2.7b shows that a ⇠100 kg m�3 reduction from

the typical crustal density (2800 kg m�3) reduces the underestimation of T

e

signifi-

cantly. In addition, this indicates that the role of load density in flexure modeling is

more important for seamounts on strong elastic plates.

2.3.3 Flexure modeling with arbitrary dense core loads

In the preceding discussions, I have dealt with synthetic examples using axisymmet-

ric disc and parabolic seamounts, which may in some cases approximate the actual

seamount bathymetry [e.g., Lambeck, 1981a]. However, such idealized loads are not

always adequate for contemporary geophysical studies that utilize high-resolution

gridded bathymetry at seamounts. In this respect, the greatest advantage the uni-

form density model a↵ords in the flexure and gravity calculations lies in the simplicity

of the flexural response function [Watts, 2001]:

�(k) =
⇣
1 + k4

/k

l

⌘�1

. (2.16)
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with k

l

defined by eq. (2.11) with x = l. The lithospheric flexure due to any given

shape of topography, h

l

, is calculated in the wavenumber domain by

F [w(r)] =
⇢

l

� ⇢

w

⇢

m

� ⇢

l

F [h
l

(r)]�(k). (2.17)

Calculation of flexure using eq. (2.17) is fast and reliable. However, I cannot adapt

eq. (2.17) directly for the dense core model to make use of an actual bathymetry grid,

because eq. (2.16) requires a constant k

l

. From the preceding comparisons, I find that

the surface mass plays a more important role in flexure modeling than changes to the

density of subsurface materials. Also, Menke [1981] proved analytically that a point

load equivalent to a distributed load does not alter the amplitude and wavelength of

flexure. Therefore, I circumvent the inherent limitation of the dense core model by

constructing a uniform load of peripheral density that is equivalent to the sum of the

surface core and edifice loads:

h

e

(r) =
⇢

d

� ⇢

w

⇢

s

� ⇢

w

h

d

(r) +
⇢

a

� ⇢

d

⇢

s

� ⇢

w

h

a

(r). (2.18)

While this modification allows me to use eq. (2.16), it underestimates the amplitude

relative to the analytic solutions because the subsurface materials beneath the edi-

fice and the core are now replaced with less dense peripheral material. Comparison

of maximum amplitudes calculated using this equivalent load, h

e

(r), with the exact

dense core model indicates that such biases are generally less than 10% and increase

only when the atypical situations of large seamounts on thin elastic plates are con-

sidered. I thus utilize eq. (2.18) to approximate the dense core surface load and

calculate lithospheric flexure from the equivalent load, while the gravity calculation

is obtained by eq. (2.15). In the following, I demonstrate a practical use of the dense

core model for Howland Island in the Pacific and examine if the bias inherent in the

uniform density model discussed above is noticeable when analyzing real data.
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Figure 2.8: Observed geophysical data near Howland Island. (a) SRTM30+
bathymetry [Becker et al., 2009]. (b) Satellite-derived free-air gravity version 18.1
[Sandwell & Smith, 2009]. (c) Weighting function used for the regional-residual sep-
aration and RMS estimates for the flexure modeling in order to emphasize Howland.
The depth contours of 1 km interval are overlaid.

2.4 Case Study: Howland Island

Detailed geophysical and geochemical mapping of the Tokelau seamount chain was

carried out by R/V Melville in 1999 [Koppers & Staudigel, 2005]. Howland Island is

situated on a 127 ± 1 Ma oceanic plate at the northern end of this trail [Müller et al.,

2008], and its formation age is 72.3 ± 2.7 Ma [Koppers et al., 2007]. The shipboard

depth measurements along the Tokelau chain can be downloaded from the Seamount

Catalog at the EarthRef.org. However, I utilize SRTM30 PLUS V5.0 [Becker et al.,

2009] for flexure modeling because it provides complete data coverage in the vicinity

of Howland by blending the same ship data and the predicted bathymetry [Smith

& Sandwell, 1997]. From the previous 40Ar/39Ar study [Koppers et al., 2007], the

predicted elastic plate thickness beneath Howland is 20 ± 2 km using the empirical

relationship of Calmant et al. [1990] that closely follows the 400 oC isotherm. By ap-

plying both the dense core and uniform density models to Howland, I will di↵erentiate

between these two models.

For the synthetic loads (Figure 2.2), a constant depth was su�cient to define the
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reference level. Such a choice for actual bathymetry data, however, can misrepresent

the reference level and in turn bias the surface load, because a single (e.g., average)

depth overlooks bathymetry variations of other geological phenomena, such as swells

and the thermal subsidence of the plate. I thus performed a regional-residual sepa-

ration of the bathymetry around Howland using directional median (DiM) filtering,

in order to estimate the reference plane that defines the surface load [Wessel, 1998;

Kim & Wessel, 2008]. To determine the best filter width for an e↵ective separation, I

followed the optimal robust separation (ORS) technique [Wessel, 1998]. I explored a

range of filter widths to determine a width that maximized the ratio of the volume to

the area of the residual bathymetry. In this study, however, the ratio was computed

from a weighted residual bathymetry (Figure 2.8c) so that the separation could be

optimized near Howland. The data domain for DiM-based filtering was extended by

about 2o in all directions from Figure 2.8a in order to avoid possible edge e↵ects

of the filtering. Because the background seemed very gentle, I chose four sectors

for the DiM filtering and smoothed the DiM-filtered results using a spatial median

filter with 40 km filter width. The ratio was estimated for a range of filter widths

and maximized for a 100 km filter width [see Kim & Wessel [2008] for details]. The

Howland surface load (i.e., the residual), therefore, was obtained by subtracting the

DiM-filtered bathymetry from the observed data (Figure 2.9a).

Although there is no available data (e.g., seismic refraction profiles) indicating

the existence of a core inside Howland, I can infer from previous studies [e.g., Watts

et al., 1997; Araña et al., 2000; Minshull & Charvis, 2001; Kopp et al., 2004; Camacho

et al., 2009; Contreras-Reyes et al., 2010] that the core is similar in shape to the

seamount edifice. O’Higgins [Kopp et al., 2004] and La Reunion [Gallart et al., 1999],

for example both have edifices with low P wave velocity (⇠3-4 km s�1) and core

structures outlined by ⇠5 km s�1. However, Great Meteor [Weigel & Grevemeyer,

1999] and Louisville Guyot [Contreras-Reyes et al., 2010] show higher P velocities for
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the edifice (⇠5 km s�1) and the core (⇠6.5 km s�1). Thus, I consider the dense core

to be correlated with a range of P velocities (i.e., 5-6.5 km s�1), which separates the

core from the volcanic edifice. In addition, the observed cores are generally about

1 to 2 km below the outer edifice. With extrapolation from these observed cases,

I constructed a possible core for Howland by subtracting 2 km from the residual

and only keeping positive values (Figure 2.9c; dashed line). Then, the equivalent

load (Figure 2.9b) of the peripheral density was obtained by eq. (2.18) and used to

compute flexure for various elastic thicknesses.

For the gravity calculation, the regional depth, d = 5.4 km, was taken from the

mean depth of the regional bathymetry. The thickness of the oceanic crust, t, was

6.5 km and the densities of the water, the crust, and the mantle were 1030, 2900,

and 3330 kg m�3, respectively [Lambeck, 1981b; Adam & Bonneville, 2008]. For the

dense core model, the densities for the core, the edifice, and the moat were the same

as those I used in the previous flexure calculation (listed in Table 1), assuming that

the core and the edifice of Howland are similar to those of Great Meteor [Weigel

& Grevemeyer, 1999]. The layers of the core, the edifice, and the flexure predicted

with the equivalent load were used to calculate the spatial variation of the subsurface

materials needed for the third term in eq. (2.15). Then, the gravity anomalies due

to the core, the edifice, and the subsurface were summed. For the uniform density

model, I computed flexure for a range of load densities and elastic plate thicknesses

using the residual bathymetry. For both models, however, the regional bathymetry

(i.e., the DiM-filtered data) was added back to both the residual and predicted flexure

before the gravity calculation so that the predicted gravity can exhibit regional gravity

components similar to the observed.

The flexure and gravity computations were carried out with all features inside

the domain; however, the RMS misfits were computed from the weighted di↵erence

[Watts et al., 2006] between the predicted and the satellite-derived gravity data of
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version 18.1 [Sandwell & Smith, 2009]. The lower resolution of the satellite-derived

gravity (compared to shipboard measurements) typically manifests itself as lower

amplitudes over short-wavelength features like seamounts. For example, Watts et al.

[2006] showed that the satellite-derived data of version 14.2 only recovered n = 1 over

Wahoo Guyot. Because of the improved resolution for short-wavelength features in

the gravity data of version 18.1, however, setting n = 2 in eq. (2.15) was necessary

to recover a comparable amplitude of the predicted signals to that of the observed

data [Marks & Smith, 2007]. In particular, the peak amplitude at Wahoo Guyot is

amplified from ⇠55 mGal (version 14.2) to ⇠82 mGal (version 18.1).

The uniform density model minimizes the RMS misfits at T

e

= 12 km (Figure

2.10a), which is substantially less than the predicted thickness based on the age data.

The upper and lower bounds of the uniform density model prediction were estimated

at a 5% tolerance level from the RMS minimum and determined along the best load

35



density (see Figure 2.12). In contrast, the dense core model is minimized at T

e

=

26 km (Figure 2.10e). However, the changes in the RMS misfits from this global

minimum are subtle (< 0.01 mGal) so that the upper bound of the best dense core

model is unresolved (Figure 2.12; question mark).

The di↵erence in T

e

estimates between the uniform density and dense core models

is most apparent in the predicted deflections of Figures 2.10b and 2.10f. As the uni-

form density model favors a thin plate and a typical crustal density (Figure 2.10a),

it predicts more flexural deflections than the dense core model. This overestimated

flexure increases southward toward Baker Island. However, the gravity anomaly pre-

dicted by the uniform density model (Figure 2.10c) is generally more comparable with

the observed data (Figure 2.8b) than that of the dense core model, especially if we

consider the location of the zero contour between the Howard and Baker Islands. This

zero contour is not apparent in the predicted gravity by the dense core model (Figure

2.10g). In Figure 2.10d, however, the uniform density model shows large negative

residual anomalies over Baker. This indicates that the best uniform density model

for Howland is not adequate for Baker. Although my computation excluded Baker by

using an weight function centered on Howland (Figure 2.8c), such negative residuals

are large enough to suspect that the uniform density model might decrease T

e

even

more if both islands were included in flexure modeling. The dense core model instead

exhibits a broad negative anomaly between two islands, where the zero contour is

observed (Figure 2.10f).

In Figure 2.11a, the comparison of the predicted gravity anomalies for the dense

core (dotted line) and uniform density (dashed line) models along profile AB of Figure

2.9a shows that both predictions generally agree with the observed data. While the

best load density of the uniform density model is dense enough to overshoot the peak

of the observed anomaly, the dense core model predicts less than the peak because the

densities of the core and the edifice are fixed during calculation. As demonstrated
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analytically in the preceding examples, the uniform density model predicts larger

deflections beneath Howland than the dense core model does (Figure 2.11b).

Watts [1978] first showed the correlation between the modeled elastic thicknesses

beneath seamounts and the depth to the 450 oC ± 150 oC isotherm of the plate cooling

model [Parsons & Sclater, 1977]. Such relationships have been consistently supported

by many subsequent studies [e.g., Calmant, 1987; Kruse et al., 1997; Watts et al.,

2006] and used as a proxy for age prediction of either plate or seamount [Calmant

et al., 1990]. In addition, any outliers from this trend (i.e., elastic plates anomalously

thinner than expected) have been the focus of many controversies and have invoked

proposals of other additional geodynamic processes, including lithospheric thinning

[Crough, 1983], lithospheric reheating [McNutt, 1984], and small-scale convection

[Dalloubeix & Fleitout, 1989] to explain such anomalously thin plates.

I compare the elastic thickness estimates for Howland with the plate cooling model

of Parsons & Sclater [1977] in Figure 2.12, which includes also the age prediction

curve (dotted line) of Calmant et al. [1990]. The estimate of the uniform density

model is above the 300 oC isotherm, while that of the dense core model is close to the

500 oC isotherm. The underestimation of the uniform density model, thus, is man-

ifested by a thinner T

e

prediction that is consistently observed from the preceding

synthetic examples. Because the previously proposed correlation between T

e

and age

at seamounts are based on the uniform density model estimates, the dense core model

prediction does not follow the age prediction curve described by the 400 oC isotherm

[Calmant, 1987]. In addition, the significant disparity between the T

e

estimates be-

neath seamounts and those obtained at trenches and fracture zones have suggested

that the former predictions are systematically underestimated [e.g., McNutt, 1984;

Wessel, 1992]. Therefore, it is noteworthy that the dense core model with a thicker

plate can account for the gravity anomaly at Howland (Figures 2.10 and 2.11) and

follows a hotter isotherm (Figure 2.12). This result is in agreement with findings from
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flexural studies at fracture zones and trenches, without needing additional reheating

mechanisms to reset the thermal age of the lithosphere.

2.5 Concluding Remarks

I have demonstrated how the uniform density model underestimates T

e

and overesti-

mates deflections using various synthetic and real examples. When flexure modeling

is constrained by gravity data alone, such biases are often concealed because the pre-
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dicted gravity with distorted T

e

and deflections can nevertheless be the best fit for

the observed data. This non-uniqueness of solutions to the gravity field can be cir-

cumvented by using additional observations (e.g., seismic profiles) or mitigated by a

more rigorous analysis. In this study, I have shown that the inclusion of a dense core

is important when approximating the first-order inhomogeneous internal seamount

structure. Thus, the dense core model appears to be more suitable for investigating

the thermal and mechanical properties of the oceanic lithosphere.

My study does not imply that all published T

e

estimates are underestimated.

However, some of them could be biased to some degree simply because of the load

density used in the flexure modeling. The flexural studies on Tenerife in the Canary

Islands are such a case. Watts et al. [1997] predicted the elastic thickness beneath

Tenerife to be 20 km, which was 10 km less than the expected thickness based on the

dated rock samples. Later, Collier & Watts [2001] revised the flexure model by reduc-

ing the load density and obtained the expected elastic thickness. Another important

factor is the quality of the bathymetry and gravity data around seamounts of inter-

est. For example, Lambeck [1981b] computed analytically the flexural deformation of

the lithosphere beneath the Cook Islands by approximating the topographic features

as the stacks of uniform density discs. Although he used a load density less than

the crustal density and included a core in his calculation, his T

e

estimates were the

same as the study of Calmant & Cazenave [1986] who used the crustal density as the

load density. Because both studies relied on a few SEASAT altimetry tracks and had

poor bathymetric constraints (e.g., SYNBAPS [Van Wyckhouse, 1973]), the careful

details of the modeling space incorporated by Lambeck [1981b] were not e↵ectively

propagated into the solution space.

Finally, I consider underplating beneath large seamounts or ocean islands that

is quite commonly observed seismically [e.g., Weigel & Grevemeyer, 1999; Ali et al.,

2003]. In flexure modeling, the role of underplating is to reduce the total flexural
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depressions because lighter underplated material adds to the buoyancy and hence

works against the surface load. This process, in particular, is necessary for the uni-

form density model in order to compensate for the overestimated deflections so that

a modeler can achieve a better fit between the predicted and observed flexure. How-

ever, for such sizable volcanoes, I can presume the existence of a dense core as a

constructional feature. If the dense core model alone can predict the flexed crust,

then the sub-surface load due to underplating becomes less important in calculating

deflections; however, its contribution to the gravity anomaly will remain. Therefore,

I suggest the role of underplating in flexure modeling may need to be reassessed with

a dense core model.
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Chapter 3

New Global Seamount Census from

Altimetry-Derived Gravity Data

I have developed a non-linear inversion method to detect seamounts in the satellite-

derived vertical gravity gradient (VGG) data; a recent revision to the VGG data

reveals more detail of the ocean bottom than previous datasets. I approximate VGG

anomalies over seamounts as sums of individual, partially over-lapping, elliptical poly-

nomial functions, which allows me to form a nonlinear inverse problem by fitting the

polynomial model to the observed VGG data. The model parameters for a potential

seamount include the geographical location, peak VGG amplitude, major and minor

axes of the elliptical base, and the azimuth of the major axis. The nonlinear inversion

is very sensitive to the initial values for the location and amplitude; hence, they are

constrained by the center and amplitude of the uppermost contours obtained with a

1-Eötvös contour interval. With these initial conditions from contouring, I execute

my step-wise and fully automated inversion and obtain optimal model estimates for

the potential seamounts; these are statistically evaluated for significance using the

Akaike Information Criterion and F -tests. A logarithmic barrier technique is applied

to ensure positivity of all seamount amplitudes. After automatic and manual inspec-

tions of the model parameters determined by the inversion, I estimate actual heights

and basal ellipses of the inspected potential seamounts directly from the predicted

bathymetry grid. A total of 24,643 potential seamounts (h � 0.1 km) globally are

characterized in this study. Although this number is significantly lower than predic-

tions from previous studies, a first-order reconciliation of the size-frequency statistics
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obtained from those studies reveals that the previous counts are systematically over-

estimated. Because of the ambiguity of gravity signals due to small seamounts of h <

1 km and the overlap with abyssal hills, I tentatively estimate the global seamount

census to lie in the 40,000–55,000 range.

3.1 Introduction

Despite considerable post-World-War-II investments in ocean exploration [e.g., Chan-

dler & Wessel, 2008], vast areas of the ocean floor (e.g., 90% at 1 minute resolution

[Becker et al., 2009] or 70% at 5 minute resolution [Wessel & Chandler, 2010]) remain

uncharted by surface ships. Given cost estimates of ⇠1010 USD for a complete map-

ping with high-resolution multi-beam shipboard measurements [Vogt & Jung, 2000],

a global coverage of the Earth’s underwater landscape at ⇠100 m resolution seems

highly unlikely for the foreseeable future. Yet, at the more modest resolution of ⇠5-10

km, an alternative approach to studying the ocean bottom is available: sea-surface

height measurements from orbiting satellites record spatial changes in the gravita-

tional field caused by the density contrast between water and bathymetric features.

A global gravimetric view of the sea floor, thus, becomes accessible through satellite-

derived gravity data [Haxby et al., 1983; Sandwell & Smith, 1997]. This marine gravity

anomaly dataset has provided uniform and dense data coverage over all oceans and

has enabled researchers to investigate both remote bathymetric features unexplored

by oceangoing expeditions [e.g., Mammerickx, 1992; Small & Sandwell, 1994] as well

as large-scale deep-seated geophysical phenomena [e.g., Haxby & Weissel, 1986].

Traditionally, seamounts have been defined as isolated, extinct or active underwa-

ter volcanoes rising more than 1 km above the surrounding seafloor [Menard, 1964].

Given rapid advances in marine technologies, this height limit has been adjusted to

include volcanic constructs with heights as low as 50–100 m [e.g., Smith & Cann, 1990;
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Behn et al., 2004]. Whether small or large, seamounts play important roles in a diverse

range of social and natural phenomena. For instance, they can pose as obstacles to

submarine navigation [e.g., BBC, 2005] and a↵ect the propagation of tsunami waves

[e.g., Mofjeld et al., 2004]. Seamounts also sustain diversified marine habitats [e.g.,

Stocks, 2005] and even influence the global ocean circulation [e.g., Gille et al., 2004].

Many older seamounts are covered by manganese crust, a potential mineral resource

that one day may be economical to harvest [e.g., Friedrich & Schmitz-Wiechowski,

1980; Grigg et al., 1987]. Finally, the geographical and size-frequency distributions of

seamounts are required to study the evolution of underwater volcanism through time

and space [e.g., Wessel, 2001]. Consequently, it is of great importance to locate and

characterize seamounts globally.

Because of di↵erences in data sets and methodologies, many researchers have

arrived at di↵erent global assessments of seamounts [Craig & Sandwell, 1988; Wessel,

2001; Kitchingman & Lai, 2004; Hillier & Watts, 2007]. A review of these methods

and the uncertainties of the di↵erent approaches and estimates have been presented

by Wessel et al. [2010]. Given the uniform coverage of satellite altimetry, such data

traditionally have been used to assess the global seamount census estimates. However,

the most-cited studies relied on early versions of the Geosat/ERS grids (v. 7.2) that

are now almost 15 years old [Wessel & Lyons, 1997; Wessel, 2001]. Furthermore, the

simple methodology employed in the previous studies placed several restrictions on

the attributes that could be extracted from the data. In this paper, I will use the

latest altimetry data and introduce a new nonlinear inversion method for seamount

detection, discuss the development and limitations of my method, present a revised

global seamount census, and finally compare my new estimates with those of previous

studies.
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3.2 The Vertical Gravity Gradient (VGG) Grid

To recover marine gravity anomalies from satellite altimetry data it is assumed that

the sea-surface heights above the reference ellipsoid equal the geoid heights. By using

a first-order linear relationship between geoid height and gravitational potential (i.e.,

Brun’s equation), the east and north components of the vertical deflection (i.e., the

slope of the geoid) are obtained directly from the first east- and north-derivatives of

the sea-surface height [Heiskanen & Moritz, 1967; Sandwell & Smith, 1997]. Because

the gravitational potential must satisfy Laplace’s equation, the VGG equals the sum

of the first derivatives of the east and north vertical deflections. Consequently, the

VGG is the sum of the east and north second derivatives of the observed sea-surface

heights, i.e. the curvature of the geoid. To construct the VGG grid, therefore, neither

spherical harmonics nor Fourier transforms are required [Sandwell & Smith, 1997].

Such further processing, however, is necessary to derive free-air gravity anomalies

(FAA) from the VGG grid. Due to the simplicity of the VGG computation, the

VGG grid is the primary geopotential dataset retrieved from the altimetry measure-

ments. The spatial second derivatives imply that VGG amplifies short-wavelength

signals (such as observed over seamounts and fracture zones) and suppresses long-

wavelength trends (e.g., those associated with flexure and hotspot swells). Hence,

the VGG grid becomes more suitable than the FAA grid for finding small features

such as seamounts [e.g., Wessel & Lyons, 1997]. In addition, recent reprocessing of

Geosat and ERS-1 altimetry data with a rigorous waveform re-tracking method has

improved significantly both accuracy and resolution of the data [Sandwell & Smith,

2005, 2009]. The resolution, in particular, has been enhanced by a factor of 1.3 rel-

ative to previous releases, which should significantly improve my chances of finding

unmapped seamounts, especially those taller than 1 km. Therefore, I have utilized

the 1-min Mercator VGG grid (v. 16.1) to reassess the global seamount distribution.

The coordinate system of the VGG grid is not conventional because gridding was
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performed in an equidimensional spherical Mercator map projection domain [Sandwell

& Smith, 1997]. For the VGG 16.1 grid, the grid cell dimensions are 1 arc minute

(width) by 1 arc minute times the cosine of latitude (height). As a result, the number

of grid cells per 1 arc degree increases with latitude, resulting in more data points

toward the poles. If one simply projects this grid to the common geographical coordi-

nate system, the original data points must be averaged for a cell with 1-min by 1-min

dimension. This process dilutes the original resolution of the VGG grid, preferentially

at higher latitudes. Thus, to preserve the full resolution of the VGG grid, I performed

my data processing and nonlinear inversion directly in the Mercator domain and only

projected my final estimates back to geographical coordinates.

3.3 Methodology

3.3.1 VGG potential seamounts

High-resolution shipboard bathymetric mapping of seamounts has revealed a multi-

plicity of morphological forms, ranging from simple circular, truncated cones to com-

plicated stellate shapes [e.g., Batiza & Vanko, 1983; Rappaport et al., 1997; Mitchell,

2001]. While larger seamounts (taller than 3 km) are often reshaped by the develop-

ment of rift zones and flank collapses that result in complex volcanic edifices (e.g.,

Ojin and Nintoku seamounts of the Emperor Seamount Chain [Smoot, 1982]), smaller

seamounts tend to have single volcanic centers and display sub-circular structures

(e.g., Lamont Seamount Chain south of the Clipperton Transform [Fornari et al.,

1988]). Mitchell [2001] found that the transition from circular to stellate forms of

seamount occurs gradually over a 2–4 km edifice height range, with the best transi-

tion estimate of 3 km height. Previous global seamount studies consistently show that

the majority (> 83%) of detected seamounts are smaller than 3 km height [Wessel,

2001; Hillier & Watts, 2007; Wessel et al., 2010]. Thus, I assume that an “ideal”
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volcanic edifice is an elliptical truncated cone and anticipate that my estimates will

be applicable for most of the seamounts detected by my study, except for larger

seamounts with stellate form. Consequently, as most larger seamounts have been

mapped bathymetrically I purposefully bias my modeling to be optimized for detect-

ing and parameterizing the smaller and more numerous seamounts.

Gravity anomalies over seamounts observed at the sea surface are much smoother

than shipboard bathymetry because the amplitudes of the gravity anomalies are at-

tenuated exponentially with increasing depth to the seafloor, and this attenuation

preferentially a↵ects shorter wavelengths [Blakely, 1996]. Even if the volcanic edifice

is a perfect cone, the gravity anomaly takes on a smoother (e.g., Gaussian-like) shape

due to the attenuation. I take advantage of this “upward continuation” phenomenon

when searching for seamounts in the gravity data because a Gaussian shape can be

expressed analytically and is easy to manipulate in both the spatial and spectral do-

mains. For example, Wessel & Lyons [1997] employed a circular Gaussian shape to

approximate gravity anomalies caused by seamounts. In their approach, however, the

distance to the first zero crossing (i.e., the radius of a seamount base) was assumed to

be equal to the 3� range that accounts for about 99.7% of the area under the Gaussian

function (since the curve never reaches zero). This causes the seamount shape to be

discontinuous at its base. In contrast, I will utilize an elliptical polynomial model, R,

which is similar to the Gaussian model but explicitly goes to zero at the seamount

base (Figure 3.1):

R(x,x
o

, p, a, b, ✓) =

8
>><

>>:

p

(1+r)

3
(1�r)

3

1+r

2 |r|  1

0 |r| > 1
, (3.1)

where x = (x, y) is the position vector, x
o

= (x
o

, y

o

) is the summit location, and p

is the peak amplitude. Then, the normalized radial distance from the summit, r, is
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defined as

r =
q
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o
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o
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)2 (3.2)
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2 (1� f

2) cos ✓ sin ✓

C = 1

b

2 (f 2 sin2

✓ + cos2

✓)

. (3.3)

Here, f = b/a, where a and b are the major and minor semi-axes of the basal ellipse,

respectively, and ✓ is the angle between the major and east-west (x) axes. A circular

polynomial seamount can be simplified further with

r =

q
(x� x

o

)2 + (y � y

o

)2

r

o

, (3.4)

where r

o

is the radius of the seamount base.

Figure 3.1 demonstrates the similarity between the polynomial (red line) and

Gaussian (black dotted line) models and compare these models with the VGG signal

(black solid line) over a typical truncated cone. The dense core model [Kim & Wessel,

2010] was employed to predict the free-air gravity (FAA) anomalies arising from the

density di↵erences and flexed crust (Figure 3.1b). Then, the VGG signal was esti-

mated by taking the vertical derivative of the predicted FAA data. The polynomial

model is generally close to the Gaussian model, except at the base, as mentioned

above. However, the width of the VGG data is wider than either model. Such di↵er-

ences depend on the mass distribution of the seamount implied by the truncation level,

the ratio between its height and basal radius and the amount of flexure underneath

the seamount. Predicting such details would require more geophysical information

(e.g., bathymetry and seismic refraction profiles). Thus, the polynomial model serves

as a simple approximation to typical VGG anomalies over seamounts.

Because seamounts are volcanic constructs, their gravity anomalies protrude up-
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wards from the regional gravity level. In the following, I will describe how I fit the

elliptical polynomial model to such protuberances in the VGG grid. Obviously, not all

positive VGG bumps indicate the presence of seamounts since other tectonic features

(e.g., abyssal hills and fracture zone scarps) can result in similar signals. Thus, I will

first construct a set of “potential” seamounts parameterized by the elliptical poly-

nomial model and then apply statistical model selection criteria and both automatic

and manual inspections in order to eliminate most unrealistic potential seamounts.

3.3.2 Nonlinear inversion for elliptical polynomial seamounts

If a given domain has S elliptical polynomial seamounts, I can construct a least-

squares problem for estimating the six parameters, m = (p, x
o

, y

o

, a, b, ✓), for each

polynomial seamount by minimizing

E(M
S

) =
NX

i=1

"
V

i

�R

i

(M
S

)

�

i

#
2

� 2�
SX

j=1

ln p

j

, (3.5)

where N is the number of data points used for the fit, V

i

is the observed VGG at the

ith data point and �

i

the standard deviation of data noise. Here, R

i

is the predicted

VGG at the ith data point using M
S

= (m
1

,m
2

, . . . ,m
S

). Thus, the first term in eq.

(3.5) is a standard chi-squared measure of misfit between the observed and predicted

data. The second term is a positivity constraint on the amplitude parameters, p

j

,

with a logarithm barrier, � [Li & Oldenburg, 1996; Baptista et al., 2005].

As eq. (3.5) is nonlinear, I construct a set of linear equations based on the

Levenberg-Marquardt method [Press et al., 1992]:

P
M

l=1

↵

kl

�m

l

= �

k

, k = 1, N.

(3.6)
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Here, M = 6S is the total number of the model parameters in M
S

and � is a non-

dimensional adjustment factor. I start the iteration with an initial set of M
S

and

update the model parameters as follows:

(a) Compute E(M
S

)

(b) Pick modest values for � and �. For this study, I used � = 105 and � = 10�4.

(c) Solve the linear system in eq. (3.6) for �m and evaluate E(M
S

+ �m)

(d) If E(M
S

+ �m) � E(M
S

), increase � by a factor of 10, decrease � by a factor

of 2, and go back to (c).

(e) If E(M
S

+ �m) < E(M
S

), decrease both � and � by a factor of 10, update M
S

with M
S

+ �m, and go back to (c).

The iteration stops when � < 10�5 and E(M
S

+�m)�E(M
S

) < 0.001. The logarithm

term increases the gradient of the misfit if the amplitude keeps decreasing toward

negative and hence ensures that solutions with negative amplitudes are avoided.

However, the derivatives of the elliptical polynomial model with respect to (a, b, ✓)

become too unwieldy because both eqs. (3.2) and (3.3) are necessary. Instead I

obtain derivatives with respect to the intermediate parameters (A, B, C). Thus, the

derivatives of the model with respect to the six parameters are
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where

D = p

2(1 + r)2(1� r)2(1 + 2r2)

(1 + r

2)2

. (3.9)

Once the solution to eq. (3.5) has been determined, I formulate an eigenvalue problem

that recovers the original parameters (a, b, ✓) from (A, B, C) by substituting f

2 in A

and C with that of B, i.e.,

A cos ✓ �B sin ✓ = 1

a

2 cos ✓

�B cos ✓ + C sin ✓ = 1

a

2 sin ✓

. (3.10)

The above terms can be rewritten as the following 2x2 system:
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Using the two eigenvalues and eigenvectors of eq. (3.11) I can easily calculate (a, b, ✓)

from

a =
q

1/�1

e

b =
q

1/�2

e

✓ = tan�1(⌫1

y

/⌫

1

x

)

, (3.12)

where the smaller eigenvalue is indicated by the superscript 1. Hence, the angle from

the x-axis to the major axis is obtained using the eigenvector (⌫1

x

, ⌫

1

y

) associated with

�

1

e

because it points toward the major axis.
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3.3.3 Data noise and statistical model selection

Like other geophysical data, the VGG has noise due to measurement and theory

errors. While the measurement error is due to instrumentation (e.g., range precision

of altimeter) and ambient noise (e.g., ocean waves and tide model error), the theory

error derives from the simplified parameterizations of Earth models and idealized

treatment of forward problems [Sandwell & Smith, 1997]. To improve the accuracy

of the recovered gravity field, researchers enhanced the range precision of the existing

altimetry measurements by better constraining the sea surface slope errors [Maus

et al., 1998; Sandwell & Smith, 2005]. As a result, the signal-to-noise ratio of the

current VGG data (v. 16.1) has been improved more than 40% [Sandwell & Smith,

2009].

In addition to the data noise present in the VGG grid, I introduce additional

errors. Because eq. (3.5) does not include a complete set of parameters represent-

ing every geophysical phenomenon captured in the VGG data (e.g., gravity signals

due to abyssal hills, fracture zones, and crustal density variations), the VGG sig-

nals not related to seamounts become the theory error. The elliptical polynomial

model also contributes to the theory error as the model cannot handle completely

the irregularity of VGG anomalies. In general, one can address this issue by adopt-

ing a more accurate model or by incorporating a measure of error correlations into

the inversion formulation [e.g., Dosso et al., 2006]. The former is the very reason I

chose the elliptical model because it is a more appropriate model than the circular

models used in previous studies [Wessel & Lyons, 1997; Hillier & Watts, 2007]. How-

ever, developing a complete Earth model to explain every detail of the gravity field

is impractical. Thus, I set an amplitude threshold (p
cut

= 10 Eötvös) that the VGG

amplitude of potential seamounts must exceed, by assuming that VGG peaks lower

than this threshold are more likely to be associated with data noise or small-scale

geologic features (e.g., abyssal hills) than actual seamounts. This threshold is about
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twice the standard deviation of observed VGG anomalies in regions void of major

geologic features (see insets in Figure 3.2). In addition, I ameliorate the theory error

further by performing regional-residual separation on the VGG grid and subject the

seamount model to both automatic and manual inspections (section 3.3.4).

However, error correlations are generally unknown and require reasonable assump-

tions about the data uncertainty distribution. A common approach is to assume that

errors follow a Gaussian distribution and are spatially uncorrelated, which enables

the use of �

i

in eq. (3.5) (i.e., a diagonal covariance matrix). Unfortunately, this

approach becomes less e↵ective in describing the data uncertainty distribution of the

VGG grid because the errors in the raw altimetry measurements become correlated

through data processing. In this case, one can estimate a full data covariance matrix

with o↵-diagonal elements from the residual data (i.e., the observed data minus the

predicted model) using an iterative procedure [Montgomery & Peck, 1992; Dettmer,

2006; Dosso et al., 2006]. For my study, however, incorporating a full data covariance

matrix into eq. (3.5) becomes very expensive in terms of computation time because

a NxN matrix would need to be inverted at each iteration as the model parameters

get updated. In addition, the iterative approach has been successfully applied only

to 2-D datasets (e.g., acoustic measurements at a hydrophone) and hence requires

careful consideration for 3-D data (e.g., the VGG grid). Neglecting the o↵-diagonal

elements in eq. (3.5), therefore, may lead to underestimation of model-parameter

uncertainties.

Here, I address the e↵ect due to correlated errors by considering the following as-

pects. First, the uncertainties of the model parameters for VGG potential seamounts

are not directly converted to uncertainties of the parameters for bathymetric ideal

seamounts; that step involves additional forward modeling [e.g., Wessel & Lyons,

1997]. Several tests with synthetic noise and VGG seamounts also showed that the

model parameters determined with a diagonal covariance matrix predicted the original
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Figure 3.2: Correlation length of the VGG 16.1 grid. a) Radial covariance estimate of
the VGG grid at Equator (inset). b) Radial covariance estimate of the VGG grid at
⇠45oN (inset). Correlation pixel length, C

R

, is the distance to the first zero crossing
of the covariance estimates. Because these two areas do not have any large-scale
geologic features, I use the standard deviations of these regions to determine the
amplitude threshold, p

cut

.

parameters in a consistent manner. Thus, I use eq. (3.5) with a diagonal covariance

matrix (i.e., single standard deviation) and regard the best model parameters for

VGG potential seamounts as a first-order approximation of actual VGG anomalies.

Second, the parameter a↵ected most by correlated data is the number of potential

seamounts (S). Because this parameter is not solved for by eq. (3.5), I constrain

S using statistical model selection criteria. However, such statistical tests inherently

assume that each measurement is independent, which is invalid for the VGG grid due

to its correlated nature. As a first-order correction, I determine the e↵ective number

of uncorrelated data, N

E

, based on auto-covariance estimates of the VGG data and

apply it to the model selection criteria.

For computational e�ciency, I used the indirect method of computing auto-

covariance estimates based on the Wiener-Khinchin theorem [Press et al., 1992]. In

this theorem, an auto-correlation estimate is obtained by taking the inverse Fourier

transform of the auto-spectrum estimate of a given data set. Then, an auto-covariance
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estimate is simply computed by dividing the auto-correlation estimate by the number

of given data points. I applied this procedure to two areas at di↵erent latitudes,

where no significant geologic features were observed (Figure 3.2). Then, I averaged

the 2-D auto-covariance estimates over one radial pixel distance (i.e., the distance

between two neighboring grid points of the VGG data in the Mercator domain) and

defined the correlation length of the VGG data using the first zero-crossing of the

radial covariance estimates. The correlation length at Equator (Figure 3.2a) is ⇠8

km, while the high latitude case (Figure 3.2b) is slightly better, at ⇠6 km. This may

be because the track spacing is closer at higher latitude and hence the noise is lower

[Sandwell & Smith, 1997]. The radial auto-covariance estimates indicate that a VGG

value at one grid node is strongly correlated with neighboring VGG values located

within a radius of 5 pixels. Thus, I estimated the e↵ective number of uncorrelated

data, N

E

, as

N

E

= N/C

2

R

(3.13)

where the correlation pixel length, C

R

= 5, as shown in Figure 3.2.

Finally, I address the most important question of this study: How many VGG

potential seamounts are necessary to optimally fit eq. (3.5)? Statistically, I can

examine this question using model selection criteria (MSC) that test if a model with

S + 1 seamounts significantly improves the misfit relative to a model with only S

seamounts. One of the applied MSC is the Unbiased Akaike Information Criterion

(AIC

u

) [Tsai & McQuarrie, 1999] defined as

AIC

u

= ln

"P
N

i=1

(V
i

�R

i

(M
S

))2

N

E

�M

#

+
N

E

+ M

N

E

�M � 2
. (3.14)

Here, the first term is a measure of the misfit with S seamounts. However, if S is

overestimated for a given dataset then AIC

u

will be penalized by the second term (a
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measure of model complexity). Thus, AIC

u

(M
S+1

) becomes less than AIC

u

(M
S

) if

the improvement in misfit made by a model with one more seamount, M
S+1

, is sta-

tistically significant. The other criterion considers the F -ratio test [Stein & Gordon,

1984], i.e.

F =
[�2(M

S

)� �

2(M
S+1

)] /(M
S+1

�M

S

)

�

2(M
S+1

)/(N
E

�M

S+1

)
, (3.15)

where M

S

is the number of model parameters for S seamounts and the chi-squared

function is the same as the first term of eq. (3.5). This F -statistic is tested against

the probability, P

0.05

(n
1

, n

2

) with n

1

= (M
S+1

�M

S

) and n

2

= (N
E

�M

S+1

), for a

95% confidence level. Although both methods tend to result in the same statistical

outcome, I conservatively only accept a model that passes both tests. Using the above

MSC, therefore, I arrive at the number of potential seamounts that are statistically

significant for the given VGG data with correlated noise.

3.3.4 SeaHunt: Automated global seamount search

Regional-residual separation

Long-wavelength signals apparent in the FAA data are inherently suppressed in the

VGG data. However, some undulations are still noticeable, especially along major

seamount chains surrounded by small negative amplitudes (e.g., Figure 3.3a). Since

this regional variation is not directly associated with the seamounts themselves, I

separated short-wavelength signals from the regional background by applying a spatial

median filter with a 400 km filter width to the entire VGG grid [Smith, 1990; Wessel

& Lyons, 1997]. The filter width was chosen so filtering would not a↵ect seamounts

but instead approximate the regional trend [Wessel, 1998]. Although median filtering

can be biased due to a sloping background [Kim & Wessel, 2008], the VGG data

have a relatively flat background and hence such filtering bias was not a concern for

57



-3

-2

-1

-1

180˚ 178˚W 176˚W 174˚W

6˚S

4˚S

2˚S

0˚

2˚N
a) Regional

-4 -2 0 2 4

Eötvös

180˚ 178˚W 176˚W 174˚W

6˚S

4˚S

2˚S

0˚

2˚N
b) Residual

-80 0 80 160 240

Eötvös

Figure 3.3: Regional and residual VGG over the Tokelau seamount chain. a) A gentle
negative trend along the chain is apparent in the regional VGG. b) The residual VGG
is obtained after subtracting the regional data from the raw VGG grid. A 2o-by-2o

box used to demonstrate the automated searching method in the following figures.

this separation. Then, the regional trend obtained by median filtering was smoothed

with a spatial Gaussian filter with 50 km filter width. The residual VGG data were

obtained by subtracting the smoothed regional data from the original VGG data

(Figure 3.3).

Dense grid contouring

The iterative inversion requires an initial set of model parameters that are constrained

by the observed data. Among the six parameters, the misfit is most sensitive to the

location and VGG amplitude of a polynomial seamount, i.e., (x
o

, y

o

, p). Thus, I

decided to contour the residual VGG data using a 1-Eötvös interval and keep track

of each contour, because seamounts produce positive gravity signals and hence their

locations and amplitudes determine the geometry of their contours (Figure 3.4).

As an example (Figure 3.4a), if a given area has two seamounts (the VGG peak

of seamount A is larger than that of seamount B), the contouring returns the first
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Figure 3.4: Contouring and base polygons. a) Schematic diagram of contouring when
two VGG potential seamounts with di↵erent amplitudes are considered; see text for
details. The model parameters are denoted for the potential seamounts, A and B.
b) Base polygons inside the small inversion box (thin solid line), which is designed
only for demonstration purpose (Figure 3.3b). The actual inversion box is 5o-by-5o as
discussed in text. The colored areas indicate VGG exceeding the threshold (p

cut

= 10
Eötvös), while those outlined by dashed lines are larger than the area threshold (50
km2). The red diamonds are the centers of basal ellipses fitted to the base polygons.
Thus, I choose the base polygons (thick sold line) by examining whether their centers
are inside a given inversion box.
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closed polygon at the summit of seamount A. Whenever a new polygon is generated,

the process estimates its area and determines a best-fit ellipse to that polygon, which

usually has an irregular shape. This step parameterizes all polygons (i.e., contours)

generated and enables me to recover these geometrical parameters at any contour

level. As contouring proceeds, it tests if a new polygon encompasses the previous

polygons. When the contouring reaches the summit of seamount B, the process

results in two distinct polygons: one is from seamount A and the other is the first

polygon due to seamount B. Because the latter does not include any of the previous

polygons from seamount A, the contouring can recognize this event from the above

test and maintain the polygon set of seamount A separately from that of seamount B,

assigning unique identification numbers to each set. At each interval, I progressively

construct a database of the area of a closed contour, its center location, major and

minor axes, and the azimuth of the best-fit ellipse to that contour. More importantly,

the contouring gives me a maximum number of potential seamounts in a given area

because the first contour of each unique polygon set is associated with a positive VGG

bump that may result from an actual seamount. Thus, an initial parameter set can

be constructed by using the centers (x
o

, y

o

) of best-fit ellipses for the first contour

level, p, for each feature.

For my global seamount analysis, I first divided the Earth into 25 plate-size do-

mains based on a digital model of plate boundaries [Bird, 2003] by merging relatively

smaller plates with their nearest neighbor plates (Table 3.1). For example, the Banda

Sea, Burma, Molucca Sea, and Timor plates were processed together with the Sunda

plate. Then, I generated 5o-by-5o boxes (called inversion boxes) that filled any given

plate-size domain entirely.

For each plate-size domain, I extracted a sub-region grid from the residual VGG

grid. Because the contouring keeps track of only closed contours, the area of the

sub-region grid was enlarged so that contours extending outside the plate boundary
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polygon (i.e., open contours) would become closed within the larger domain. Then, I

carried out the contouring for the 25 sub-region grids at the specified interval (i.e., 1

Eötvös) down to the amplitude threshold (p
cut

= 10 Eötvös). I used the p

cut

contours

as base polygons, inside which potential seamounts, if any, must be found. To reduce

the number of spurious base polygons I only retained polygons whose area exceeded

50 km2 (i.e., area threshold based on the correlation analysis of the VGG grid; section

3.5). This analysis yielded 415,710 initial candidates for potential seamounts.

To avoid unnecessary repetition and simplify computations, I assigned the data

to the corresponding plate-size domain and then to its inversion boxes, based on the

base polygons (Figure 3.4b). I assigned base polygons to the plate-size domain by

examining if their centers are inside its boundary defined by the digital model of

Bird [2003]. In the same way, the base polygons assigned to the plate-size domain

were distributed further to the inversion boxes by determining if their centers were

inside a given inversion box (Figure 3.4b). Then, I distributed VGG data and initial

parameter sets to each inversion box according to the assigned base polygons, which

encompasses both the data and initial peaks (Figure 3.5a). In this way, although the

grid for a plate-size domain and its inversion boxes is rectangular, the actual shape

of the data distribution inside an inversion box becomes irregular. Thus, I did not

need to change the size of the inversion boxes or overlap the boxes in order to include

data located along the irregular boundary of any plate-size domain.

Automated searching and step-wise inversion

The initial parameters (x
o

, y

o

, p) given by contouring are good initial choices for the

location and VGG amplitude of potential seamounts, while the other parameters

(a, b, ✓) need to be determined directly by minimizing eq. (3.5). However, this non-

linear system quickly becomes unstable if the initial guesses for the parameters (a, b, ✓)

are too distant from the actual values. Thus, I construct a step-wise inversion that
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solves eq. (3.5) using the circular polynomial model and then refines the circular

parameters to yield an elliptical polynomial model. The procedures A–D explained

in this section were executed for each inversion box in a given plate-size domain. In

addition, I parallelized the following procedures for an e�cient search because the

model parameters optimized for one box are independent from other boxes.

In step A, I determine a first-order approximation to the given VGG data using

the circular polynomial model defined by eqs. (3.1) and (3.4). Although the circular

model requires four parameters, (x
o

, y

o

, p, r

o

), I fix the location and amplitude pa-

rameters at their initial values obtained from contouring throughout the first step

and hence solve eq. (3.5) for r only. This simplifies eq. (3.6) and only requires the

derivative

@R

@r

o

= 2D
r

r

o

, (3.16)

where D and r are defined in eqs. (3.9) and (3.4), respectively. In addition, the

logarithm barrier in eq. (3.5) is applied to the radius parameter because the ampli-

tude parameter is fixed for this step. Because each base polygon includes at least

one potential seamount summit detected by contouring, I estimate the radius of the

seamount with the largest amplitude first, add one more seamount, re-estimate the

radii of the given two seamounts, and then use the MSC to determine if the added

seamount is statistically significant in reducing the misfit. I repeat step A until it fails

the MSC. By carrying out the above procedures on a base-polygon basis, I construct

a set of circular seamounts that are statistically significant within their base polygon.

The MSC, however, needs to use the actual number of the data points inside the

base polygon, N , not N

E

as the data points are too few to compute N

E

for individ-

ual base polygons. Thus, I find S

1

circular potential seamounts from the initial set

(red squares in Figure 3.5b) after rejecting statistically insignificant seamounts (blue

squares in Figure 3.5b).
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Figure 3.5: Automated step-wise inversion for seamount searching. a) The initial
dataset consists of the VGG data inside the base polygons and the initial model pa-
rameters, (x

o

, y

o

, p), prepared by contouring (see Figure 3.4). The potential seamount
locations are indicated by the red squares. b) Step A. The model selection crite-
ria (MSC) are applied to identify statistically insignificant potential seamounts (blue
squares) using the circular polynomial model. c) Step B. The potential seamounts (red
squares) are further reduced after removing the potential seamounts (blue squares),
which do not increase the misfit significantly when it is not included to the computa-
tion. d) Step C. The elliptical polynomial model is applied to approximate the given
VGG data, however the parameters, (x

o

, y

o

, p), have been fixed as their initial values
until this step.
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In step B, I remove statistically insignificant seamounts (blue squares in Figure

3.5c) from the previous set by now applying the MSC to the entire inversion box. A

tentative set of seamounts is constructed by removing one seamount from the starting

set and using this reduced set to compute the MSC estimates with N

E

, which repre-

sent the statistical significance of the removed seamount. Then, I generate another

tentative set by adding back the removed seamount and removing another seamount

from the starting set, and then re-compute the MSC estimates. By repeating this

process, I construct a table of MSC estimates for the S

1

tentative sets. If the ex-

clusion of a particular seamount does not make the misfit significantly worse, the

MSC will result in both decreased AIC

u

and F -ratio smaller than the critical value

(i.e., P

0.05

) for the tentative set without this seamount. This seamount, thus, is the

least important feature in minimizing the misfit. After removing the least significant

seamount from the starting set, I repeat the process with the new starting set now

having S

1

� 1 potential seamounts. When all the seamount in the new set are statis-

tically significant, the MSC estimates will have increased either the AIC

u

or F -ratio

beyond their critical values. Thus, I can terminate step B and obtain S

2

circular

potential seamounts (red squares in Figure 3.5c).

In step C, I determine the parameters, (a, b, ✓), for the elliptical seamount model

using the radii of the circular potential seamounts as initial values, while the location

and amplitude parameters are fixed as before. Because S

2

tends to be substantially

reduced from S

1

, I exclude data points inside base polygons that have no potential

seamounts after step B, prior to solving eq. (3.5) for the basal ellipse parameters

(Figure 3.5d).

In the last step D, I solve eq. (3.5) for all six parameters of the given potential

elliptical seamounts (Figure 3.6a). The location and amplitude parameters are not

fixed in this stage and hence the logarithm barrier is properly applied to the amplitude

parameter. This step uses the model parameters of step C as the starting values and
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makes a fine adjustment to the parameters. For Figures 3.5d and 3.6a, the di↵erences

between the model parameters estimated by steps C and D are <10%. Thus, I

obtained 110,127 potential seamounts from the inversion-based search and inspected

them as discussed in the next section.

3.3.5 Automatic and manual inspections

As the VGG grid is derived from sea surface height measurements, the altimetry

tracks become discontinuous over large subaerial landmasses. Although a complicated

gridding scheme is applied to fill the altimetry data gaps and produce the VGG grid

[Sandwell & Smith, 2005], the VGG data over continents and large islands (e.g., New

Guinea) are poorly constrained. Another important aspect is that volcanic seamounts

are unlikely to exist along continental margins. Thus, I defined Seamount Exclusive

Zones (SEZs) using the 2000 m isobaths obtained from ETOPO2v2 [NGDC, 2006],

which approximate the boundaries of the continents. The seamounts found inside or

within 20 km distance from the SEZs (black lines in Figure 3.9) were automatically

tagged to be excluded from list of the potential seamounts.

The model parameters estimated by my automated method can be biased because

of the theory error, which results from the inability of the model to predict the noise

in the VGG grid and non-seamount-related signals; both e↵ects tend to overestimate

the major axis (e.g., Figure 3.6a). By extending the major axes of small potential

seamounts (usually with p < 30 Eötvös), the model is able to reduce the misfits

in areas where the VGG grid is complicated by roughness of the seafloor (e.g., the

Southwest Indian Ridge) and where linear trends are apparent (e.g., near fracture

zones). I automatically tagged potential seamounts with unrealistic major axes if the

major-to-minor axes ratio was less than 0.2 (i.e., f  0.2) and if the ratio of the major

axis to the VGG amplitude was larger than 0.7 (i.e., a/p � 0.7). These empirical and

conservative conditions were used to exclude unrealistic potential seamounts.
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Figure 3.6: Full inversion and inspection. a) Step D. The six model parameters of the
elliptical polynomial model are solved in this stage. b) Automated and manual in-
spections. The automatic inspection tagged a small potential seamount (blue square
at 0.5oS) because it has a severely elongated basal ellipse as the inversion approxi-
mated the data noise, not a real feature. Another seamount (blue square at 1.5oS)
was manually tagged after comparing (a) with both (c) the predicted bathymetry and
(d) the free-air gravity anomalies.
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Next, I compared the potential seamounts to the VGG, FAA, and predicted

bathymetry (TOPO 12.1) grids using Google Earth. I manually tagged multiple

peaks over flat-topped seamounts, stellate seamounts, and large islands, as well as

peaks detected at volcanic ridges and over rough bathymetry. Manual inspection was

necessary because I could not find any systematic relationship between my model pa-

rameters and the VGG over such morphologies. For example, a truncated seamount

(e.g., guyot) exhibits relatively flat FAA variation over its summit and the slope of

the FAA depends on the flatness of the truncated seamount and its density structure.

The VGG derived from such a flat FAA field have multiple local maxima for a single

seamount, which consequently causes the contouring to produce multiple initial peaks

for that single seamount. For most cases, the MSC used with the automated inversion

was e↵ective in merging them into one summit, but not for large guyots (e.g., Pallada

Guyot). As anticipated at the model building stage, the MSC was not fully successful

in excluding initial peaks obtained at flanks of stellate seamounts, large islands and

at volcanic ridges (e.g., Necker ridge). These multiple peaks were therefore tagged

during the manual inspection (Figure 3.6). The model parameters of the manually

edited potential peaks were reexamined when to convert the gravimetric parameters

to the bathymetric parameters (see section 3.3.6). While I strived for consistency in

making these decisions, it is clearly a subjective procedure.

Finally, I tagged islands based on distance to the nearest coastline. A volcanic

island is a seamount rising above the sea surface. However, its exposed area above

the sea surface varies considerably. Some islands exhibit large subaerial surfaces with

high elevations, while others have small areas barely above sea level (e.g., atolls). In

addition, the gravimetric center of a volcanic island is not always the same as the

center of the subaerial surface. Due to these variations, no systematic approach to

finding islands was made. Instead, I define an island if the distance to the nearest

coastline from any subaerial point of the island is longer than 4 km. It means that the
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length between the two closest ends of the island coastline is longer than 8 km. Given

the VGG correlation length of ⇠8 km (Figure 3.2), data gaps longer than 8 km cannot

be constrained through nearby altimetry data points. Using this criterion, I could

tag 62 islands from the manually inspected potential seamounts. After removing all

tagged potential peaks from the list, I arrived at 25,721 potential seamounts.

3.3.6 Seamount height estimation

The model parameters of the identified VGG potential seamounts can be used for

various studies: spatial distribution of seamounts [Craig & Sandwell, 1988; Wessel

& Lyons, 1997], plate tectonic reconstructions [Jarrard & Clague, 1977], and refining

absolute plate motions [Wessel & Kroenke, 1997]. The amplitude and basal ellipse

parameters of the VGG potential seamounts, however, cannot be translated linearly to

obtain actual dimensions and volumes of bathymetric seamounts, which are desirable

when investigating intraplate volcanism [Wessel, 2001; Watts et al., 2006; Hillier,

2007]. To address this problem, one can use either the predicted bathymetry from

gravity [Smith & Sandwell, 1997] or a separate modeling scheme [Wessel & Lyons,

1997]. Because the former data were estimated based on the assumption of a constant

elastic thickness, the height prediction can be biased, especially for large seamounts

that were formed recently relative to the thermal age of the lithosphere beneath

them (i.e., young seamount on old crust) [Dixon et al., 1983]. To remedy such bias,

Wessel & Lyons [1997] estimated the height parameter from a simplified forward

modeling that considered a broad range of elastic thicknesses. They assumed the

seamount had a circular Gaussian shape and built a look-up table for a wide range

of heights and flank slopes in order to relate their gravimetric parameters (i.e., VGG

and FAA amplitudes and zero-crossing distance) to the height and radius of the

seamount model. However, the uncertainty of the predicted height is greater for small

seamounts (< 3 km) than for large seamounts because the flexural signals due to small
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seamounts are inherently less significant than those due to the large ones [Wessel &

Lyons, 1997]. Thus, the uncertainty of the height parameter for small seamounts

predicted without bathymetry becomes similar in both approaches. For the large

seamounts (> 3 km), the simple seamount model becomes inadequate because of

their stellate form; however, many of these have been mapped bathymetrically. In

this study, therefore, I obtain the bathymetric parameters (i.e., actual height, major,

and minor axes) for the VGG potential seamounts from the predicted bathymetry,

TOPO 12.1 [Smith & Sandwell, 1997], because it includes shipboard measurements

wherever available.

As seen in Figure 3.7a, the basal ellipse (black solid line) of a VGG seamount is

generally narrower than the actual basal ellipse (red solid line) of the corresponding

bathymetric seamount. To estimate the height, I discretely scaled the basal ellipse

of the VGG seamount by 0.5, 2, 3, and 4 (see the concentric ellipses in Figure 3.7a).

For each scale I computed the median of the depths sampled at the four positions

where the major and minor axes intersect the basal ellipse (see the red and black

dots in Figure 3.7a). The height estimate for each seamount is summit depth (black

square in Figure 3.7a) minus the median depth. Then, I compared five di↵erent

height estimates and chose the height only when the examined scale resulted in a 50%

increase in height over the previous estimate (Figure 3.7b). In Figure 3.7, the height

estimate is increasing continuously with scaling, however the height is not increased

by more than 50% for scales larger than 3. Although this ratio constraint prevents

excessive stretching and enables me to construct less overlapping basal ellipses (Figure

3.8), I anticipate that the height estimates for tall seamounts (h > 4 km) may be

underestimated by ⇠15%. Based on the estimated heights, I found 24,643 potential

seamounts taller than 100 m out of 25,721 VGG seamounts.
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Figure 3.7: Height estimation from the predicted bathymetry grid, TOPO 12.1 [Smith
& Sandwell, 1997]. a) Scaled basal ellipses. The basal ellipse of the VGG potential
seamount (black solid line) is scaled discretely by 0.5, 2, 3, and 4 (dashed and red
concentric ellipses). The depths are sampled from the intersecting points between the
major and minor axes and the ellipses (black and red dots). b) Height estimation
curve. The height is estimated by subtracting the regional depth (i.e., median value
of the four depths from each scaled ellipse) from the summit depth (black square in
(a)). The best scale is determined if the height at that scale is increased more than
50% relative to the previous height.
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Figure 3.8: Bathymetric basal ellipses of potential seamounts scaled by the height
estimation process. The locations (red dots) of potential seamounts are shown for a
section of the Easter Seamount Chain. As discussed in the text, the Salas y Gomez
Ridge at 25oS was manually excluded from the list of the potential seamounts.

3.4 Results

The total of 24,643 potential seamounts taller than 100 m was determined and char-

acterized by the processes described above; this is almost twice the number identified

in the previous study [Wessel, 2001]. However, the term “seamount” has been de-

fined inconsistently in various studies due to the specific interests in a field of research

or limitations of the data used in a study [Menard, 1964; Jordan et al., 1983; Wes-

sel & Lyons, 1997; Wessel et al., 2010]. A recent attempt to include diverse views

on seamounts within multidisciplinary research communities describes seamounts as

“any geographically isolated topographic features on the seafloor taller than 100 m,

including ones whose summit regions may temporarily emerge above sea level, but

not including features that are located on continental shelves or that are part of other

major landmasses” [Staudigel et al., 2010]. The automatic tagging with the SEZs,

the manual tagging to deal with volcanic ridges, and the height threshold make my
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potential seamount count more compatible with modern terminology than those of

previous studies. Although I tagged 62 islands, my final seamount count still includes

some small islands because the shortest width of their subaerial area is narrower than

the correlated 8-km length of the VGG grid.

3.4.1 Spatial and height distribution of the potential seamounts

The spatial distribution of potential seamounts from this study (Figure 3.9) shows

that seamounts taller than 1 km (blue and red dots, n = 8,458) generally occur in

clusters, seamount chains, and arc regions, whereas large portions of the seamounts

less than 1 km (black dots, n = 16,185) are located near mid-ocean ridges. This

partitioning suggests that large seamounts are formed by mantle plumes or subduc-

tion, whereas small seamounts are produced in near-ridge environments [Wessel, 2001;

Hillier, 2007]. A histogram of the height distribution of the seamounts (see inset in

Figure 3.9) also illustrates that the population of small seamounts (h < 1 km) is

about twice that of large seamounts (h > 1 km).

The Pacific plate supports ⇠28% of the identified potential seamounts. However,

nearly half of the world’s seamounts taller than 1 km are found on the Pacific plate

(Table 3.1), which confirms earlier results for the western Pacific [Craig & Sandwell,

1988; Wessel & Lyons, 1997; Hillier, 2007]. Following the Pacific plate, numerous

seamounts are found on the Antarctica, Africa, Australia, South America, and Nazca

plates. The rest of the seamounts of h > 1 km are distributed over the Africa,

Australia, Antarctica, and Nazca plates. Unlike the Pacific, seamounts with h < 1

km on the Antarctica plate make up more than 80% of the seamounts. Although the

seamount counts for the Philippine, Mariana, and Sandwich plates are small relative

to the total number of global seamounts, nearly 60% of seamounts found on these

plates are taller than 1 km. It may imply that arc volcanoes can grow taller than near-

ridge volcanoes due to the relatively static magma source supplied by the subduction
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Figure 3.9: Global distribution of 24,643 potential seamounts identified by this study.
Black dots for 0.1  h < 1 km (n = 16,185), blue dots for 1  h < 3 km (n = 7,514),
and red dots for h � 3 km (n = 944). The plate boundaries [Bird, 2003] are shown as
gray lines and the Seamount Exclusion Zones (SEZs) defined by the 2000 m isobaths
are drawn as black lines. Inset shows histogram of height distribution of potential
seamounts.
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process.

In terms of seamount density (i.e., the ratio of seamount counts to the area of

plate-size domain), the highest density is observed from the Philippine Sea and Mari-

ana plates because of active arc volcanism. Anomalously high estimates for seamount

density (e.g., Juan Fernandez and Sandwich plates) are because the area is substan-

tially smaller than that of other plate-size domain. It is intriguing to note that the

seamount density estimates for the Africa, Pacific, Antarctica, and Nazca plates are

relatively consistent, although the spatial distribution of the potential seamounts for

each plate is di↵erent (Figure 3.9). In addition, the South and North America plates

have less seamount coverage than their conjugate plate (i.e., the Africa plate).

3.5 Discussion

With di↵erent methodology and data, one will obtain dissimilar numbers of seamounts

[Wessel, 2001; Kitchingman & Lai, 2004; Hillier & Watts, 2007; Wessel et al., 2010];

this makes it di�cult to reconcile these numbers. Using bathymetry, Hillier & Watts

[2007] found 201,055 potential seamounts in the NGDC archieved single-beam ship

bathymetry, whereas Kitchingman & Lai [2004] identified 14,287 potential seamounts

in the ETOPO2 grid. In contrast, Wessel [2001] found 11,882 potential seamounts

from the VGG 7.2 grid (recently revised from 14,675 after removing accidental dupli-

cates [Wessel et al., 2010]). One can also di↵erentiate these numbers further based

on size threshold, data resolution, methodologies, and other factors. Here, I will

focus on two aspects of the broad definition of a seamount [Staudigel et al., 2010]

that earlier studies did not consider. The first aspect is that a seamount is “any

geographically isolated topographic feature.” Previous studies commonly identified

local summits on volcanic ridges as seamounts, which are geographically continuous.

As an illustration, I compare the potential seamounts from this study (KW; red dots)
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Table 3.1: Number of seamounts identified for each plate-size domain. Seamount
density is the ratio of seamount counts to the area of plate-size domain. The plate
notations are from Bird [2003], except for the plate-size domains consisting of com-
bined plates.

Plate-size domain h � 1 km Total (h � 0.1 km) Density (10�6 km-2)
AF 857 3888 41.7219
AN 639 4837 38.0876
AOa 820 2855 34.7297
AR 6 47 4.5874
CIb 59 149 18.0341
CO 40 185 33.4222
CPc 1 1 0.163562
EA 3 9 26.6708
EU 76 532 5.42395
GP 0 2 26.9772
IN 99 356 16.7875
JF 0 21 25.5191
JZ 7 40 155.217
NA 182 705 3.49659
NZ 440 1112 41.5518
OAd 2 7 0.243989
PA 4055 6863 44.9719

PSMe 419 697 57.7222
RI 2 30 102.997
SA 373 1133 15.837
SC 37 134 39.8391
SDf 39 80 4.38698
SO 281 924 28.9264
SW 21 36 114.493

a. Includes AU, CR, KE, NI, BR, FT, NH, and TO plates.

b. Includes BH, MN, NB, SS, CL, MO, SB, and WL plates.

c. Includes CA and PM plates.

d. Includes AM, ON, OK, and YA plates.

e. Includes MA and PS plates.

f. Includes BS, MS, TI, BU, and SU plates.
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Figure 3.10: Comparison of potential seamounts identified by this study (red dots)
with Wessel [2001] (yellow squares) and Hillier & Watts [2007] (gray triangles) near
Tuamotu Plateau. Crosses indicate locations of uninspected potential seamounts in
this study. The seamounts identified at the ridge (A) and along abyssal hills (B)
biased the previous seamount counts.

with those of Wessel [2001] (PW; yellow squares) in the eastern part of the Tuamotu

Plateau (Figure 3.10). Along the northwest-trending ridge (see A in Figure 3.10),

PW has multiple seamounts whereas KW has none after the inspections (see crosses

for the uninspected seamounts of KW). The second aspect is that seamounts are

not “features that are located on continental shelves or that are part of other major

landmasses.” Because this geographical limitation was not imposed on the bathymet-

ric studies [Kitchingman & Lai, 2004; Hillier & Watts, 2007], they found numerous

seamounts along continental boundaries (e.g., within the Gulf of California). Thus, I

can assume that any potential seamount in these databases located too far from any

of the KW seamounts is unlikely to be a seamount according to this new definition.

Furthermore, I can demonstrate how di↵erent and similar these databases are.
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With this assumption, I make a first order reconciliation between the PW and

HW [Hillier & Watts, 2007] seamount databases by choosing any seamounts in the

PW and HW databases that are within 5 km of any of the KW seamounts. This

distance (5 km) is a conservative limit that allows for di↵erences in the data used to

search for seamounts. My estimation shows that 5,461 seamounts (⇠46%) of the PW

data and 4,228 seamounts (⇠2%) of the HW data are found within 5 km from the

KW seamounts, while 2,208 (⇠16%) seamounts from the KL [Kitchingman & Lai,

2004] data are within the reconciliation distance. For further comparison, I use the

PW and HW datasets only because the KL data have the least number of reconciled

seamounts.

The most significant di↵erence between the PW and KW counts is observed for

potential seamounts less than 3 km (Figure 3.11a). This reduction is expected as

the PW data have multiple seamounts on linear ridges (e.g., Figure 3.10) and their

predicted heights fall within that range (1 < h < 3 km). If the total volume of the

non-reconcilable PW seamounts is linearly related to that of volcanic ridges, then the

contribution of such ridges to intraplate volcanism can be significant because nearly

half of the original PW seamounts are not found nearby the potential seamounts

detected by my study. Thus, although I focus exclusively on seamounts in this study,

the importance of volcanic ridges in understanding intraplate volcanism becomes

self-evident. However, the reconciled PW data (PW|KW) still show many seamounts

taller than 5 km, which KW does not have (Figures 3.11a). This means that the

locations of these seamounts are close to each other except for the estimated heights,

which leads to a further implication that these heights may be biased to some degree.

The spatial distribution of these tall seamounts in the PW|KW data demonstrates

that their heights are clearly over-predicted, because they would be islands in places

where no islands exist (Figure 3.12). Disregarding these seamounts makes the KW

and PW|KW more comparable (see blue squares and red dots in 3.11a). The di↵erence
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Figure 3.11: Height distribution of potential seamounts. a) Log-log plot of the height
distribution of potential seamounts from the KW (this study; red dots), PW [Wessel,
2001] (blue open squares), and reconciled PW (PW|KW; blue squares). b) Log-log
plot of the height distribution of potential seamounts from the KW, HW [Hillier &
Watts, 2007] (gray open triangles), and reconciled HW (HW|KW; gray triangles).
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Figure 3.12: Spatial distribution of the PW|KW potential seamounts of h > 5 km in
Figure 3.11. According to the predicted heights of these seamounts, we should see
islands (circles) at places where such features cannot be found (e.g., Southeast Indian
Ridge). Only a few of the large PW|KW seamounts are barely submerged (triangles).
This clearly indicates that their heights are overestimated. The black dots are the
KW potential seamounts.

between the HW and KW counts, however, increases as the seamount height decreases

(Figure 3.11b). Although the general trend of the height distribution is similar to

KW, the HW|KW has many fewer seamounts (especially at 1 < h < 3 km) because

of the sparse ship tracks (see gray triangles and red dots in Figure 3.11b). Taking

into account the overestimated heights of the PW|KW data and the incomplete ship-

track coverage of the HW|KW data, the similarity of all three seamount databases

within 1 < h < 6 km is noteworthy although these studies used di↵erent datasets and

methods.

For small seamounts (< 1 km), however, no general trend is observed as both

HW and HW|KW counts diverge from KW (Figure 3.11b). The direct comparison

between KW and HW (see red dots and gray triangles in Figure 3.10) implies that

HW identified abyssal hills (see B in Figure 3.10) as seamounts because heights and
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length-scales of seamounts increasingly overlap with those of abyssal hills; further-

more, seamounts and abyssal hills are di�cult to di↵erentiate in one-dimensional

profiles. In addition, it implies that the HW missed many small seamounts that I

have detected. Thus, the HW count for small seamounts becomes questionable.

The gravity signals over small seamounts (< 1 km) can be ambiguous because of

upward continuation, data resolution, altimetry noise level, seafloor roughness, and

sediment cover [Wessel et al., 2010]. Because these are the main parameters that de-

termine the maximum VGG amplitude of a seamount, I predicted VGG amplitudes

for various cases by changing these parameters and defining the “detectability” of a

seamount for a given depth and height by examining if its VGG amplitude exceeded

a prescribed threshold [Wessel et al., 2010]. A truncated cone model was used to

approximate the typical topography of seamounts, with basal radius of 4.5 times the

height and fixed truncation ratio of 0.31 [Wessel, 2001]. As more than 60% of the

seafloor has less than 200 m of sediments [Wessel et al., 2010], I assigned upper and

lower limits on sediment thickness for the oldest seafloor (i.e., 180 Ma) as 600 m and

300 m, respectively. Sediment thickness, then, was linearly interpolated to the ridges

(i.e., 0 Ma), which enabled me to relate sediment thickness to predicted depth of

the seafloor formed at a given age [Parsons & Sclater, 1977]. By equating the pre-

dicted depth to the regional depth for a given seamount, I could examine the three

cases of no sediments, minimum and maximum sediment thicknesses. In addition,

I applied a second-order, low-pass Butterworth filter with a cuto↵ wavelength of 18

km to the predicted VGG signals [e.g., Marks, 1996] and kept only the linear term

due to bathymetry [Parker, 1972]. By considering di↵erent scenarios using these con-

straints, I arrived at four “detectability zones” for seamounts (Figure 3.13). The high

detectability zone (green domain) encloses seamounts exhibiting VGG amplitudes

above the higher threshold (15 Eötvös), even when the maximum sediment thickness

and the lowest density contrast between seamount (2500 kg m-3) and sediment (2300
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kg m-3) were considered. In this zone, gravity over seamounts is easily distinguishable

from gravity due to abyssal hills and data noise. The intermediate detectability zone

(blue domain) represents seamounts having predicted VGG amplitudes above the

lower threshold (10 Eötvös) when the minimum sediment thickness and the largest

density contrast between seamount (2800 kg m-3) and sediment (2000 kg m-3) were

considered. The low detectability zone (orange domain) encompasses seamounts with

VGG amplitudes above the lower threshold when the less-dense seamount (2500 kg

m-3) and no sediment cover were considered. Finally, the null detectability zone (red

domain) groups seamounts having VGG amplitudes less than the lower threshold

because of upward continuation alone; the boundary between the orange and red

domains was obtained without the low-pass filter.

In Figure 3.13, yellow dots show the seamount population found by this study.

The majority of the potential seamounts are situated at 3–6 km depth. Seamounts

deeper than 6 km were detected near subduction zones. About 35% of the potential

seamounts are inside the red zone, although the seamount models that have VGG

amplitudes less than the given threshold (10 Eötvös) define this zone. Yet, contouring

and the automatic inspection ensured that all the identified seamounts have VGG

amplitudes larger than this threshold. This mismatch implies that the detectability

model under-predicts VGG due to the neglected nonlinear (i.e., higher order) terms

of bathymetry, fixed ratio between height and radius, di↵erences in the distributed

mass between elliptical and circular cones, and fixed truncation ratio. Despite the

gap between the real data and the simplified detectability model, many potential

seamounts inside the red zone are still questionable (especially the small, deep ones)

and may require ship bathymetry for confirmation.

The most fundamental limitation on seamount detection from gravity data is

upward continuation. Figure 3.14a shows VGG predictions due to two closely spaced

seamounts (4 km apart and 1 km tall) exhibiting a clear separation when the regional
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Figure 3.13: Modeled detectability zones for seamounts using VGG data. Each zone
is based on maximum VGG amplitudes that reflect changes in seamount height,
regional depth, density of seamount and sediment, thickness of sediment cover, and
di↵erent noise level (see text for details). Seamounts in the green zone should be
easily detected, whereas those in the red zone are problematic as they are too small
for the given depths. Seamounts in intermediate zones (blue and orange) can be
identifiable using robust methodology or better data. Yellow dots are the estimated
heights from this study. The histogram of summit depths interestingly follows a
normal distribution centered on ⇠3-km depth and illustrates that seamounts have
the potential to sustain epipelagic and mesopelagic environments crucial for marine
animals. Modified from Wessel et al. [2010].
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Figure 3.14: Limitation of topographic separation from gravity over closely spaced
small seamounts. Two 1-km tall seamounts that are 4 km apart are considered for
variable depths. Gravity anomalies over the seamounts become indistinct when the
regional depth exceeds the size of seamounts. This upward continuation fundamen-
tally limits my ability to detect seamounts. Modified from Wessel et al. [2010].

depth is 3 km or less, while the separation in the FAA predictions (Figure 3.14b)

becomes indistinct from ⇠3-km depth. Although this clearly demonstrates that the

VGG is more suitable for finding seamounts than FAA, my seamount counts for the

small seamounts (< 1 km) located in deep water (< 4 km) may be underrepresented.

About 33% of the potential seamounts fall in this category.
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3.5.1 New global seamount census

The total number of seamounts for a plate or the Earth has been one of the core ques-

tions that previous studies have tried to answer, regardless of variable data coverage

(incomplete or complete) and methodologies (manual or automatic) [e.g., Batiza,

1982; Jordan et al., 1983; Abers et al., 1988; Wessel, 2001; Hillier & Watts, 2007]. As

a complete global determination of all seamounts has yet to be made, a number of

uncounted seamounts has been obtained based on statistical extrapolation. This ap-

proach assumed that the height-frequency distribution follows either an exponential

or power-law curve. Based on the choice of curve, the total number of seamounts for

a region of interest could be fluctuating widely.
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Wessel [2001] used a power-law relationship for the PW seamounts in the 2–7 km

height range and predicted there might be 100,000 seamounts globally that are taller

than 1 km. This number has been revised recently to 125,000 seamounts with an

uncertainty range of 45,000–350,000 [Wessel et al., 2010]; however, the same power-

law condition was used. The revised power-law height-frequency distribution also

predicted 25 million seamounts taller than 100 m, but might range from 8–80 million.

This power-law curve is a straight line in a log-log plot, and the linear trend of the

PW data (see blue open squares in Figure 3.15) in the 2–7 km height range is well

described by this empirical curve, as are the PW|KW data (see blue squares in Figure

3.15). Nevertheless, the over-predicted heights of the PW|KW seamounts bias this

apparent power-low relationship and consequently inflate the predicted numbers for

global seamounts.

Hillier & Watts [2007] corrected their counts to compensate for sparse data cov-

erage and arrived at global predictions of 39,000 (h > 1 km) and 3 million (h > 100

m) seamounts. However, the comparison and reconciliation of the HW and KW data

imply that the HW count (i.e., 14,582) for seamounts taller than 1 km are overesti-

mated because the HW|KW count is only 2,931 (see triangles in Figure 3.15). Thus,

the corrected number may be significantly lower than what was reported originally.

In this study, I find 8,458 potential seamounts globally that are taller than 1

km. If I consider the 62 counted islands and possible missing seamounts due to

the SEZs and upward continuation, I can speculatively increase this number up to

10,000. Although this revised number is still lower than previous predictions, I am

confident that this count for seamounts with h > 1 km is a reliable upper limit.

In addition, the height-frequency curves derived from the KW and HW data have

curved rather than linear trends, which led Hillier & Watts [2007] to conclude that

no conventional empirical curves are adequate in describing seamount abundances

over the entire height range. This finding is also directly applicable to my height-
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Figure 3.16: Seamount density for small seamounts (0.1 < h < 1 km) as a function of
the seafloor age. The seamount density (i.e., the ratio of seamount counts to seafloor
area for each age bin) decreases for older seafloor, indicating small seamounts are
not likely detectable because their gravity signals can be subdued significantly due
to greater water depth (see dashed curve) and thick sediment coverage. Crustal ages
are sampled from the age grid 3.2 [Müller et al., 2008].

frequency curve (red circles in 3.15), which has its maximum curvature at ⇠3 km

and coincides (perhaps fortuitously?) with the transition height between circular and

stellate seamounts [Mitchell, 2001].

Due to the non-statistical height-frequency distribution (Figure 3.15) and ambi-

guity of gravity signals due to small seamounts (0.1 < h < 1 km), I am only able

to speculate about the “true” number of small seamounts globally by assuming that

the seafloor is uniformly covered by small seamounts. Geologically, small seamounts

are formed on young lithosphere near mid-ocean ridges [e.g., Smith & Cann, 1990].

This fact alone increases the detectability of these seamounts because the regional

depth near the spreading ridges is typically shallower than other parts of the oceans

[Parsons & Sclater, 1977] (i.e., less upward continuation) and the near-ridge areas

have the least sediment cover [Wessel et al., 2010], and hence the confidence level

of my count for small seamounts on the youngest seafloor is relatively higher than

that for the older seafloor (Figure 3.16). If I can assume that the seafloor produced

for any given geologic time period has experienced a constant seamount volcanism,
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a given area of the seafloor will have a constant seamount density (Figure 3.16). If

the seamount density of the youngest plate (< 10 Ma) is a proxy for the “true”

area coverage of small seamounts produced per 10 Myr for any geologic time period

(Figure 3.16), I can predict that there are ⇠30,000 small seamounts globally. If I

impose a 50% uncertainty to the observed seamount density of the youngest plate,

the predicted count for small seamounts becomes ⇠45,000. This leads to a new global

seamount census (h > 0.1 km) that ranges from 40,000–55,000. Of course, many of

these smaller seamounts would be buried by sediments but could still give rise to a

diminished gravity anomaly.

Nonetheless, the resolution of gravity is inherently limited by upward continuation.

A chain of small seamounts (h < 1 km), thus, may be indentified as a single elongated

seamount by my methods. The example of Figure 3.14 illustrates such a possibility

because the VGG amplitude over closely spaced seamounts is larger than the threshold

of this study, yet the shape of the VGG data appears as a blanket over them. For

such cases, shipboard bathymetry is preferable.

Finally, I can assess to what extent potential seamounts have been mapped by

surface ships. The histograms in Figure 3.17 show the ship data coverage per potential

seamount by calculating �s, the ratio of the number of shipboard measurements to

the total number of grid points inside the basal ellipse. The TOPO 12.1 grid has

embedded information that tells me whether a grid point is constrained by shipboard

bathymetry or interpolated by the standard prediction [Smith & Sandwell, 1994].

Only 24% of the identified seamounts have more than 10% coverage of shipboard

bathymetry (Figures 3.17a and 3.17b), while ⇠40% of the potential seamounts have

0% ship coverage. The bathymetric coverage also di↵ers for the size of seamounts

(Figure 3.17c). About 90% of the small seamounts (0.1 < h < 1 km; black) have

less than 10% ship coverage, while about 70% of the intermediate (1 < h < 3 km;

blue) and large (h > 3 km; red) have the same coverage. However, the bathymetric
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Figure 3.17: Bathymetric map coverage over potential seamounts. a) Scatter plot of
the bathymetric map coverage versus seamount height. b) Histogram of bathymetric
map coverage. Only 5,828 potential seamounts have more than 10% of their area
mapped bathymetrically; 10,062 potential seamounts have not been mapped bathy-
metrically. c) Normalized cumulative count of small (black), intermediate (blue), large
(red) seamounts as a function of bathymetric map coverage. The count is normalized
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coverage for the intermediate and large seamounts are quickly improved because they

are easily locatable. To chart these poorly constrained seamounts e↵ectively, one may

use my seamount database to plan a survey or transit so that a survey ship can pass

over one of these seamounts purposefully [Sandwell & Wessel, 2010].

3.6 Conclusions

For a global seamount analysis, I have developed a non-linear inversion method to

search for potential seamounts from the satellite-derived vertical gravity gradient grid.

The elliptical polynomial model was applied to approximate gravity anomalies due to

seamounts. In addition, the statistical significance of each potential seamount was ex-

amined using the model selection criteria with the consideration of correlated gravity

data. After making both automatic and manual inspections of potential seamounts

determined by the inversion process, I isolated 24,643 seamounts with h > 0.1 km

globally. In this count, the number of small seamounts (h < 1 km) is about twice

larger than that of large seamounts (h > 1 km). The small seamounts are mostly

found on the young seafloor and their counts decrease exponentially for old seafloor.

This reflects my count for the small seamounts is fundamentally limited due to atten-

uated gravity signals of small seamounts at deep ocean (i.e., upward continuation).

Because the size-frequency distribution does not follow typical empirical statistics, I

have assumed a constant production of small seamounts at near-ridge environment

and estimated a new census of global seamounts (h > 0.1 km) that ranges from

40,000–55,000. However, my new global seamount count is not significantly increased

from the previous counts with the improved resolution of the VGG grid and a better

methodology to characterize seamounts. The comparison of my seamount data with

the previous global studies has demonstrated that the previous counts were inflated

because of false counts at ridges and abyssal hills.
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Chapter 4

Seamount Volcanism and Its

Modulation by the Oceanic

Lithosphere

4.1 Introduction

Being a key part of the great plate-tectonic conveyer belt, new seafloor is constantly

formed at mid-ocean ridges while old seafloor is consumed at subduction zones. As

the seafloor ages, subsides and moves away from its birthplace, it becomes littered

with circular and elongated seamounts of all shapes and sizes. Much of this volcanism

appears to be associated with excess magma production in the near-ridge-transform

environment, while volumetrically a significant fraction is produced by intraplate vol-

canism. Because the existing seafloor has been formed at di↵erent times and produced

during periods with di↵erent spreading rates, the population and volume distribution

of the potential seamounts identified in Chapter 3 may reflect first-order temporal

variations in seamount volcanism that may be correlated with such changes in the

production of oceanic crust. In this chapter, I will examine the relationships between

the distribution, shapes, orientations, and volumes of the potential seamounts with

several aspects of the seafloor, such as crustal age, spreading rate at the time of crust

formation, and seafloor fabric (here assumed to be the spreading direction) with re-

spect to the orientations of elongated seamounts. To estimate the current seafloor

age and past spreading rates beneath the potential seamounts, I use the improved
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digital models of seafloor age and spreading rate [Müller et al., 2008]. The crustal

age and spreading rate beneath 23,445 seamounts were obtained from these seafloor

models (Figures 4.1 and 4.4).

4.2 Analysis and Discussion

First, I compare the spatial distribution of the global seamount population with the

age of ocean crust (Figure 4.1). For this analysis, the total basal area of seamounts

found for each age bin is obtained from their basal ellipses (see Chapter 3) and their

total volume is estimated by assuming that all potential seamounts are an elliptical

cone with a fixed truncation ratio of 0.31. The seamount count for each age bin

(Figure 4.2a) shows that ⇠43% of the potential seamounts are found on ocean crust

younger than 40 Ma (covering about 40% of the dated seafloor) and 81% of these

seamounts are of h < 1 km (see contrast between the narrow and wide columns).

The number of large seamounts (h > 1 km) found on young seafloor (< 40 Myr)

seem to reflect seamount chains produced by hotspots presently located near the

East Pacific Rise, namely Pitcairn, Easter, and Macdonald [Steinberger, 2000] and

other non-hotspot melt sources (e.g., mantle return flow) [White et al., 2006] (Figure

4.1), because the total volume of these large seamounts are more than twice than that

of small seamounts (Figure 4.2c). However, the total basal area covered by the small

seamounts is about twice that of the area covered by the large seamounts (Figure

4.2b).

If we assume that the majority of small seamounts found on young crust are vol-

canic products of near-ridge volcanism [White, 2005], the volume di↵erence observed

between the small (h < 1 km) and large (h > 1 km) seamounts (Figure 4.2c) strongly

implies that intraplate volcanism is volumetrically a significant contributor to volcanic

accretion of the young crust (< 40 Myr) apart from the seafloor-spreading process
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Figure 4.1: Potential seamounts (crosses) and seafloor age distribution. White lines
are plate boundaries from Bird [2003]. The inset is a histogram of seamount counts
versus seafloor age. The age grid version 3.2 is used [Müller et al., 2008]

itself. Interestingly, a linear growth in the total volume of the large seamounts (Fig-

ure 4.2c) starts at ⇠70 Ma, which coincides with a typical onset age of small-scale

sublithospheric convection [Fleitout & Yuen, 1984; Ballmer et al., 2007]. Although

a detailed distinction between hotspot and non-hotspot seamounts has not yet been

made for this first-order global analysis, the observed linear growth is nevertheless

noteworthy. In addition, the total volume of the large seamounts found on the oldest

plate segments of 170–150 Ma is comparable to that of the ocean crust that experi-

enced the highest seamount production rates recorded by my data (130–100 Ma).

A more comprehensive and statistically unbiased picture of the age-seamount dis-

tribution can be obtained by normalizing the seamount counts (Figure 4.2a) by the

total seafloor area of each age bin (Figure 4.2d). The area-age distribution shows an

approximately linear fall-o↵ from young crust to 160–180 Myr old seafloor (dashed

line in Figure 4.2d). The density of seamount coverage per each age bin (Figure 4.2e)

thus becomes the ratio of the seamount count to the corresponding seafloor area. The
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Figure 4.2: Histograms of seamounts, basal area, volume, seafloor area, seamount
density, and layer thickness as a function of seafloor age. a) Number of seamounts
as a function of seafloor age. Narrow columns (black) represent seamounts of h > 1
km while wide columns (gray) represent small (h < 1 km) seamounts. b) Total basal
area of seamounts as a function of seafloor age. c) Total volume of seamounts as a
function of seafloor age. An elliptical cone with a truncation ratio of 0.31 is assumed
to compute the volume of a seamount. d) Seafloor area as a function of seafloor age.
The total area of seafloor for each age bin is calculated globally and decreases linearly
for older plates (dashed line). e) Seamount density as a function of seafloor age. The
ratio of seamount counts (a) to seafloor area for each age bin yields seamount density.
f) Equivalent layer thickness as a function of seafloor age. The ratio of seamount
volume (e) to seafloor area (d) is the thickness of layer equivalent to that of oceanic
crust layer.
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density of the small seamounts (h < 1 km) decreases with plate age, whereas that of

the large seamounts (h > 1 km) remains relatively steady and in fact increases from

⇠70 Myr and beyond. This increase appears to be associated with both hotspot and

non-hotspot volcanism. Although the highest density for 170 Ma crust is mostly an

artificial signal caused by the very small seafloor area for that old age in the denom-

inator, the higher density of large seamounts identified on crust of Cretaceous age,

notably 130–110 and 160–150 Ma, is quite intriguing.

I also report the equivalent layer thickness (Figure 4.2e) determined from the ratio

between the total seamount volume and the seafloor area, for each age bin. This layer

thickness allows a comparison of the volumetric production from seamount volcanism

to that of the volcanic crust produced by seafloor spreading. Even if I just consider

oceanic layer 2 (typically ⇠2 km thick) I see that seamount volcanism, on average,

only amounts to only 1–3% of that volume. Furthermore, the total basal area of all

the potential seamounts is just 6% of the total area of the dated seafloor.

From all of these histograms, I can draw the conclusion that the oceanic crust

formed in the Cretaceous, especially the Early Cretaceous (130–110 Ma), has expe-

rienced a higher degree of seamount production than ocean crust of other ages. This

global pulse is also observed by the previous seamount studies [Wessel, 2001; Hillier,

2007]. Wessel [2001] reported a similar trend but also found multiple local peaks

at ⇠40, ⇠80, ⇠120, and ⇠160 Ma, which he suspected to be an intriguing but un-

likely correlation with Pacific tectonic history. Hillier [2007] found two main peaks

centered on 120–110 and 160–150 Ma Pacific crust and suggested that seamount pro-

duction has been persistent on the same lithosphere. However, Hillier [2007] used

2,706 seamounts of h > 1.5 km (i.e., ⇠2% of his actual seamount count for the Pacific

plate) that matched the location of any of the Pacific seamounts found by Wessel

& Lyons [1997], which formed the basis of the the Pacific results reported by Wessel

[2001]. My first-order reconciliation of these disparate seamount databases in Chapter
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Figure 4.3: Variations of small seamount count and sediment thickness as a function
of seafloor age. a) Number of small seamounts (h < 1 km) as a function of seafloor
age. Dashed line shows the exponential decay of seamount counts for older plates
(i.e., greater depth). b) Sediment thickness as a function of seafloor age. The average
(circles and dashed line) and median (triangles and solid line) sediment thickness per
each age bin are computed using the NGDC global sediment database [Divins, 2005].

3 demonstrated that both seamount databases have excessive counts from volcanic

ridges. Therefore, the multiple peaks of Wessel [2001] reported from 40 and 80 Ma

crust may indicate the volumetric contribution caused by included volcanic ridges.

The lithospheric control on seamount location proposed by Hillier [2007] also requires

a reassessment in terms of my new global seamount database (Chapter 3) and the

dense core flexure model (Chapter 2) as he obtained apparent seamount ages inferred

from the lithospheric strength underneath the seamounts.

The number of small seamounts (h < 1 km) identified in my study exponentially

decreases for older crust (dashed line in Figure 4.3a). The approximately exponential

decline in the number of small seamounts with increasing crustal age indicates that

their gravity signals are significantly attenuated due to the greater depths of older

crust [Parsons & Sclater, 1977]. As discussed in Chapter 3, the upward continuation
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e↵ect is an exponential decay term that depends on both depth and feature length

scale, so even if small seamounts were being produced uniformly in time I would

still expect to see an exponential decline with increasing age (i.e., depth). In Figure

4.3b, the sediment thickness appears to be linearly increasing for older seafloor. The

di↵erence between the linear trends of the average and median sediment thickness

implies that the sediments are unevenly distributed over the seafloor. For example,

the sediment thickness of the 180 Ma seafloor on the North America plate is more

than 20 times thicker than that of the 180 Ma seafloor on the Pacific plate. Nonethe-

less, increasing age provides more opportunity for small seamounts to become buried

completely by sediments [Wessel et al., 2010], a fate which significantly reduces the

density contrast and hence the observed gravity anomalies.

Second, I examine how the seamount distribution is related with the half-spreading

rate of the seafloor on which the potential seamounts are found (Figure 4.4). For this

comparison, similar histograms to those I discussed above are constructed, this time

as a function of spreading rate (Figure 4.5). About 64% of the identified seamounts

are found on the seafloor formed with spreading rate less than 40 mm yr-1 that consists

about 60% of the modeled seafloor (Figure 4.5d). The density of small seamounts

(h < 1 km) are about three times more than that of the large seamounts for the same

range of spreading rate (Figure 4.5e). Figure 4.4 indicates that seamounts in this

range (< 40 mm yr-1) are mainly from the Atlantic and Indian Oceans where spreading

rates have been lower and more steady over time. In contrast, the seamounts found on

the Pacific Ocean are spread over the entire range of spreading rates. For example, the

small peak centered on 115 mm yr-1 in Figure (4.5c) is due to the Easter Seamount

Chain. This focused distribution of small seamounts on the Atlantic and Indian

Oceans implies that relatively scare melt supply and prevalent amagmatic extensional

process at slow spreading system limit seamount production and growth.

Müller et al. [1998] proposed that asymmetric crustal accretion at mid-ocean ridges
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Figure 4.4: Potential seamounts (crosses) and half spreading rates. White lines are
plate boundaries from Bird [2003]. The inset is a histogram of seamount counts as a
function of half-spreading rate. The rate grid version 3.2 is used [Müller et al., 2008].

is caused by ridge migration toward mantle plumes or minor ridge jumps enforced

by asthenospheric flow between mantle plumes and nearby ridges. In their study,

the leading ridge flanks show excessive crustal accretion compared to the conjugate

trailing flanks. According to Müller et al. [1998], the leading plates moves faster

relative to the mantle than their conjugates. The conjugate trailing plates move

relatively slower than the leading plates because they are underlain by one or several

hotspots. In this respect, I assume a simple relationship between the spreading rate

and the crustal accretion that the crust formed by fast spreading is more thicker than

that by slow spreading. The wide distribution of small seamounts on crust formed by

fast spreading (see the dashed line in Figure 4.5e), thus, may indicate that seamount

production can be impeded by relatively thick ocean crust resulting from excessive

accretion. If a given melt supply can feed a small seamount on the crust formed

by slow spreading, the same supply system may not be able to produce a seamount

on the crust formed by fast spreading because the crust is too thick for the given
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Figure 4.5: Histograms of seamounts, basal area, volume, seafloor area, seamount
density, and layer thickness as a function of spreading rate. a) Number of seamounts
as a function of spreading rate. b) Total basal area of seamounts as a function of
spreading rate. c) Total volume of seamounts as a function of spreading rate. d)
Seafloor area as a function of spreading rate. e) Seamount density as a function of
spreading rate. f) Equivalent layer thickness as a function of seafloor age.
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melt system to penetrate. Like the East Pacific Rise, the fast spreading system has

relatively abundant melt supply than the slow spreading system so that this melt

supply may be able to feed a seamount. However, its growth can be limited because

the fast-moving plate carries away the seamount from its near-ridge feeding system.

Thus, the small seamounts are more densely populated on the crust formed by slow

spreading. For the large seamounts, additional melting given by upwelling plumes

and non-hotspot processes is su�cient to produce and grow them on any crust. To

strengthen this implication, however, I would need to limit my analysis to available

conjugate plate segments. In addition, the seafloor area formed during periods when

spreading rates exceeded 80 mm yr-1 is significantly smaller than other parts of the

ocean crust, which leads to increase artificially the density of seamounts and layer

thickness. The half spreading rates faster than 100 mm yr-1 can also be due to

artifacts from the modeling and gridding processes of Müller et al. [1998] because the

rate seems geologically unreasonable.

Lastly, I generate a grid of spreading direction using the model outputs from
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Figure 4.7: Distinction between circular and elliptical seamounts. a) Scatter plot
of seamount height and aspect ratio of basal ellipse. Aspect ratio limit imposed by
modeling in Chapter 3 is indicated as dashed line. A linear relationship between the
aspect ratio and height (solid line) may indicate that circular seamounts grow taller
than elliptical seamounts. The squares indicate 99% quartile height of the seamounts
(h > 2 km) for each age bin. b) Histogram of seamounts as a function of aspect ratio.
The aspect ratio larger than 0.8 can be regarded as circular seamounts (see text for
detail).
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the global plate reconstruction model of Müller et al. [2008] in order to examine if

seamount orientation is related to or determined by existing seafloor fabric, presum-

ably sub-parallel or perpendicular to spreading direction at the time of crust forma-

tion. My derived spreading direction grid, however, shows more data gaps than the

published grids of age and spreading rate (Figures 4.1, 4.4, and 4.6) because I did not

apply a global gridding scheme (e.g., continuous curvature spline in tension) to avoid

unnecessary smoothing between adjacent spreading directions. As expected, east-

west spreading is predominant along the East Pacific Rise and Mid-Atlantic Ridge,

whereas north-south spreading dominates along the Southeast Indian Ridge (Figure

4.6).

Before comparing azimuth of the major axis of each basal seamount ellipse with

the calculated spreading directions, it is first necessary to define a quantitative mea-

sure for the separation of circular and elliptical seamounts. The distribution of aspect

ratios (i.e., f = b/a) between the minor (b) and major (a) axes is asymmetrical and

centered on f = 0.8 (Figure 4.7b). However, the rapid decrease toward perfect circu-

larity (i.e., f = 1) does not indicate that seamounts are unlikely to be circular. Recall

that in the process of seamount characterization (Chapter 3), I first used the circu-

lar polynomial model to approximate the observed vertical gravity gradient (VGG)

data and purposefully changed the model for VGG seamounts to the elliptical poly-

nomial model. Although the circular model could be qualitatively adequate for some

seamounts, the elliptical model was statistically preferred because of the presence of

data noise. If the circular seamounts are closely spaced, the separation between the

seamounts becomes less distinct in VGG signals. In this case, the elliptical model will

be more preferred statistically over the circular model. Thus, based on a qualitative

assessment I define circular seamounts to be the ones with f > 0.8 (Figure 4.7).

In addition, Figure 4.7a implies that circular seamounts can grow taller than

elliptical seamounts. If the total volcanic output (i.e., volume) of a given magma
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supply stays the same either for a circular or elliptical seamount and the radius of

the circular seamount is equal to the minor axis of the elliptical seamount, the height

of the elliptical seamount (h
e

) will be less than that of the circular seamount (h
c

) by

a factor of the given aspect ratio (i.e., h

e

= fh

c

). The linear relationship observed in

Figure 4.7a may reflect such a simple volumetric di↵erence between the circular and

elliptical seamounts.

Using this aspect threshold, I obtain spreading directions at 4,277 elliptical seamounts;

this number is limited relative to actual counts mainly due to the data gaps in the

spreading direction grid. While the spreading direction is given in the full circle (i.e.,

-180o to 180o), the azimuth comparison just needs the orientation (i.e., -90o to 90o).

Thus, I examine absolute angular di↵erences between the seafloor and seamount ori-

entations and choose the smallest value as the angular di↵erence for a given elliptical

seamount. Somewhat surprisingly, this comparison indicates that there is no signifi-

cant relationship between spreading direction and seamount orientation (Figure 4.8).

Because the orientations of the seafloor fabric are the surface manifestation of the

spreading direction at the formation of the ocean crust, this result further indicates

that the pre-existing seafloor fabric by itself is less likely to dictate the orientation of

seamounts, whether small or large (Figure 4.8a), during the formation of seamounts.

In addition, it may imply that the orientation of individual seamount is mostly pre-

scribed by the magma feeding system and continuous or sporadic development of

intrusive and extrusive dikes. Another factor that might influence the orientation

of such features is the state of stress in the oceanic lithosphere. Thus, it may be

of considerable interest to examine the orientation of seamount chains and volcanic

ridges [e.g., Lynch, 1999; White et al., 2006] with respect to temporal changes in

plate motions and spreading directions, assuming these may be considered proxies for

stress directions.
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Figure 4.8: Comparison between azimuth of basal ellipse and spreading direction. a)
Scatter plot of seamount heights and angular di↵erence between seamount orientation
and spreading orientation. Only seamounts having basal ellipses with aspect ratio
< 0.8 (Figure 4.8) are considered for this comparison. The angular di↵erence is
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Histogram of seamounts as a function of direction di↵erence. The mean trend is
represented by solid line. Although no significant relationship between spreading
direction and azimuth is apparent, the di↵erence seems to increase linearly (dashed
line).
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4.3 Conclusions

I have compared the population and volume derived from my global seamount database

with the several aspects of the world’s ocean crust, such as crustal age, half-spreading

rate at the time of crust formation, and seafloor fabric, in order to investigate the first-

order temporal variations in underwater volcanism. From the volume distribution as

a function of crustal age, I have concluded that intraplate volcanism is volumetrically

a significant contributor to the volcanic accretion of young crust (< 40 Myr) apart

from the seafloor-spreading process itself, based on the observed di↵erence between

the total volumes from small (h < 1 km) and large (h > 1 km) seamounts. The

density of seamount coverage per each age bin suggests that the ocean crust formed

in the Cretaceous, especially the Early Cretaceous (130–110 Ma), has experienced

a higher degree of seamount production than ocean crust of other ages. Compari-

son between the half-spreading rate of the seafloor and the new seamount database

have determined that about 64% of the identified seamounts are located on seafloor

formed during periods with spreading rates less than 40 mm yr-1. Lastly, the abso-

lute angular di↵erences between the seafloor fabric and seamount orientations have

indicated that there is no significant relationship between spreading direction and the

seamount orientations. Thus, it may instead be of considerable interest to examine

the orientation of seamounts and volcanic ridges with any temporal changes in plate

motions and spreading directions, making the assumption that such changes influence

the magnitude and direction of stresses in the oceanic lithosphere.
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Chapter 5

Summary and Future Research

Directions

In this dissertation, I have examined the following geophysical and statistical aspects

of seamounts and their implications for underwater volcanism:

1. Using various synthetic and real examples, I have demonstrated that the uni-

form seamount density model underestimates T

e

(i.e., elastic thickness of the

lithosphere) and hence overestimates the flexural deformation caused by the

loading of a seamount. When gravity data are the only available data to con-

strain flexure modeling, the biases in flexural deformation can go unnoticed

because the predicted gravity with an underestimated T

e

(and hence overesti-

mated deflections) can nevertheless be the best fit to the observed gravity data.

This well-known non-uniqueness of solutions to the gravity field can be circum-

vented by using additional observations (e.g., seismic profiles) or mitigated by a

more rigorous analysis. In this study, I have shown that the inclusion of a dense

core is important when approximating the first-order inhomogeneous internal

seamount structure. This approximation has been tested with a new analytic

solution for the flexural deformation due to axisymmetric dense core loads (i.e.,

disc and parabolic forms). Next, I approximated the analytic dense core model

by converting it into a uniform density model with same mass as the dense core

load, which allowed me to compute flexural deflections and gravity anomalies

over a seamount in the wavenumber domain. As a real example, I have ap-

plied the dense core model approximation in predicting the lithospheric flexure
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beneath Howland Island in the Tokelau seamount chain and compared it with

the predictions of the uniform density model. Based on published ages of How-

land and the age of the underlying seafloor, traditional relationships between

T

e

and plate age predicts the elastic plate thickness beneath the seamount to

be 20–23 km, which is comparable to the best dense core model of T

e

= 26

km. However, the best uniform density model is found at T

e

= 12 km, which is

significantly less than the predicted since flexural rigidity is proportional to T

e

cubed. Therefore, I conclude that the dense core model approximates the true

mass distribution of a seamount better than the uniform density model.

2. In order to detect and characterize seamounts in the altimetry-derived vertical

gravity gradient (VGG) data, I have formulated a non-linear inversion that min-

imizes the misfit between an elliptical polynomial seamount model and observed

VGG data at potential seamounts. The inversion calculations are entirely au-

tomated and guided by two model selection criteria (i.e., Akaike Information

Criteria and F -tests) used to examine the statistical significance of potential

seamounts. Following a global search for seamounts using this inversion ap-

proach and automatic and manual inspections of the model parameters deter-

mined by the inversion, I have obtained bathymetric morphology parameters

(i.e., height h, geographical location, major and minor axes of basal ellipse,

and azimuth of the major axis) for 24,643 potential seamounts of h > 0.1 km.

Although this number is significantly lower than many previous predictions,

a first-order reconciliation of my results with the size-frequency statistics ob-

tained from those studies reveals that the previous counts are systematically

over-estimated due to multiple peaks at volcanic ridges and misidentification

of abyssal hills as seamounts. With taking account of the ambiguity of gravity

signals due to small seamounts of h < 1 km and the overlap in scale with abyssal

hills, I have tentatively estimated a new global seamount census (h > 0.1 km)
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to lie in the 30,000–63,000 range.

3. I have compared the population and volume derived from my global seamount

database with the several aspects of the world’s ocean crust, such as crustal

age, half-spreading rate at the time of crust formation, and seafloor fabric, in

order to investigate the first-order temporal variations in underwater volcanism.

From the volume distribution as a function of crustal age, I have concluded that

intraplate volcanism is volumetrically a significant contributor to the volcanic

accretion of young crust (< 40 Myr) apart from the seafloor-spreading process

itself, based on the observed di↵erence between the total volumes from small

(h < 1 km) and large (h > 1 km) seamounts. The density of seamount cover-

age per each age bin suggests that the ocean crust formed in the Cretaceous,

especially the Early Cretaceous (130–110 Ma), has experienced a higher degree

of seamount production than ocean crust of other ages. Comparison between

the half-spreading rate of the seafloor and the new seamount database have

determined that about 64% of the identified seamounts are located on seafloor

formed during periods with spreading rates less than 40 mm yr-1. Lastly, I have

examined if elongated seamount orientations are related to or determined by

existing seafloor fabric. The absolute angular di↵erences between the seafloor

fabric and seamount orientations have indicated that there is no significant re-

lationship between spreading direction and the seamount orientations. Thus, it

may instead be of considerable interest to examine the orientation of seamounts

and volcanic ridges with any temporal changes in plate motions and spreading

directions, making the assumption that such changes influence the magnitude

and direction of stresses in the oceanic lithosphere.

In order to obtain a comprehensive understanding of underwater volcanism, it may

be necessary to estimate volume contributions from volcanic ridges and seamounts

separately because the former can mask or bias the volume flux associated with
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seamounts. In this respect, the new global seamount database can serve as a starting

point to di↵erentiate between these two volcanic processes, as the data processing

used to detect seamounts could be extended to characterize volcanic ridges. Given

the limited number of radiometrically dated seamounts (< 300), lithospheric strength

estimates at seamounts can be crucial for investigating the true temporal variation

of seamount volcanism. The global pulses observed in the seamount density distri-

bution only indicate that the ocean crust formed in the Cretaceous has been subject

to intense seamount volcanism. Because the seamounts must have formed later than

the oceanic crust beneath them, the apparent ages of seamounts derived from litho-

spheric strength at the time of seamount formation can be useful in understanding

the duration of underwater volcanism. Systematic flexure modeling with the dense

core model may become possible given the new seamount database. Finally, the

seamount database with additional geophysical and geochemical databases may be

used to di↵erentiate between hotspot and non-hotspot volcanism. Hotspot-originated

seamounts serve as useful constraints when refining absolute plate motion models and

hotspot locations, while the non-hotspot seamounts can be important for testing var-

ious hypotheses on intraplate volcanic processes (e.g., lithospheric cracks, small-scale

convection, and asthenospheric flow). Such future research developments may build

on the foundation laid down by the research described in this dissertation.

108



Bibliography

Abers, G. A., Parsons, B., & Weissel, J. K., 1988. Seamount abundance and distri-
butions in the southeast Pacific, Earth Planet. Sci. Lett., 87, 137–151.

Abramowitz, M. & Stegun, I. A., 1970. Handbook of Mathematical Functions , Dover
Publications, Inc., New York, 9th edn.

Adam, C. & Bonneville, A., 2008. No thinning of the lithosphere beneath northern
part of the Cook-Austral volcanic chains volcanic chains, J. Geophys. Res., 113,
B10104, doi:10.1029/2007JB005313.

Al-Chalabi, M., 1971. Some studies relating to nonuniqueness in gravity and magnetic
inverse problems, Geophysics , 36(5), 835–855.

Ali, M. Y., Watts, A. B., & Hill, I., 2003. A seismic reflection profile study of
lithospheric flexure in the vicinity of the Cape Verde Islands, J. Geophys. Res.,
108(B5), 2239, doi:10.1029/2002JB002155.

Araña, V., Camacho, A. G., Garcia, A., Montesinos, F. G., Blanco, I., Vieira, R., &
Felpeto, A., 2000. Internal structure of Tenerife (Canary Islands) based on gravity,
aeromagnetic and volcanological data, J. Volcanol. Geotherm. Res., 103, 43–64.

Ballmer, M. D., van Hunen, J., Ito, G., Tackley, P. J., & Bianco, T. A., 2007.
Non-hotspot volcano chains originating from small-scale sublithospheric convec-
tion, Geophys. Res. Lett., 34, L23310.

Baptista, E. C., Belati, E. A., & da Costa, G. R. M., 2005. Logarithmic barrier-
augmented Lagrangian function to the optimal power flow problem, Electrical
Power Energy Syst , 27(7), 528–532.

Batiza, R., 1982. Abundances, distribution and sizes of volcanoes in the Pacific Ocean
and implications for the origin of non-hotspot volcanoes, Earth Planet. Sci. Lett.,
60, 195–206.

Batiza, R. & Vanko, D., 1983. Volcanic development of small oceanic central volcanoes
on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder
surveys, Mar. Geol., 54, 53–90.

BBC, 2005. Crew blamed for grounding US sub,
http://news.bbc.co.uk/2/hi/americas/4527459.stm.

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner,
J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson,
S., Pharaoh, A., Sharman, G., Trimmer, R., Rosenburg, J. V., Wallace, G., &
Weatherall, P., 2009. Global bathymetry and elevation data at 30 arc seconds
resolution: SRTM30 PLUS, Marine Geodesy , 32(4), 355–371.

109



Behn, M. D., Sinton, J. M., & Detrick, R. S., 2004. E↵ect of the Galápagos hotspot
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