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ABSTRACT 

 

This dissertation presents interpretations of new, high-resolution multibeam bathymetric 

data, reprocessed 3D seismic data and drill cores from the southern Kumano Basin and 

Nankai accretionary prism off southwest Japan.  These combined data sets show a widely 

variable surface morphology and provide insight into: 1) the distribution of landsliding 

along the prism, 2) a nested series of moderately-sized mass transport deposits (MTDs) 

along the seaward side of the forearc basin, 3) and record ~2.87 million years of structural 

and depositional history of a trench slope basin.  We mapped and cataloged 718 

individual landslide scars, 56% of which are part of complex (multi-slide) structures.  One 

of the more prominent complexes in the forearc basin is completely contained within the 

3D seismic volume and dates to ~0.3 – 0.9 Ma.  A kinematic investigation revealed 10 

individual landslides that originate from the same prominent scar as a likely result of 

earthquake cycle related faulting along a regional out-of-sequence thrust (megasplay 

fault).  Fault related landsliding also occurs within a trench slope basin seaward of the 

outer ridge.  The 3D seismic volume and drill core data permit a kinematic reconstruction 

of the basin since ~2.4 Ma.  In the NE, deformation is accommodated by the main 

megasplay while deformation in the SW is along break-backward imbricate branches of 

the megasplay.  We suggest that these differences are caused by subsurface geometry 

and seamount subduction and directly influence the depth and surface morphology of the 

trench slope basin via landsliding. 
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CHAPTER 1 

INTRODUCTION 

 

This dissertation’s focus is submarine landsliding on the Nankai accretionary prism off 

southwest Japan.  Submarine landslides are an important process by which sediment is 

redistributed across the seafloor.  They help shape the seafloor, range in size from a few 

hundred square meters to hundreds of square kilometers, and can cause damage both 

by destroying submarine infrastructure and generating tsunamis (Prior & Coleman 1978; 

Moore et al. 1989; Bondevik et al. 1997; Lee 2009).  In an accretionary prism environment, 

such as the Nankai Trough, landslides are largely linked to the growth of the prism and 

the prism’s underlying tectonics (Ikari et al. 2011).  The study area is located where the 

Philippine Sea Plate is presently subducting under the Amur plate at a rate of 4 to 6 cm 

yr-1 (Kimura et al. 2007a).  The Nankai Trough extends roughly 120 km NE and 400 km 

SW of the study area and is paralleled by the Cretaceous and Tertiary Shimanto 

accretionary complex that is exposed on Kyushu, Honshu and Shikoku Islands (Taira 

2001).  The NW oblique subduction has led to the creation of both an accretionary prism 

spanning roughly 700 km as well as a large right lateral strike-slip fault, known as the 

Median Tectonic Line, along the SW portion of Japan (Fig. 1.1; Fitch 1972; Taira 2001).  

While there are many factors that both precondition and cause slopes to fail, here we aim 

to better understand the mechanisms by which landsliding is initiated and distributed in 

an accretionary prism. 
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Fig. 1.1. Bathymetry of the study are and surrounding region.  The red outline represents the area of high-

resolution bathymetry while the yellow outline represents the area of a 3D seismic volume.  PSP = Philippine 

Sea Plate; FSC = Fossil Spreading Center; KPR = Kyushu-Palau Ridge; MTL = Median Tectonic Line; IBT 

= Izu-Bonin Trench. 

 

Chapter Two (Lackey et al. 2018a) involves a study of surficial processes along the 

accretionary prism. By locating landslides on the seafloor, the goal is to create a catalog 

of landslides and try to determine any spatial or temporal interactions between faults and 

landslides.  In total we mapped more than 718 individual landslide scars and three distinct 

fault populations over a 4,000 square kilometer area.  Of the 718 landslides, 80 were 

found to have a spatial relationship with a fault.  This means that while faulting is definitely 

related to and a cause of landsliding, it is not the primary cause nor primary 

preconditioning mechanism.  Therefore, something else, such as slope over steepening, 

seismic loading, or gas hydrate dissociation is at work behind causing these landslides 

(Westbrook et al. 2009; Bangs et al. 2010; Underwood & Moore 2012; Moore & Strasser 

2016; Kremer et al. 2017). 
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Chapter Three (Lackey et al. 2018b) takes a much more detailed look at two landslide 

scars within the Kumano Basin as discussed in Chapter Two.  One of the second 

chapter’s findings was a noticeable lack of surficial landslide deposits, considering the 

large number of scars that were identified (Lackey et al. 2018a).  We focused on two 

scars without deposits that are located within a 3D seismic survey (Moore et al. 2009).  

This would allow us to infer what happened to the deposits by either locating them in the 

data or by using kinematic indicators (Bull et al. 2009) to determine where they arrested.  

Although initially identified as two landslides, we found that they are actually at least 10 

landslides nested together (3 deposits on the surface and 7 in the subsurface).  We 

concluded that the location of the landslides is likely explained by faulting related to post-

seismic relaxation during the earthquake cycle (Sacks et al. 2013). 

 

The fourth chapter takes a detailed look at the seaward side of the prism using the 3D 

seismic data.  Here, we aim to investigate the tectonic influences on a prominent trench 

slope basin being overridden by the megasplay.  Several landslide scars identified in 

Chapter Two are located within this basin and may be influenced by the megasplay or 

other subsurface structures.  The 3D survey allows us to take a detailed, subsurface look 

at the true interactions between these landslides and the subsurface geology (Strasser 

et al. 2009; Kimura et al. 2011; Strasser et al. 2011).  To do this, we performed a temporal 

reconstruction of the displacement of the prism and faults using biostratigraphic age 

constraints from Integrated Ocean Drilling Program (IODP) sediment cores (Expedition 

316 Scientists 2009a, b; Strasser et al. 2012; Strasser et al. 2014).  This provided a 

working kinematic model for the prism and how it changes the overlying trench slope 

basin through faulting and subsequent landsliding. 
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CHAPTER 2 

SPATIAL AND TEMPORAL CROSS-CUTTING RELATIONSHIPS 

BETWEEN FAULT STRUCTURES AND SLOPE FAILURES ALONG THE 

OUTER KUMANO BASIN AND NANKAI ACCRETIONARY WEDGE, 

SOUTHWEST JAPAN 

 

This chapter has been published as: Lackey JK, Moore GF, Strasser M, Kopf A, Ferreira 

CS (2018) Spatial and temporal cross-cutting relationships between fault structures and 

slope failures along the outer Kumano Basin and Nankai accretionary wedge, SW Japan. 

Subaqueous Mass Movements. Geological Society, London, Special Publications, 477.  

 

Abstract 

New, high-resolution multi-beam bathymetric data from RV Sonne cruise SO251 show a 

widely variable surface morphology along the southern Kumano Basin and Nankai 

accretionary prism off SW Japan. Combined with a three-dimensional seismic volume, 

these data provide insight into the ubiquitous and varied nature of faulting typical of 

accretionary prism settings, a high number of submarine landslides across the entire 

study area that vary both spatially and temporally, a pronounced absence of slide deposit 

bathymetric manifestations, widely varied slope angles and a potential subducted 

seamount scar. We have mapped scars of 442 primary and 184 secondary landslides 

and have measured the areas evacuated by these slides. Most of the slides are 

completely disintegrative, so surficial landslide deposits are almost absent. The incidence 

with which temporally sequential slope failures and fault structures cross-cut themselves 

and one another provides evidence of potential failure pre-conditioning such as gas 

hydrates, pore fluid overpressures and bottom current activity. Seismic loading and slope 

over-steepening are then the most likely final trigger mechanisms to slope failure. The 

majority of observed landslides (64%) occur seawards of the outer ridge, providing insight 

into the relationship between surficial landsliding and subsurface tectonic processes 

along this accretionary prism.  
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Introduction 

Roughly 23% of the global population lives within 100 m elevation and 100 km distance 

from a shoreline (Nicholas & Small 2002).  This fact brings to light the need to understand 

the natural hazards to which almost 1/4 of the global population are exposed.  These 

hazards include landslides, local and eustatic sea level changes, storm activity, 

seismicity, volcanism, and tsunamis.  Of these hazards, subaqueous landslides are some 

of the least understood and characterized phenomena affecting coastal populations and 

close-to-shore operations due to their inaccessible and unpredictable nature.  Evidence 

of the potential impact was documented in the past during events such as the Storegga 

landslide in Norway 7200 years BP.  This subaqueous landslide was massive enough to 

cause a tsunami that affected the entire coast of Norway, to include a 10 to 11 m run-up 

most proximal to the slide scar (Bondevik et al. 1997).    

 

Subaqueous landslides can occur on a great variety of slopes (ranging from < 0.01º to 

vertical (Prior & Coleman 1978)) in many different environments all over the world 

including both active and passive margins, along the flanks of volcanic islands, and river 

deltas (Prior & Coleman 1978; Moore et al. 1989; Lee 2009).  They are characterized by 

their size, shape, and kinematics (Ward & Day 2001) to distinguish between such 

categories as slides, rockfalls, and debris flows.  However, for the purposes of this study, 

the terms “landslide” and “slide” will be used interchangeably in a general sense while 

more specific terms will be reserved for specific instances and occurrences. 

 

To characterize submarine landslides on the active Nankai Trough accretionary prism, 

we use high-resolution multibeam bathymetric data, regional two-dimensional (2D) 

seismic reflection lines, and a three-dimensional (3D) seismic data set (Moore et al. 2009) 

to identify their unique structure and morphology. By integrating analysis of both of these 

data types, we can identify both surface characteristics on the sea floor and subsurface 

behavior of the landslide deposit after it has arrested.  This aids in characterizing the 

landslide type and relative age.  These data provide the unique opportunity to investigate 

the distribution of subaqueous landslides and other bathymetric features along an active 

accretionary margin.  By mapping and characterizing this region in detail we aim to gain 
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a greater understanding of landslides and their potential triggers in 

depositional/accretionary environments.  Not only will this aid in landslide research for 

future hazard mitigation, but it may also provide insight into possible links between 

modern subaqueous lithologies and lithologies observed in outcrops via identification of 

landslide scar morphology and mass transport deposits (MTDs) (Sharman et al. 2017). 

 

Study Area 

The study area is within the Nankai Trough subduction zone where the Philippine Sea 

Plate is presently subducting under the Amur plate at a rate of 4 to 6 cm yr-1 (Kimura et 

al. 2007a).  The Nankai Trough extends roughly 120 km NE and 400 km SW of the study 

area and is paralleled by the Cretaceous and Tertiary Shimanto accretionary complex 

that is exposed on Kyushu, Honshu and Shikoku Islands (Taira 2001).  The NW oblique 

subduction has led to the creation of both an accretionary prism spanning roughly 700 

km as well as a large right lateral strike-slip fault, known as the Median Tectonic Line, 

along the SW portion of Japan (Fitch 1972; Taira 2001).  The prism is divided into three 

sections: the inner and outer wedge and their transition zone (Kimura et al. 2007b).  The 

present study area is located in the transition zone, characterized by steep surface slopes 

and an internal structure of out-of-sequence thrusts, and inner wedge zone, characterized 

by in-sequence imbricate thrusts (Kimura et al. 2007b).  The accreted sediment is 

primarily terrigenous detritus from Japan and hemipelagic on the Philippine Sea Plate 

(Underwood and Moore 2012).  The upper part of the hemipelagic section from the 

Philippine Sea Plate is accreted while the lower part is subducted beyond the inner prism 

(e.g., Kinoshita et al. 2009; Kimura et al. 2011; Strasser et al. 2011; Strasser et al. 2012; 

Underwood and Moore 2012; Moore et al. 2014). The inner prism is overlain by the 

Kumano forearc basin.  The seismic regime of the Nankai region is well established with 

a recurrence time of roughly 100 to 200 years for large earthquakes (Ando 1975).  The 

rapid growth of the accretionary prism is an important factor for large, repeated 

earthquakes in this subduction zone setting (Ruff & Kanamori 1980).  Of particular interest 

to the present study, the hanging wall block of the seismogenic fault zone is composed 

entirely of the accretionary prism.  This, in turn, promotes surface erosion along the 
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entirety of the trough that partly manifests as landslides and other mass movements 

(Kimura et al. 2007a). 

 

The present study area is the seaward edge of the Kumano forearc basin and the 

associated accretionary prism (Fig. 2.1).  This roughly 4,000 km2 area is located entirely 

within the transition zone of the accretionary wedge between 20 and 45 km from the 

deformation front (Kimura et al. 2007b).  Depths vary from 1300 m along the outer ridge 

to 3700 m toward the trench. Notable bathymetric characteristics include numerous faults, 

landslides both on the basin and wedge sides of the outer ridge, and two likely subducted 

seamount scars (e.g., Strasser et al. 2009; Moore et al. 2013). 

 

To accomplish the goal of understanding the characteristics of landslides in the region, 

we utilized newly acquired bathymetric data to identify small (less than 1 km2) to moderate 

(less than 100 km2) sized landslides.  The ubiquitous nature of these identified features 

permits an analysis of their spatial and physical characteristics with the aim of 

characterizing landslides in this area in greater detail than has previously been 

accomplished.  After a thorough analysis of the area’s landslides, the same bathymetric 

data allow for the identification of fault structures and other sea floor features to analyze 

the cross-cutting relationships with landslide type, size and distribution.  To validate 

conclusions drawn from the bathymetry, seismic cross sections (extracted from a 3D 

seismic volume; Moore et al. 2009) were employed to identify the subsurface structures 

controlling the location of faults and their morphology.  Using both bathymetry and seismic 

data will aid in pinpointing any relationships between landslides and subsurface features 

in the area. 
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Fig. 2.1. Regional map of the study area.  The location of the SO251 bathymetric data set is outlined in red 

while the boundary of the 3D seismic volume is outlined in yellow. 

 

Methods 

Bathymetry and acoustic backscatter data were acquired with a 0.5º × 1º Simrad EM122 

multibeam system on R/V Sonne. The multibeam system was calibrated with 2 Chlorinity 

Temperature Depth (CTD) water column sound velocity profiles in the basin. The 

bathymetric data were gridded in 30m × 30m cells in latitude and longitude using MB-

System 5.4 (Caress & Chayes 2008) and Generic Mapping Tools 5.1 (GMT) (Wessel et 

al. 2013) software. 

 

The 3D survey covers roughly 12 km x 56 km extending from the Kumano Basin seaward 

to the frontal thrust in the dip direction.  Acquisition occurred aboard the M/V Nordic 

Explorer from April 2006 to May 2006 under contract by Petroleum Geo-Services (PGS).  

Two sound source arrays (totaling 51 L or 3090 in3) were utilized and fired alternately at 

37.5 m shot intervals.  The survey used four 4500 m long receiver cables spaced 150 m 
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apart with 360 receiver groups at 12.5 m spacing.  This geometry yielded 8 source-

receiver common midpoint (CMP) lines per sail line at 37.5 m spacing (Moore et al. 2009). 

 

We used headwall scarps as the primary means of visually identifying landslides in the 

study area.  They were easily resolved in the data set because these features can be 10’s 

or 100’s of meters high (Ward & Day 2001), typically have a characteristic inverted “U” 

shape that points in the downslope direction, and have slopes that generally exceed 10º 

(easily distinguishable from the surrounding slopes of < 6º).  The extent of each slide was 

determined by following the sidewall scarp morphology for each slide and, where 

possible, by identifying the toe of the slide deposit (Fig. 2.2).  Landslides were mapped 

manually as user-defined polygons using the Global Mapper software package. 

 

Fig. 2.2. Location shown in Figure 2.5.  Two examples of morphological features used to identify landslide 

scars in bathymetry.  Scar A is interpreted to have a fully disintegrated deposit.  Scar B has a clearly visible 

deposit and toe. HS, headwall scarp; SW, sidewall; DT, deposit toe; dashed arrows indicate direction of 

slide propagation. 
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The following characteristics were then observed and/or calculated for each individual 

landslide: 

 

(a) location as measured by the visual center of the headwall scarp recorded in 

decimal degrees longitude and latitude; 

(b) headwall scarp height and slope angle as measured from the deepest point to the 

shallowest point of the headwall scarp using the Global Mapper 3D path tool; 

(c) area as calculated from the area of the enclosed polygon; 

(d) evacuated volume as calculated from the Global Mapper volumetric calculation  

 tool of each enclosed polygon (Fig. 2.3); 

(e) hierarchy of each slide being primary (red polygon, the initial slope failure in a given 

location), secondary (green polygon, occurs either downslope within the primary 

landslide’s scar or as an upslope event that cuts across the primary landslide scar) 

or tertiary (blue polygon, any other landslide that cuts across secondary slides) 

after Katz et al. (2015); 

(f) cross-cutting relationships with fault structures (Fig. 2.4). 

 

Fig. 2.3. Evacuated volume measurement method. (a) Adapted from McAdoo et al. 2000.  Schematic 

diagram of landslide volume calculation.  (b) Schematic diagram of the Global Mapper software’s volume 

calculation.
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Fig. 2.4. Observed cross cutting relationships. Map view images of bathymetric data from the Global Mapper software.  Image locations are indicated 
in Fig. 2.5.  Red, green and blue polygons are primary, secondary and tertiary landslides respectively.  Yellow lines indicate faults.  Only faults that 

interact with landslides are identified in the images.  (a) The fault is the apparent cause of the landslide.  Secondary landslide 2 (S2) appears to 

have been caused by normal fault 1 (NF1) and the tertiary landslide (T) appears to have been caused by normal fault 2 (NF2).  The primary landslide 

(P) displays relationship “c” with normal fault 1 (NF1) and secondary landslide 1 (S1) is part of the entire complex landslide structure.  (b) The 

landslide covers the fault scarp.  The deposit from primary landslide 1 (P1) covers the normal fault (NF).  Primary landslide 2 (P2), secondary 

landslide 3 (S3) and the tertiary landslide (T) display relationship “a” with the normal fault.  Secondary landslides 1 and 2 (S1, S2) are part of the 

entire complex landslide structure.  (c) The fault cuts across a landslide scar.  Normal fault 1 (NF1) creates a bathymetric offset across the primary 

landslide (P) and secondary landslide 2 (S2) while normal fault 2 (NF2) creates an offset across only the primary landslide (P).  Secondary landslides 
1 and 3 (S1, S3) are part of the entire complex landslide structure. (d) Relationships b and c apply to a single landslide.  The primary landslide (P) 

displays relationship “b” by covering parts of normal faults 1 through 4 (NF1, NF2, NF3, NF4) and displays relationship “c” by being cut by normal 

faults 5 through 7 (NF5, NF6, NF7).  The secondary landslide (S) displays relationship “b” by covering normal fault 6 (NF6). 
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The Global Mapper software calculates the volume and area for a given polygon.  The 

points along the perimeter of the polygon are connected to create a planar surface that 

serves as landslide area and as the top of the volume to be calculated.  Elevation data 

are then used to calculate the base of the volume.  A similar method was successfully 

used by ten Brink et al. (2006) to measure volumes of carbonate landslides from northern 

Puerto Rico. 

 

To further constrain the volume data, evacuated volumes of landslides that were part of 

complex structures were calculated by subtracting secondary and/or tertiary landslide 

evacuated volumes from the primary and/or secondary landslide.  Because the evacuated 

volume of the initial slide would not include the evacuated volume of any subsequent 

slides, it is not appropriate to include this volume as measured by the Global Mapper 

volumetric calculation tool.  This volumetric correction was required for 31 landslides 

resulting in a total volume correction of 0.29 km3 or 16.2%. 

 

The primary morphological characteristics used to identify faults are a relatively steeper 

slope than surrounding bathymetric features and little deviation in strike along the 

seafloor.  To ensure the accuracy of our identification method, two lines from the 3D 

seismic volume are interpreted and compared to the bathymetric data.  Seismic lines are 

interpreted landward of the outer ridge because faults in this area are more ubiquitous 

and uniform.  This presents more opportunities to compare faults identified in bathymetry 

to seismically interpreted faults.   

 

Faults were mapped manually as user defined polyline features in the Global Mapper 

software.  A full characterization and mapping of fault structures within the study area is 

outside the scope of this paper and has been well documented by Kimura et al. (2011) & 

Moore et al. (2013).  This study does, however, aim to identify seafloor fault structures 

that cut or are cut by landslides to aid in the determination of spatial and/or temporal 

relations with landslides.   

 

 



 13 

Results 
Morphology 

Overall, we mapped and characterized 718 landslides in the study area.  The total area 

of failed slopes covers approximately 595 km2 with 81.6% (485 km2) of the failed slope 

area occurring seaward of the outer ridge, as would be expected in an accretionary 

environment.  Landslides ranged in depth from 1308 meters below sea level (mbsl) at the 

highest observed headwall scarp to 3615 m at the lowest observed headwall scarp.  The 

largest single failed slope is 86.2 km2 while the smallest measured failed slope is 4.7 x 

10-3 km2.  Headwall scarps ranged in height and slope angle from 6.2 m to 660.4 m and 

4.5º to 33.1º with mean values of 68.1 m and 16.9º respectively.  Primary landslides 

account for 61.5% (442) of the total number mapped while secondary landslides account 

for 25.6% (184) and tertiary landslides for 12.8% (92).  Following the categorization of 

Katz et al. (2015), landslides displayed either a “simple” or “complex” overall structure.  

Simple landslides are defined as single events that result from a single slope failure 

whereas complex landslides result from a hierarchal pattern of multiple sequential slope 

failures over time.  Of those observed, 44% (317) of the landslides are categorized as 

simple while the remaining 56% (401) are part of 81 separate complex structures. 

 

Size and Distribution 

Across the entire study area, the majority of observed landslides, 64%, occur seaward of 

the outer ridge (Fig. 2.5).  Landslides range in surface area from roughly 4.7 x 10-3 km2 

being the smallest measured to 86.2 km2 being the largest measured.  The footprint of 

the bathymetric data is 9 x 10-4 km2, indicating that the methodology used to create the 

inventory of identified landslides is complete and comprehensive.  The mean area for all 

landslides is 0.83 km2 while the median is 0.16 km2.  The large difference between these 

two values is indicative of a distribution that is positively skewed toward larger area 

values.  Of the 718 landslides, only 94 (13%) were larger than 1 km2 accounting for 458 

of the 595 km2 (77%) of failed slope area.  Because of the skewed nature of the data, the 

median is the more accurate representation of the central tendency (Fig. 2.6).  The 

evacuated volume of landslides has a mean of 1.9 x 10-2 km3 with a median of 9.7 x 10-4 

km3.  Here again, the median is the more accurate central tendency representation 
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because of the data exhibiting a skewed distribution.  The most and least volumetric 

evacuations were 3.77 km3 and 4.0 x 10-6 km3 respectively, further demonstrating the 

wide range of landslides in the study area (Fig. 2.6). 

 
Fig. 2.5. Landslide locations. Polygons represent manually mapped landslide areas.  Dashed lines are 

seismic line locations used in Fig. 2.8 & 2.9.  SSF, strike-slip fault; NF, normal fault; TF, thrust fault.  
Generated using the Generic Mapping Tool (Wessel et al. 2013). 

 

It is important to note the most likely sources of error for these measurements.  

Geomorphic landslide parameter measurement errors increase with increasing area, 

volume, and hierarchal complexity of the landslide(s) due to a higher degree of difficulty 

in determining the slide boundaries.  While the headwall and sidewall scarps of a slide 

scar more readily remain visible in the bathymetry throughout sediment deposition, the 

scar itself infills with new sediment, causing the measured volume to be less than the 

actual volume.  Additionally, it is likely that the top layers of sediment (10s to 100s of cm) 
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have been remobilized many times because of seismic activity (Ashi et al. 2014).  

Redistributing surficial sediment across scarps can alter their surface morphology and 

bring about inaccuracies in area and volumetric measurements. 

 

The full area of many landslides was unmeasurable as no deposit or only partial deposits 

were present.  Of the 718 identified landslides, only 192 had full or partial deposits (66 

and 136 respectively) indicating that landslide deposits in this region are largely fully 

disintegrative.  For this reason, the majority of area measurements were made from the 

headwall scarp to the furthest observable sidewall scarps (Fig. 2.3).  Fault structures that 

cross cut slide scars also increase the complexity and difficulty in making accurate 

measurements.  Both the evacuated volume and area are geometrically distorted as a 

result of the fault’s interaction with the slide scar and, in most cases, cannot be fully 

accounted for in the measurements. 

 

To further constrain the volume data, evacuated volumes of landslides that were part of 

complex structures were calculated by subtracting secondary and/or tertiary landslide 

evacuated volumes from the primary and/or secondary landslide.  Because the evacuated 

volume of the initial slide would not include the evacuated volume of any subsequent 

slides, it is not appropriate to include this volume as measured by the Global Mapper 

volumetric calculation tool.  This volumetric correction was required for 31 landslides 

resulting in a total volume correction of 0.29 km3 or 16.2%. 
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     a)                                                                                             b) 

     c)                                                                                             d) 

 
Fig. 2.6. Log plots of landslide characteristics. (a) Plot of landslide area versus cumulative number of landslides.  (b) Plot of landslide evacuated 

volume versus cumulative number of landslides. (c) Plot of head scarp height versus cumulative number of landslides.  (d) Plot of head scarp angle 

versus cumulative number of landslides. 
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Morphological Relationships 

Once a high confidence in area and volumetric measure was achieved for all landslides, 

it was found that 542 (75.5%) are smaller than 0.5 km2 and 594 (82.7%) are smaller than 

0.01 km3 respectively.  Head scarp heights are less than 100 m for 593 (82.6%) landslides 

and head scarp slope angles are less than 20º for 518 (72.1%) landslides (Fig. 2.6).  The 

primary statistical correlation is between landslide area and evacuated volume 

(correlation coefficient of 0.96).  Outside of a very weak correlation between head scarp 

height and head scarp slope angle (correlation coefficient of 0.55), no statistical 

correlation exists between head scarp height and any other measured parameter.  Also, 

there are no other correlations between head scarp slope angle and any other measured 

parameter.  Based on this and the observed locations of landslides with large head scarp 

heights, we believe head scarp height to be a function of landslide location on the 

accretionary prism (i.e. proximity to thrust fault scarps). 

 

As with other large submarine landslide inventories (ten Brink et al. 2006; Urgeles & 

Camerlenghi 2013; Katz et al. 2015) we found that the population characteristics fit a 

power law relationship within certain bounds.  Landslide volume fits to a power law 

behavior for volumes greater than 0.019 km3.  Below this volume the population tends to 

exhibit a logarithmic behavior, although not as strongly (Fig. 2.7).  Landslide area also 

exhibits a power law behavior for areas greater than 0.9 km2 and a more characteristic 

logarithmic behavior for areas small than this (Fig. 2.7).  The logarithmic behavior of these 

characteristics is interesting when compared to other inventories.  ten Brink et al. (2006) 

and Urgeles & Camerlenghi (2013) both attribute the “roll over” (point at which population 

behavior changes) in the data to a likely under sampling of smaller landslides due to 

bathymetric resolution limitations.  Due to the comprehensive nature of this study 

regarding smaller landslides it appears that the “roll over” is more likely due to geological 

influences than sampling constraints.  The differences in power law exponents between 

studies is also likely due to the geological setting of each data set (active and passive 

margins, deltas, etc.), however investigating these differences further is outside the scope 

of this study. 
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a)                                                                 b) 

 

Fig. 2.7. Loglog plots of landslide characteristics showing power law and logarithmic behaviors. (a) Plot of 

landslide volume versus cumulative number of landslides.  (b) Plot of landslide area versus cumulative 

number of landslides. 

 

Faults 

We distinguish three primary groups of faults in the data.  Normal faults are found primarily 

on the basin side of the accretionary prism and within the subducted seamount scar.  

Thrust faults are located along the seaward side and at the apex of the accretionary 

wedge (e.g., Moore et al. 2009; Strasser et al. 2009; Kimura et al. 2011).  We also 

identified a few strike-slip faults along a second inferred subducted seamount scar.  While 

the study of the seamount scars is outside the scope of this paper, it is important to 

recognize the faults that can occur because of these subduction events.  Sand box 

experiments have shown that a subducting bathymetric high creates a variety of fault 

structures dependent upon the high’s general morphology (Dominguez et al. 1998).  All 

three fault types are present indicating a likely source of cross-cutting relationships and/or 

slope failure causal mechanisms for the present study. 

 

Faults are found to traverse predominantly along strike of the accretionary wedge. There 

are three instances of faults identified in bathymetry that are not interpreted in the seismic 

data (Fig. 2.8).  Fault 2 is not interpreted in seismic line 2390.  However, the fault appears 

in seismic lines 2411 to 2440 (Fig. 2.9) indicating one of two likely scenarios: either the 

user drawn polyline feature is incorrectly drawn (too long) or the fault has been eroded 
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due to landslide processes.  Faults 1 and 3 are either bathymetric misidentifications or 

are newly developed faults that manifested between the acquisition of the 3D seismic 

volume (2006) and the bathymetric data (2016).  Verification of our method results in 

accurately identifying a fault more than 90% of the time using bathymetric data alone, 

thus placing a high level of confidence in our method. 

 

Cross-cutting Relationships 

Numerous instances of faults and landslides spatially overlapping and interacting occur 

within in the study area.  Examples of interaction are found on both sides of the outer 

ridge between normal faults and landslides and between thrust faults and landslides.  We 

did not identify interaction between strike-slip faults and landslides, although this could 

be due to the limited occurrence of strike-slip faulting in the study area or to the difficulty 

in identifying the strike-slip component of displacement in seismic section. 

 

Of the 718 landslides mapped, 80 have a cross-cutting relationship with a fault.  

Interactions between faults and landslides are divided into 4 categories based on their 

cross-cutting relationships (e.g., Katz et al. 2015): 

 

(a) a mechanical relationship in which the fault predates the landslide as evidenced 

by the fault being the apparent cause of the landslide (Fig. 2.4(a)); 

(b) a non-mechanical relationship in which the fault predates the landslide as 

evidenced by the landslide covering or cutting the fault scarp (Fig. 2.4(b)); 

(c) a second non-mechanical relationship in which a fault postdates a landslide as 

evidenced by the fault cutting across a landslide scar or deposit (Fig. 2.4(c)); 

(d) a case in which more than one of the above relationships appear to apply to a 

single landslide (Fig. 2.4(d)). 

 

Utilizing this scheme, we mapped 17 mechanical relationships (a), 31 instances of slides 

covering faults (b), 17 instances of faults cross-cutting slide scars or deposits (c) and 13 

instances of coexisting relationships (d). 
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Fig. 2.8. Seismic lines and bathymetry extracted from 3D volume. The top seismic image is Inline 2390 and 

the bottom seismic image is inline 2186.  Red dashed arrows indicate locations of faults identified using 

bathymetric data, red dashed arrows with "X's" are possible bathymetric misidentifications, red lines indicate 

fault plane reflectors, yellow lines indicate bottom simulating reflectors, and blue areas are previously 

identified mass transport deposits identified by Moore & Strasser (2016).  The red lines across the 

bathymetry indicate the location and extent of the seismic lines. 
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Fig. 2.9. Coherency depth slice 2148.  The depth slice is taken 100 mbsf at the location of fault “2” in Fig. 

2.8.  The seismic image is inline 2440.  Red dashed lines indicate a fault while white lines indicate inline 

and cross line locations for reference. 

 

Discussion 

The areal distribution of cross-cutting relationships helps to constrain likely trigger 

mechanisms to sliding.  Of the 80 observed relationships, 60 are found in the western 

area of the study area (19 seaward and 41 landward of the outer ridge) while only 20 are 

in the eastern half (10 seaward and 10 landward of the outer ridge).  Additionally, areas 

where faulting causes landslides (relationship “a”) occur primarily seaward of the outer 

ridge (12 of 17, or 71%), and areas where slides cover or cut faults scarps (relationship 

“b”) occur primarily landward of the outer ridge (27 of 31, or 87%) while faults cutting 

slides (relationships “c” and “d”) are evenly distributed throughout the study area. This 

distribution indicates that faulting is more likely to be a trigger for landslide initiation 

seaward of the outer ridge where thrust faulting tends to dominate.  While fault triggered 

landslides are not absent landward of the outer ridge, they appear to be far less common 

(17 of 80, or 21%) indicating that there are other trigger mechanisms at work in the 

Kumano Basin. 

 

The constant supply of terrigenous sediment could precondition slopes for failure.  

Although sedimentary strata vary along and across strike of the entirety of the 

accretionary prism, the 78 to 207 m thick slope apron deposited on the Kumano section 

largely consists of interbedded hemipelagic mud, volcanic ash, and silt and silty sand 
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turbidites as identified in various cores throughout the region (Kimura et al. 2011; Strasser 

et al. 2011; Underwood & Moore 2012).  The mud contains increasing concentrations of 

calcareous nanofossils up stratigraphic section, indicating tectonic activity causing uplift 

above the carbonate compensation depth (Underwood et al. 2003).  Pore fluids entrained 

within the turbidite layers may have become trapped between mud layers during 

diagenesis.  The trapped fluids would increase poor pressures locally potentially creating 

a mechanically weak failure plane.  During wedge growth, this failure plane can be 

activated via many mechanisms including slope over-steepening or seismic loading (Ikari 

et al. 2011). 

 

Methane gas and hydrates (frozen gas) exist along most continental margins (Milkov 

2004).  These reservoirs have been hypothesized to be metastable with minor changes 

in temperature and/or pressure initiating methane venting or hydrate dissociation 

(Westbrook et al. 2009).  This venting and dissociation can lead to seafloor mobilization 

or failure.  Strong bottom currents, often found in combination with strong surface currents 

(Holbrook et al. 2002) such as the Kuroshio Current, can erode 10’s of meters of sediment 

thereby changing the temperature-pressure conditions at a particular site.  If the 

conditions change enough, free methane gas venting or hydrate dissociation from within 

the underlying strata could initiate landsliding locally or on kilometer scale sections of the 

seafloor (Westbrook et al. 2009; Bangs et al. 2010).  Bangs et al. (2010) have 

hypothesized this to be the case in a large section of the Nankai accretionary prism and 

is therefore likely to be both a preconditioning factor and trigger mechanism of landsliding 

throughout the study area (Kremer et al. 2017). 

 

The Nankai region has a well-documented and regular history of small and great 

earthquake activity (Ando 1975; Kimura et al. 2011; Moore et al. 2013).  Great 

earthquakes along the margin, which has been in motion since 6 Ma (Saffer et al. 2010), 

are documented as far back as 648 AD with a recurrence interval of 100 to 200 years 

(Ando 1975).  If a splay fault, such as the Nankai megasplay, ruptures co-seismically, 

amplification of seismic ground shaking can occur within the hanging wall (Abrahamson 

& Somerville 1996).  This has been suggested for Nankai and other splay fault systems 
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(e.g., Plafker 1972; Tanioka & Satake 2001; Baba et al. 2006), thereby representing a 

plausible causal link between seismic loading and slope failure.  However, as noted by 

Moore & Strasser (2016) the recurrence interval for landsliding in the Kumano Basin 

appears to be on the order of 0.05 to 0.1 Ma, which is much less frequent than the 

recurrence interval for Nankai’s great earthquakes.  This implies that seismic loading, 

while a possible ultimate trigger for landsliding, likely requires a slope to be pre-

conditioned to fail before failure actually takes place as also suggested by Strasser et al. 

(2012) and Kremer et al. (2017) seaward of the Kumano Basin. 

 

An actively deforming accretionary prism combined with mechanically weak sediment 

layers suggests that the primary triggering mechanism is either slope over-steepening 

due to the formation of anticlinal structures or seismic loading that triggers failure within 

weak layers.  However, it is important to note that the slopes are likely preconditioned for 

failure regardless of final triggering mechanism for various reasons such as interactions 

with fault structures (as evidenced by this study), bottom current activity, lithology, and 

gas hydrate dissociation (Westbrook et al. 2009; Bangs et al. 2010; Underwood & Moore 

2012; Moore & Strasser 2016; Kremer et al. 2017). 

 
Conclusions 

As evidenced by a high occurrence? of unique morphological structures, landslides and 

faults are ubiquitous phenomena on the accretionary prism of the Nankai Trough of SW 

Japan.  While the 718 observed landslides are widespread throughout the study region, 

many of them occur in complex structures involving multiple temporally sequential 

landslides seaward of the outer ridge on the actively deforming transition zone of the 

accretionary prism.  Faults tend to strike along the accretionary prism (WSW to ENE) and, 

while not found to be a primary triggering mechanism, appears to play a role in the 

preconditioning of various slopes for failure.  Additionally, methane gas and hydrates, 

pore fluid overpressures, and bottom current activity all are likely factors that precondition 

slopes in the study area for failure.  Seismic loading and slope over-steepening are then 

the most likely final trigger mechanisms to slope failure. 
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CHAPTER 3 

THREE-DIMENSIONAL MAPPING AND KINEMATIC 

CHARACTERIZATION OF MASS TRANSPORT DEPOSITS ALONG THE 

OUTER KUMANO BASIN AND NANKAI ACCRETIONARY WEDGE, 

SOUTHWEST JAPAN 

 
This chapter has been published as: Lackey JK, Moore GF, Strasser M (2018) Three-

dimensional Mapping and Kinematic Characterization of Mass Transport Deposits Along the 

Outer Kumano Basin and Nankai Accretionary Wedge, Southwest Japan. Prog. Earth Planet. 

Sci., Special Issue, v. 5/65. 

 

Abstract 

Three-dimensional (3D) seismic data from the southern Kumano Basin of southwest 

Japan image a nested series of moderately sized mass transport deposits (MTDs) that 

slid from a slope along the seaward side of the forearc basin. The deposits are dated to 

be approximately 0.3 to 0.9 Ma. These MTDs are likely linked to the movement along a 

prominent out-of-sequence thrust (OOST) fault, regionally steeper slopes that would have 

existed during deposition, and shifts in sedimentation over the past 0.9 Ma. The spatial 

resolution provided by the 3D seismic data permits the identification of kinematic 

characteristics and the internal geometries of the MTDs which total over 2.8 km3 in volume 

and cover more than 59 km2 of the seafloor at various stratigraphic levels. Each MTD is 

well imaged and exhibits various kinematic indicators while most of the basal glide planes 

and original headwall scarps above the deposits have been partially or fully eroded by 

subsequent MTDs. There are at least seven individual deposits that range in volume from 

0.005 to 1.16 km3, in area from 0.2 to 21.8 km2; have runouts between 0.55 and 7.9 km, 

and generally translate downslope from the SE to NW. Basal, internal, and top surface 

kinematic indicators, such as grooves, thrust and fold systems, and pressure ridges, show 

that these MTDs originate from a prominent slide scar recognized in the high-resolution 

regional bathymetry. This, combined with a regionally shifting depocenter and faulting 
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related to the earthquake cycle, points to regional tectonic activity as being the most likely 

failure trigger for these nested landslides.  

 

Introduction 

Subaqueous landslides occur in many different environments all over the world including 

both active and passive margins, along the flanks of volcanic islands, and river deltas 

(Prior and Coleman 1978; Moore et al. 1989; Lee 2009) and can occur on a great variety 

of slopes (ranging from < 0.01º to vertical (Prior and Coleman 1978)).  These slides can 

be devastating to seafloor infrastructure via high speed turbidity currents and to coastal 

communities in the form of tsunami (Bondevik et al. 1997; Bardet et al. 2003; Satake 

2012).  Characterization by their size, shape, and kinematics allows us to better 

understand how they initiate and translate downslope to the point at which they arrest 

(Ward and Day 2002). 

 

The movement of the failed mass from the source of failure to the point of arrestment can 

be analyzed and described using kinematic indicators present in either seismic data (Prior 

et al. 1984; Bøe et al. 2000; Gee et al. 2005, 2006) or outcrops (Farrell 1984; Lucente 

and Pini 2003; Matheus et al. 2017).  In a general sense, kinematics describes the motion 

of bodies without the consideration of the body’s mass or forces that caused its motion.  

Here, we follow Bull et al. (2009) in defining “kinematic indicator” as a geologic structure 

or feature which records information related to the type and direction of motion at the time 

of emplacement.  This information is of great use in helping us understand the motions 

involved with slide initiation, evolution during translation downslope, and cessation.  

Additionally, because of the complex nature of submarine landsliding, many variably 

active processes are likely involved in each mass movement.  This leads to a litany of 

potential classifications and terminology.  Here we chose to simplify the classification of 

deposits from various mass movements identified in the data as simply “mass transport 

deposits” (MTD).   

 

This study represents a unique opportunity to analyze several Quaternary MTDs via a 3D 

seismic reflection survey in the Kumano Basin along the Nankai accretionary prism.  
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Some of these MTDs were previously identified by Moore and Strasser (2016), however, 

no kinematic analysis was performed nor was a reconstruction of the original slope 

attempted.  Because they are fully imaged in the 3D survey, a complete analysis of 

kinematic indicators and morphology is possible.   A kinematic analysis of these MTDs 

should provide greater insight into the depositional environment in which sliding occurred 

and determine a possible explanation as to the origin of a prominent seafloor scar (Lackey 

et al. 2018a). 

 

Regional Setting and Study Area 

The Kumano Basin is within the Nankai Trough subduction zone where the Philippine 

Sea Plate is presently subducting under the Amur Plate at a rate of 4 to 6 cm yr-1 (Seno 

1989).  The NW oblique subduction has led to the creation of an accretionary prism 

spanning roughly 700 km, with the overall oblique slip being apportioned along a large 

right lateral strike-slip fault, known as the Median Tectonic Line, landward of the prism 

(Fitch 1972; Taira 2001).  The accreted sediment is primarily terrigenous detritus from 

Honshu arc, Japan and hemipelagic deposits on the Philippine Sea Plate (Underwood 

and Moore 2012).  The upper part of the hemipelagic section from the Philippine Sea 

Plate is accreted while the lower part is subducted beyond the inner prism (e.g., Kinoshita 

et al. 2009; Kimura et al. 2011; Strasser et al. 2011; Strasser et al. 2012; Underwood and 

Moore 2012; Moore et al. 2014). The inner prism is overlain by the Kumano forearc basin 

which has formed over approximately the past 1.95 to 2.0 Ma behind the outer ridge that 

is believed to be the result of movement along the mega-splay fault (Gulick et al. 2010; 

Moore et al. 2015).  The seismic recurrence interval of roughly 100 to 200 years for large 

earthquakes has been well established for Nankai (Ando 1975).  The rapid growth of the 

accretionary prism is an important factor for large, repeated earthquakes in this 

subduction zone setting (Ruff and Kanamori 1980). 

 

The present study area is within the Kumano forearc basin just landward of the outer ridge 

of the accretionary prism (Fig. 3.1).  The 3D seismic data used for this study covers 

roughly 275 km2 (Moore and Strasser 2016) and is located entirely within the transition 

zone of the accretionary prism between 35 and 50 km from the deformation front (Kimura 
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et al. 2007).  Seafloor depths vary from 1700 m seaward of the study area to 2100 m 

landward. Notable characteristics include numerous faults in both the 3D data and 

bathymetry, temporally sequential landslide scars, and an absence of surficial landslide 

deposits (e.g., Strasser et al. 2009; Moore et al. 2013; Lackey et al. 2018a). 

 

Fig. 3.1. Study Area.  High resolution bathymetry of the Kumano Basin acquired by R/V Sonne during 

Cruise SO251 in 2016 (Strasser et al. 2017).  Trapezoidal inset shows a slope gradient map of a prominent 

seafloor scar from Lackey et al. (2018) and the location of IODP drill site C0002. 

 

Methods 

To identify MTDs and kinematic indicators, we interpreted several prominent horizons 

throughout our 3D seismic survey, including basal shear surfaces (BSS), tops of MTDs, 

and various depositional layers. Amplitude and coherency data are then displayed on 

these horizons to highlight geomorphic structures and kinematic indicators with the goal 

of reconstructing the various MTDs to their original positions.  To validate conclusions 

drawn from the data, we compare our results to other subaqueous landslide kinematic 
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studies (e.g. Frey Martinez et al. 2005, 2006; Gee et al. 2005, 2006; Bull et al. 2009; 

Moore and Strasser 2016) that utilize 3D seismic reflection data. 

 

3D Volume 

The full 3D survey covers roughly 12 km x 56 km extending from the Kumano Basin 

seaward to the frontal thrust in the dip direction (Fig. 3.1).  Acquisition occurred aboard 

the M/V Nordic Explorer during April-May 2006 under contract by Petroleum Geo-

Services (PGS).  Two sound source arrays (totaling 51 L or 3090 in3) were utilized and 

fired alternately at 37.5 m shot intervals.  The survey used four 4500 m long receiver 

cables spaced 150 m apart with 360 receiver groups at 12.5 m spacing.  This geometry 

yielded eight source-receiver common midpoint (CMP) lines per sail line at 37.5 m 

spacing (Moore et al. 2009).  The interval between lines and cross lines of the resulting 

dataset is 18.75 m and 12.5 m, respectively.  The vertical resolution is ~5-7 m near the 

seafloor, degrading to ~10-20 m at depths near 1400 meters below seafloor (mbsf; Moore 

et al. 2009). Standard pre-processing to reduce noise preceded pre-stack depth migration 

(PSDM) and produced a clear seismic image in depth (Moore et al. 2009). For the 

seaward part of our area, we were able to use a reprocessed version of the 3D data set 

that produced much higher-resolution images of the sedimentary section (Shiraishi et al., 

in review). 

 

Bathymetry Data  

High resolution bathymetry data analyzed for surficial MTDs has been acquired during 

R/V Sonne Expedition 251 in October 2016 (Strasser et al. 2017). The R/V Sonne is 

equipped with an EM 122 KONGSBERG multibeam echosounder (MBES) operated at 12 

kHz. The transducers have a nominal opening of 0.5° in along-track direction and 1° in 

across track direction. The MBES recorded 433 individual beams across track within a 

swath of 120°. Actual sound velocity profiles were recorded with the ships CTD and 

inserted as basis for optimized performance. Data were processed with software MB-

System (Caress and Chayes, 1996). 
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Core Data 

Coring of the Kumano Basin sediments was accomplished on Integrated Ocean Drilling 

Program (IODP) Expeditions 315 (Kinoshita et al. 2009) and 338 (Strasser et al. 2014) 

(Fig. 3.1).  The cored interval consists of hemipelagic mud and numerous thin interbeds 

of normally graded silt, sandy silt and sand with local layers of volcanic ash (Underwood 

and Moore 2012).  For a more detailed analysis of the core data see Underwood and 

Moore (2012).  These data demonstrate that nearly all the basin fill accumulated within 

the last 1.6 Ma.   

 

MTD Recognition and Kinematic indicators 

MTDs are typically identified by their internal chaotic reflection character or 

semitransparent to transparent seismic character.  Once an MTD is identified, other 

seismic indicators (e.g., hummocky reflections, truncations of stratigraphic layers, folds 

and thrusts) are used to characterize the remainder of the MTD.  For the purposes of this 

study, we subdivide each MTD into three domains based on which kinematic indicators 

are most likely to occur in a typical “tripartite” MTD anatomy (Martinsen 1994; Lastras et 

al. 2002): the headwall, translational, and toe domains (Fig. 3.2).  While there is almost 

always overlap between these domains, it is important to have a clear delineation 

between them to properly study kinematic indicators in the data. 
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Fig. 3.2.  Key geometric and geologic criteria for kinematic indicator recognition.  1 – Headwall scarp.  

Direction of initial movement roughly perpendicular to the headwall propagation.  2 – En-echelon sigmoidal 

segments. Strike-slip affected MTD material differentiates lateral margin from headwall scarp.  3 – Lateral 

margins.  Delimits strike-parallel extent of MTD and constrains gross general transport direction.  4 – Ramp.  

Location(s) where the BSS jumps to a higher stratigraphic level.  5 – Flat.  Location(s) where the BSS is 

parallel with local stratigraphy.  6 – Grooves.  Implies debris flow processes with translation parallel to their 

trend.  7 – Translated block.  Often align long-axis downslope.  8 – Secondary flow fabric.  Translation 

direction indicated by trend of flow parallel banding.  9 – Pop-up blocks.  Typically 100’s of meters high, 

translation perpendicular to alignment of ridges.  10 – Pressure ridges.  Typically 10’s of meters high, 

translation perpendicular to the strike of thrust faults.  11 – MTD matrix.  12 – Frontally confined toe.  13 – 

Frontally emergent toe.   BSS – Basal shear surface.  MTD – Mass Transport deposit.  Modified after Bull 

et al. (2009). 

 

Headwall Domain 

The two prominent kinematic indicators in this region are headwall scarps and extensional 

ridges and blocks that represent the extensional, up-slope portion of the MTD (Bull et al. 

2009).  Crown cracks may also develop upslope of the primary headwall scarp (Fig. 3.2). 

 

Translational Domain 

The translational domain is defined as the main body of failed material that has moved 

downslope.  It is subdivided into four sections based on their differing physical 

parameters: lateral margins, basal shear surface, internal MTD body, and top MTD 

surface (Martinsen 1994; Frey Martinez et al. 2005; Bull et al. 2009). 
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Toe Domain 

Characterized by an overall convex-downslope morphology, the toe domain represents 

the region of downslope termination of the main MTD body and is characterized by thrust 

and fold systems and pressure ridges (Prior et al. 1984; Frey Martinez et al. 2005).  

Frontally confined MTDs are those where the toe domain exhibits impressive thrust and 

fold systems that are buttressed against stratigraphically equivalent undisturbed strata 

downslope while frontally emergent MTDs are able to ramp up from the original basal 

shear surface and translate freely across the seafloor (Frey Martinez et al. 2006) (Fig. 

3.3). 

 

Fig 3.3. Frontally confined vs. frontally emergent MTDs. Black arrows indicate primary translation direction. 

Purple arrows indicate on-lapping relationships. BSS - Basal Shear Surface. (a) Frontally confined 

landslide.  Arbitrary seismic line across MTD 4 (see Fig. 3.6 for location). Note how the landslide mass is 

buttressed against undisturbed strata. (b) Frontally emergent landslide.  Seismic Inline 2352 across MTD 

6 (see Fig. 3.7 for location).  Note the runout of the landslide mass beyond the frontal ramp. 
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Results 

We identified 7 individual MTDs in the 3D data that range in volume from 0.005 to 1.16 

km3, in area from 0.2 to 21.8 km2, have runouts between 0.55 and 7.88 km, and generally 

translate downslope from the SE to NW.  The MTDs total over 2.8 km3 in volume and 

cover more than 59 km2 of seafloor at various stratigraphic levels.  The MTDs have been 

designated as MTD 1 through MTD 7 based upon their relative temporal occurrences with 

MTD 1 being the oldest.  Measurements for all MTDs are summarized in Table 3.1.  

Additionally, three surficial MTDs were identified in high resolution bathymetry that were 

not fully resolvable in the 3D seismic data. 

 

Headwall Domain 

Kinematic indicators for the headwall domain were difficult to identify in the data.  While 

headwall scarps were partially or fully identified in most of the MTDs, extensional blocks 

were completely absent. 

 

Headwall Scarps 

Although evidence for headwall scarps exists for most of the landslides, most of them 

could not be fully identified (Fig. 3.4 – 3.7).  All headwall scarps are located under a 

prominent complex landslide scar identified by Lackey et al. (2018a) except for MTD 2.  

Because of the overlapping nature of their locations, we believe the difficulty in identifying 

full headwall scarps to be due to erosion by subsequent mass failures at higher 

stratigraphic levels.  This is especially true for MTDs 1, 3, and 6 as there are no 

discernable headwall scarps in the data leading us to conclude that they have been fully 

eroded (Fig. 3.4b, 3.5b, 3.7b).  Additionally, only a portion of the headwall scarp was 

identifiable for MTD 4 (Fig. 3.6b). 
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Table 1. Physical MTD Parameters and Identified Kinematic Indicators 

MTD 
Stratigraphic 
Sequence and 
Age 

Volume 
(km3) 

Area 
(km2) 

Average 
Thickness 
(m) 

Runout 
(km) 

Translation 
Direction 

Headwall 
Domain 

Translational 
Domain* 

Toe Domain 
(Confined/ Emergent) 

1 
Kumano 4 
0.9 Ma –     
(0.3 – 0.44) Ma 

0.999 21.8 45.8 7.884 S à N None 

LM: Scarps, En-echelon 
     sigmoidal segments 
BSS: Flats, Grooves 
IMB: Translated Block 
TMS: Second Order Fabric 

Confined: Thrusts 

2 
Kumano 4 
0.9 Ma –     
(0.3 – 0.44) Ma 

0.03 1.5 20 1.729 SE à NW Headwall 
LM: Scarps 
BSS: Flats 
IMB: None 
TMS: None 

Emergent: Pressure 
Ridges 

3 
Kumano 3 
(0.3 – 0.44) Ma 
– Present 

0.358** 7.73** 46.3 3.238 SE à NW None 

LM: Scarps, En-echelon 
     Sigmoidal Segments 
BSS: Ramps, Flats 
IMB: Translated Blocks 
TMS: None 

Confined: Thrusts 

4 
Kumano 3 
(0.3 – 0.44) Ma 
– Present 

1.155 14.15 81.62 5.741 SE à NW Headwall 

LM: Scarps, En-echelon 
     Sigmoidal Segments 
BSS: Ramps, Flats 
IMB: Translated Blocks 
TMS: None 

Mostly Confined: 
Thrusts 

5 
Kumano 3 – 2 
(0.3 – 0.44) Ma 
– Present 

0.005 0.2 25 0.552 S à N Headwall 
LM: Scarps 
BSS: Ramps, Flats 
IMB: None 
TMS: None 

Mostly Confined: 
Thrusts, Pressure 
Ridges 

6 
Kumano 2 – 1 
(0.3 – 0.44) Ma 
– Present 

0.297 13.1 22.7 4.136 S à N None 

LM: Scarps 
BSS: Ramps, Flats 
IMB: None 
TMS: None 

Emergent: None 

7 
Kumano 2 – 1 
(0.3 – 0.44) Ma 
– Present 

0.031 1.2 25.8 1.508 SW à NE Headwall 

LM: Scarps 
BSS: Flats 
IMB: None 
TMS: None 

Emergent: Pressure 
Ridges 

* LM: Later Margins, BSS: Basal Shear Surface, IMB: Internal MTD Body, TMS: Top MTD Surface. 

** This is a pre-erosional estimate based on the assumption that 1/3 of the MTD was eroded by MTD 4. 
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Fig. 3.4. MTD 1 interpretations. Primary direction 

of translation is S à N. BSR - Bottom Simulating 

Reflector; BSS - Basal Shear Surface; ESS - En-

echelon Sigmoidal Segments. (a) Schematic 

depiction of the domains and main kinematic 
features within MTD 1. (b) Seismic amplitude map 

of structurally flattened BSS. (c) Inline seismic 

cross section 2480 transecting the translational 

and toe domains. Note that BSR reflection cross-

cuts the MTDs and disrupts the stratal continuity.  

Purple arrows indicate on-lapping relationships. 

(d) Structurally flattened coherency slice showing 
a lateral margin of MTD 1 (location shown in Fig. 

3.4a).  (e) Arbitrary seismic cross section along 

lateral margin of MTD 1.  Location of line shown 

in Fig. 3.4d. 
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Fig. 3.5. MTD 3 interpretations. Primary direction 

of translation is SE à NW. BSS - Basal Shear 

Surface; ESS - En-echelon Sigmoidal Segments. 

(a) Schematic depiction of the domains and main 

kinematic features within MTD 3.  The question 

mark indicates an undefined headwall domain due 

to erosion. The large yellow area indicates the 
location of MTD 4. (b) Seismic amplitude map of 

structurally flattened top surface of MTD 3 (blue 

line in Fig. 3.5c).  Inset is a structurally flattened 

portion of the BSS showing thrusts in the toe 

domain. (c) Inline seismic cross section 2492 

transecting the translational and toe domains 

(location shown in Fig. 3.5b). (d) Structurally 
flattened coherency slice showing a lateral margin 

of MTD 3 (location shown in Fig. 3.5a). Note the 

en-echelon sigmoidal segments. (e) Arbitrary 

seismic cross section along lateral margin of MTD 

3 (location shown in Fig. 3.5d). 
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Fig. 3.6. MTD 4 interpretations. Primary direction 

of translation is SE à NW. BSS - Basal Shear 

Surface; ESS - En-echelon Sigmoidal Segments. 

a Schematic depiction of the domains and main 

kinematic features within MTD 4. (b) Coherency 
map of structurally flattened BSS. (c) Arbitrary 

seismic cross section transecting MTD 4 from the 

headwall domain to the toe domain (location 

shown in Fig. 3.6b). (d) Structurally flattened 

coherency slice showing lateral margin of MTD 4 

(location shown in Fig. 3.6a).  Note the en-echelon 

sigmoidal segments. (e) Arbitrary seismic cross 
section along lateral margin of MTD 4 (location of 

line shown in Fig. 3.6d). 
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Fig. 3.7. MTD 6 interpretations. 
Primary direction of translation is 

S à N. BSS - Basal Shear 

Surface. (a) Schematic depiction 

of the domains and main 

kinematic features within MTD 6. 

Distribution of hummocky terrain 

and a turbidite are also identified. 

(b) Structurally flattened 
amplitude slice through MTD 6.  

Inline seismic cross section 2352 

transecting the translational and 

toe domains of the MTD. Location 

shown in Fig. 3.7b.  (c) Inline 

seismic cross section 2352 

transecting all three domains 

(location shown in Fig 3.7b).  Note 
the hummocky reflections in the 

NW half of the cross section. 
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Extensional Ridges and Blocks 

No extensional blocks were identified for any of the MTDs.  The most likely reasons for 

their absence are that the headwall regions were fully evacuated of material, subsequent 

erosion by stratigraphically higher failures (as with the headwall scarps), or insufficient 

resolution of the data.  All headwall regions appear to be void of any failure material, 

indicating that any extensional blocks that may have formed continued to translate 

downslope and become blocks in the translational domain or fully disintegrated into the 

MTD matrix.  Because we believe many of the headwall scarps were eroded by 

subsequent mass failures, it is also likely that any extensional blocks that may have 

remained immediately after failure were also eroded. 

 

Translational Domain 

The majority of the kinematic indicators found in the data are located in the translational 

domain.  Lateral margins, ramps, and flats are well represented in the data.  We believe 

this domain to be so well represented due to it containing the bulk of the failed material 

for each MTD and because almost all the translational domains were well preserved and 

imaged when compared to the headwall and toe domains.   

 

Lateral Margins 

All MTDs have lateral margin scarps that are visible in the data.  Some of the margins are 

easily interpreted for the entire MTD (Fig. 3.4b, 3.6b) while others have either been 

eroded by subsequent mass failure (Fig. 3.5b) or are not fully resolvable in the data (Fig. 

3.7b).  En-echelon sigmoidal segments are imaged in MTDs 1, 3, and 4 (Fig. 3.4d, 3.5d, 

3.6d).  Only portions of the lateral margins exhibit these segments and in each instance 

the segments are only 50 to 100 m in length. 

 

There was added difficulty in the accurate identification of lateral margins as the strata 

are offset by numerous faults throughout the 3D volume (Moore et al. 2013).  To 

overcome this, seismic amplitude and coherency are displayed onto interpreted horizons 

that are then structurally flattened (Fig. 3.8).  When viewing an internal amplitude slice 

using MTD 1’s structurally flattened basal shear surface, a linear break in amplitude 
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appears upslope of the main body of failed material (Fig. 3.4b).  The orientation of this 

linear feature is consistent with the MTD’s other kinematic indicators such as grooves 

found in the basal shear surface.  These data support an interpretation that this linear 

feature is most likely a lateral margin. 

 
Fig. 3.8. Structural flattening of interpreted horizons. See Fig. 3.11a for arbitrary line location. Primary 

direction of translation is SE à NW. BSS - Basal Shear Surface. Purple arrows indicate on-lapping 

relationships. (a) Arbitrary seismic line of MTD 4 toe domain.  Note how the depth slice (white line) intersects 

the pop-up blocks at various stratigraphic levels. (b) Structurally flattened top surface.  Note how the 

flattened image permits an internal slice (white line) to cross the top surface of each pop-up block. (c) 

Structurally flattened BSS. Note how the flattened image permits an internal slice (white line) to cross the 

pop-up blocks at the same stratigraphic level near the BSS. 
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Basal Shear Surface 

The basal shear surfaces for all MTDs are mapped to their fullest extent possible.  Many 

of the surfaces are incomplete due to uncertainties in the data from ubiquitous faulting 

throughout the data set or due to erosion from subsequent mass failures.  Grooves appear 

in the basal shear surface of only MTD 1 and are made visible only by displaying 

amplitude data onto a structurally flattened basal shear surface.  The fact that they do not 

show in seismic cross section suggests that these features are near the limit of the data’s 

resolution.  This could also explain their absence in the remainder of the MTDs.   

 

Flats are present in all the MTDs as all their basal shear surfaces are primarily parallel to 

the local stratigraphy.  Ramps, however, are only located in MTDs 3, 4, 5, and 6 (Fig. 

3.5c, 3.6c, and 3.7c) and all trend perpendicular to their MTD’s primary flow direction.  

The absence of parallel trending ramps, by definition, means that slots are also absent 

from the data (Bull et al. 2009).  Additionally, there are no instances of the basal shear 

surface ramping down and cutting into the underlying stratigraphy, only ramping up to 

higher stratigraphic levels. 

 

None of the MTD basal shear surfaces exhibit signs of striations.  As these features are 

caused by out-runner blocks (of which there were none identified), their absence is not a 

surprise.  It is possible, however, that these features exist, especially for the MTDs that 

are partially or fully emergent and are simply unresolvable in the data. 
 
Internal MTD Body 

Translated blocks were identified in MTDs 1, 3, and 4 (Fig. 3.4a, 3.5a, 3.6a).  Their 

absence in the remaining MTDs likely has a connection with their average thickness 

(Table 3.1).  Because each stratigraphic horizon is roughly equal to the vertical resolution 

of the data, a block would need to be at least 20 – 28 m (4x the vertical resolution) in 

height to be easily distinguishable from the surrounding strata.  The average thickness of 

MTDs 2, 5, 6, and 7 is 20 – 26 m.  Therefore, any blocks within the failed mass of these 

MTDs could have been easily overlooked as belonging to the local stratigraphy.  This may 
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also explain the absence of remnant and out-runner blocks as neither of these block types 

were identified for any of the MTDs. 

 

Outside of the toe domain’s thrust and fold systems, folds were not identified in any of the 

MTDs.  Given the large degrees of deformation and the runouts for these deposits, it is 

unlikely that folding did not take place during emplacement.  Therefore, the most likely 

explanation for their absence is that they are below the resolution of the data as folding 

has been identified in sub-seismic scale failures in outcrop (Farrell 1984; Lucente and 

Pini 2003; Matheus et al. 2017). 

 

Top MTD Surface 

Only MTD 1 exhibited a kinematic indicator from the top surface.  A second order flow 

fabric was identified above and around a translated block (Fig. 3.4b).  The likely 

explanation for this fabric centers around the MTD’s translated block.  It likely became 

buttressed against the lateral margin of the MTD, causing the failed material to be forced 

around the flow obstruction which lead to thrusting within the failed mass and a secondary 

fabric in the top surface (Fig. 3.4b). 

 

There were no instances of longitudinal shear zones in any of the MTDs.  The majority of 

these types of kinematic indicators have been found on much larger MTDs in other places 

around the world (Masson et al. 1993; Gee et al. 2005; Gafeira et al. 2007).  Therefore, 

we believe that the MTDs in this study are either too small to exhibit such differences in 

flow speed within the failed mass or that this indicator is simply not resolved in the data. 

 

Toe Domain 

The toe domain is identified on all MTDs.  However, although the toe of MTD 6 was 

identifiable, it lacked any kinematic indicators within the domain (Fig. 3.7).  The most likely 

explanation for this absence is that the toe domain is not thick enough to either contain 

or resolve any of the indicators.  Also unique to MTD 6 were a hummocky terrain and 

turbidite located beyond the toe domain.  Their existence is likely due to the amount of 

material scoured from MTD 4 during the emplacement of MTD 6 (eroded BSS; Fig. 3.6).  
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The toe domain of MTD 1 also proved difficult to map.  A strong bottom simulating reflector 

(BSR) caused by gas hydrate accumulations is imaged 200 – 400 mbsf across the entire 

area of interest within the 3D seismic volume (Miyakawa et al. 2014).  This led to 

inaccuracies in mapping the toe domain of MTD 1, causing kinematic indicators that 

would otherwise be visible to be either partially or fully obscured (Fig. 3.4). 

 

Thrust and Fold Systems 

Thrust and fold systems were identified in MTDs 1, 3, 4, and 5 (Fig. 3.3c, 3.5c, and 3.6c).  

The confined nature and thickness of these MTDs are the primary causes of the thrust 

and fold systems.  Of note, MTDs 3 and 4 both display pop-up block systems while MTDs 

1 and 5 exhibit simple thrust systems.  It is possible, however, that MTD 1 also contains 

pop-up blocks as its thickness is similar to that of MTD 3.  The BSR that obscures MTD 

1’s toe domain may simply prevent the pop-up blocks from being resolvable (Fig. 3.3c). 

 

Pressure Ridges 

MTDs 2 and 7 both exhibit pressure ridges in their toe domains.  Because thrusts are 

typically found in conjunction with pressure ridges in outcrop (Masson et al. 1993; Gee et 

al. 2005; Gafeira et al. 2007), it is likely that some sort of thrust system exists in both 

MTDs and are simply too small to resolve in the 3D data. 

 

Surficial MTDs 

The seafloor scar identified by Lackey et al. (2018a) appears to contain at least three 

surficial MTDs that could not be fully identified in the 3D data (Fig. 3.9b).  These MTDs 

are clearly visible as seafloor features in high resolution bathymetry (Strasser et al. 2017).  

Their absence from the 3D data is likely due to their relatively small scale and their recent 

occurrence.  Because they are recent failures, they have yet to be buried and will, 

therefore, be poorly imaged in 3D seismic data.  While kinematic indicators from these 

surficial MTDs cannot be identified in the 3D data, they are still important in understanding 

the evolution of the seafloor with respect to this study. 
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Fig. 3.9. Surficial MTDs.   
(a) Schematic depiction of three 

surficial MTDs. 

(b) Bathymetric image of surficial 

landslide scar showing the location 

of three surficial landslides. 

(c), (d), (e) Seismic cross sections 

across the surficial MTDs in the 3D 

seismic data.  Green lines are BSSs 
of older landslides. Red dotted lines 

are normal faults. 
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Discussion 
The MTDs identified in this study exhibit numerous kinematic indicators that enable us to 

determine the spatial and relative temporal origin of each failure.  We have reconstructed 

each of the failures to their original positions and, using the local stratigraphy, temporally 

sequenced each failure in the most probable order (Fig. 3.10).  Each of the MTDs (with 

the notable exception of MTD 2) appear to originate stratigraphically below the seafloor 

scar identified by Lackey et al. (2018a).  These, combined with the three surficial deposits 

that could not be identified in the 3D data, fully explain the geometry of the scar. 

 

We interpret the scar’s location to be associated with the local depositional and tectonic 

environment over the past 0.9 Ma.  All MTDs are located within the stratigraphic 

sequences    Kumano 4 – Kumano 1 identified by Gulick et al. (2010).  Kumano 4 is the 

oldest of these sequences, with deposition beginning ~0.9 Ma.  During this time, motion 

along a prominent out of sequence thrust (OOST) was reactivated, potentially by the 

continued subduction of a seamount on the Philippine Sea Plate (Kimura et al. 2011; 

Moore et al. 2013), causing the outer forearc to continue tilting landward as it had during 

the deposition of the Kumano 8 sequence ~1.2 Ma (Moore et al. 2015).  A series of normal 

faults that are spatially correlated with a SW uplift penetrates through the Kumano 5 and 

Kumano 4 sequences but does not penetrate the Kumano 4 sequence boundary (K4) 

(Fig. 3.11b).  This indicates that the uplift took place rapidly and ceased by ~0.3 – 0.44 

Ma (Moore et al. 2015).  This rapid uplift and resultant slope steepening coupled with 

seismic loading could explain the occurrence of MTDs 1 and 2 since they are fully 

contained within the Kumano 4 sequence and are spatially correlated.   Of note, there is 

a lack of MTDs in stratigraphic sequences older than the Kumano 4 sequence.  We 

believe this to be because of the hiatus in tilting (a key preconditioning factor) between 

the deposition of Kumano sequences 5 – 7 (Moore et al. 2015). 
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(e) MTD 5 is possibly a result of lateral margin failure of either MTD 3 or 4. (f) MTD 6 erodes a portion 

of MTD 4’s BSS and deposits a turbidite on its top surface. (g) MTD 7 erodes a portion of MTD 6’s basal 

shear surface and creates the W boundary of the seafloor scar. (h), (i), (j) Three surficial landslides 
finish shaping the current seafloor scar. 

Fig. 3.10. Schematic reconstruction of the seafloor scar.  Based on the 

kinematic indicators and geometry of each MTD. (a) MTD 1 occurs and 

begins the process towards creating the seafloor scar. (b) MTD 2 

occurs because of rapid uplift to the SW (Fig. 3.11a). (c) MTD 3 

emplaces on top of MTD 1 after a ~0.46 Ma hiatus in landsliding. (d) 

MTD 4 occurs soon after MTD 3 and erodes the W margin and at least 
1/3 of MTD 3 as well as a portion of the BSS of MTD 1.  
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Fig. 3.11. (a) High resolution bathymetry showing SW uplift in relation to the seafloor scar.  The gray area 

represents all the identified MTDs.  Purple line indicates the location of the Abstract Fig. (b) Seismic cross 

section showing the relative stratigraphic positions of MTD 1 in the Lower forearc basin stratigraphy and 

MTD 4 within the Upper forearc basin stratigraphy.  K3, K4, and K5 are upper boundaries of the Kumano 
Basin seismic sequences, based on toplap, downlap, onlap, or angular relations as defined by Gulick et al. 

(2010). BSR - Bottom Simulating Reflector. Modified from Moore et al. (2015). 
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MTDs 3 – 7 and the surficial MTDs occur within or above the Kumano 3 sequence, making 

them < 0.3 – 0.44 Ma in age and indicating potentially different causal mechanisms.  

Kumano sequences 3 – 1 thicken in the landward direction from < 50 m in the seaward 

region to > 600 m toward the basin center (Moore et al. 2015).  Isopach maps created by 

Moore et al. (2015) show a general widening and NW shift of the basin depocenter over 

time (Fig. 3.12).  This shift has led to a decrease in deposition around the seafloor scar 

since 0.3 – 0.44 Ma and is the most likely explanation for the general decrease in size of 

the MTDs over time.  We infer this because, as sediment deposition decreases with time, 

there will be less material available to slide.  Additionally, the edge of the forearc basin 

ceased tilting by the deposition of K4 as evidenced by the on-lapping relationships of the 

Kumano 4 – 1 sequences (Gulick et al. 2010).  Because neither local steepening nor high 

rates of sedimentation occurred during the emplacement of MTDs 3 – 7 or the surficial 

MTDs, another causal mechanism likely exists. 

 

The Nankai region has a well-documented and regular history of small and great 

earthquake activity (Ando 1975; Kimura et al. 2011).  Great earthquakes along the margin 

are documented as far back as 648 AD with a recurrence interval of 100 to 200 years 

(Ando 1975).  If a splay fault, such as the Nankai megasplay, ruptures co-seismically, 

amplification of seismic ground shaking can occur within the hanging wall (Abrahamson 

and Somerville 1996).  This has been suggested for Nankai and other splay fault systems 

(e.g., Plafker 1972; Tanioka and Satake 2001; Baba et al. 2006), thereby representing a 

plausible causal link between seismic loading and slope failure.  However, as noted by 

Moore and Strasser (2016) the recurrence interval for landsliding in the Kumano Basin 

appears to be about 0.05 to 0.1 Ma, which is much less frequent than the recurrence 

interval for Nankai’s great earthquakes.  Kremer et al. (2017) suggested that this 

difference could be due to slopes being preconditioned to fail because of climate forcing 

during interglacial periods.  However, they were unable to resolve the relative 

contributions of tectonic versus climate preconditioning factors and Urlaub et al. (2013) 

showed that the ages of landslides on passive margins can be described by a temporally 

random Poisson distribution and therefore do not show a positive correlation between the 
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Fig. 3.12. Kumano Basin sedimentation through time.  (a) Map showing the primary sediment inputs to 

the Kumano Basin.  Solid lines show present-day pathways; dashed lines show possible older pathways.  

Note the bathymetric high to the NE of the 3D seismic volume that prevents modern sedimentation near 

IODP cite C0002.  Red dots are IODP drill sites.  White box shows location of isopach maps.  (b) – (f) 
Isopach maps of Kumano Basin stratigraphic sequences.  Sequence Kumano 1 is the youngest sequence; 
Kumano 5 is the oldest. White dots show the thickest point of the basin during each isopach interval.  

Identified MTDs that occur within each sequence are shown for reference.  The pattern of deposition 

changes once the SW uplift appears during the Kumano 4 sequence.  Additionally, a lack of sedimentation 

at the headwalls during Kumano sequences 3 – 1 helps to explain the reduction in size of MTDs 5 – 7 

and the surficial MTDs.  Because their relative timing cannot be determined from the data, MTDs 6 and 7 

are shown in both the Kumano 3 and 2 maps and the surficial MTDs are shown in both the Kumano 2 

and Kumano1 maps d, e, and f.  SS – Surficial Slide.  Modified from Moore et al. (2015). 

Identified MTDs that occur within each sequence are 
shown for reference.  The pattern of deposition changes 

once the SW uplift appears during the Kumano 4 

sequence.  Additionally, a lack of sedimentation at the 

headwalls during Kumano sequences 3 – 1 helps to 

explain the reduction in size of MTDs 5 – 7 and the surficial 

MTDs.  Because their relative timing cannot be determined 

from the data, MTDs 6 and 7 are shown in both the 

Kumano 3 and 2 maps and the surficial MTDs are shown 
in both the Kumano 2 and Kumano1 maps (d), (e), and (f).  
SS – Surficial Slide.  Modified from Moore et al. (2015). 
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frequency of major slope failures on passive margins and sea level changes during the 

past 0.18 Ma.  Another possibility is that the extent of up dip rupture propagation along 

the megasplay fault is not always sufficient to cause slope failure.  Ikari et al. (2011) found 

that the triggering of slope failure for a statically stable slope by a Mw 6-8 earthquake 

requires the megasplay to rupture within 12 km of the slope. 

 

Shear strengthening (Locat et al. 2002; Lee et al. 2004) could also be an explanation as 

to why failure is less frequent than the great earthquake recurrence interval, especially 

for Mw 6-8 earthquakes (Ikari et al. 2011).  An instantaneous increase in pore pressure is 

induced on saturated, fine-grained sediment during an earthquake.  This temporarily 

weakens the sediment.  However, if it is not weakened to the point of failure, the pore 

pressure diffuses over time permitting the sediment to become over-consolidated.  

Therefore, an earthquake that does not cause slope failure could lead to an increase in 

the slope’s shear strength that increases its resistance to future failures (DeVore and 

Sawyer 2016).  A resistance to future failure implies that either an even larger earthquake 

would be required to initiate sliding or another causal mechanism is ultimately at work 

such as the activation of a fault. 

 

Three normal fault populations exist in the study area.  The youngest population (Phase 

3; Sacks et al. (2013); Moore et al. (2013)), tends to cut the upper strata of the forearc 

basin and manifest as scarps on the seafloor which have been identified in this study.  

Sacks et al. (2013) proposed a mechanism, via the earthquake cycle, by which the 

differing orientation of these fault populations and the arcuate geometry of the faults 

associated with our study originated. During the late inter-seismic period, faults 

perpendicular to the trench can undergo slip, while faults oriented parallel to the trench 

undergo slip during post-seismic extension.  Additionally, Moore et al. (2013) showed that 

these faults are likely short-lived rather than regional phenomenon as they lack growth 

structures.  These two conclusions support the idea that these faults occur in conjunction 

with the earthquake cycle. 
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A landslide does not occur during each seismic event, possibly in part to the effects of 

shear strengthening.  However, landsliding can occur because of the change in the 

regional stress regime during the post-seismic phase of the earthquake cycle leading to 

favorable normal faulting conditions that strike parallel to the trench axis.  Because all of 

the MTDs in this study (except for MTDs 1 and 2, likely caused by local over steepening 

and seismic loading) appear to have headwall scarps either on or near a trench parallel 

fault within the youngest of Sacks et al.’s (2013) populations, we propose that the primary 

final trigger mechanism for these nested MTDs is failure as a result of faulting during the 

post-seismic relaxation of the accretionary prism or massive megathrust earthquakes 

along the megasplay fault.   

 

Conclusions 
A series of nested MTDs is imaged using both 3D seismic data and high-resolution 

bathymetry in the outer forearc of the Kumano Basin.  The nested nature of the observed 

MTDs and the stratigraphic sequences in which they occur show how sedimentation of 

the Kumano Basin and tectonic activity of the Nankai accretionary prism affect local mass 

wasting.  We use kinematic indicators from the observed MTDs to reconstruct a prominent 

seafloor scar.  Local slope over-steepening from a rapid uplift SW of the study area 

possibly coupled with seismic loading caused the initiation of landsliding in the study area 

~0.9 Ma.  Subsequent failures likely occurred because of faulting caused by post-seismic 

relaxation of the accretionary prism and seismic activity from (0.3 – 0.44) Ma – present. 
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CHAPTER 4 
TECTONIC INFLUENCES ON SLOPE BASIN DEVELOPMENT VIA 

STRUCTURAL RESTORATION ALONG THE OUTER NANKAI 
ACCRETIONARY PRISM, SOUTHWEST JAPAN 

 
This chapter will be published as: Lackey JK, Moore GF, Strasser M (2019) Tectonic 

influences on slope basin development via structural restoration along the outer Nankai 

accretionary prism, southwest Japan. 

 

Abstract 
Three-dimensional (3D) seismic data and sediment cores record ~2.87 million years of 

structural and depositional history of a trench slope basin along the outer Nankai 

accretionary prism, SW Japan.  Numerous mass transport deposits (MTDs) and fault 

structures are present in the data.  Here, we investigate the links between slope failures, 

trench slope basin development, and movement along a prominent out-of-sequence 

thrust (OOST) fault and a large anticline. Three two-dimensional (2D) cross sections are 

reconstructed ~2.4 Ma using stratigraphic and structural relationships interpreted in the 

3D data. The reconstructions are then compared and combined to provide a 3D 

perspective of basin development.  We find that the OOST is slipping differentially along 

multiple branches, with 5.5 km, 4.8 km, and 5.7 km of shortening from NE to SW over the 

past ~2.4 Ma.  In the NE, deformation is primarily accommodated by the parent OOST 

and internal anticlinal faulting, while deformation in the SW is primarily along deeper 

branches of the OOST.  This differential motion explains the occurrences of various mass 

wasting events, to include a previously identified prominent MTD, and bathymetric 

differences within the study area.  We suggest that the differential motion is caused by a 

combination of strike-slip related faulting within the prism to the SW and by seamount 

subduction to the NE. 
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Introduction 

Accretionary prisms are a dominant structural component of many convergent margins, 

such as Barbados, the Aleutians, Sunda, Cascadia, and the Nankai Trough (e.g., 

McCarthy & Scholl, 1985; Moore et al., 1989; Moore et al., 1990; Gutscher et al., 2001; 

Kopp & Kukowski, 2003).  These prisms form from sediment scraped off the incoming 

oceanic plate.  As they accrete new material, their taper is maintained via fold and fault 

structures that form along the length of the prism (Davis et al., 1983; Dahlen et al., 1984).  

Hemipelagic and terrigenous sediment is deposited on the prism during its growth and 

can form small trench slope basins 200+ m thick (Kimura et al., 2011; Strasser et al., 

2011; Underwood & Moore, 2012).  The structural changes within the underlying prism, 

along with other preconditioning factors, such as gas hydrate dissociation or earthquake 

cycle related faulting (e.g., Bangs et al. 2010; Sacks et al. 2013; Kremer et al., 2017; 

Lackey et al. 2018b), provide an environment in which subaqueous landslides may occur, 

shaping the surface of the prism. 

 

Subaqueous landslides occur in many different environments all over the world, including 

both active and passive margins, along the flanks of volcanic islands, and river deltas 

(Prior & Coleman, 1978; Moore et al., 1989; Lee, 2009), and they are prominent 

morphologic features along the Nankai and other accretionary prisms (Prior & Coleman, 

1978; Moore et al., 1989; Lee, 2009; Lackey et al., 2018a, b).  These slides can be 

devastating to seafloor infrastructure via high speed turbidity currents and to coastal 

communities in the form of tsunamis (Bondevik et al., 1997; Bardet et al., 2003; Satake, 

2012).  Moreover, investigating and characterizing submarine landslides allows us to 

better understand how they initiate and translate downslope to the point at which they 

arrest (Ward & Day, 2002). 

 

The primary trigger mechanism for a subaqueous landslide can be difficult, if not 

impossible, to determine due to a lack of conclusive data.  However, various mechanisms 

for failure initiation, based upon a landslide’s location and characteristics, may be 

suggested.  Co-seismic rupture of a fault, such as the Nankai megasplay (MS), can 

amplify ground shaking within the hanging wall (Abrahamson & Somerville, 1996) and 
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lead to slope failure.  This has been suggested for Nankai and other splay fault systems 

(e.g., Plafker, 1972; Tanioka & Satake, 2001; Baba et al., 2006).  Free methane gas 

venting or hydrate dissociation from within the underlying strata could also initiate 

landsliding locally or on kilometer scale sections of the seafloor (Westbrook et al., 2009; 

Bangs et al., 2010). 

 

This study represents an opportunity to analyze tectonic influences on slope failures and 

trench slope basin development along the outer Nankai accretionary prism.  Strasser et 

al. (2011) and Lackey et al. (2018a, b) identified and proposed numerous trigger 

mechanisms for several MTDs and surficial landslide scars respectively that spatially 

correlate with the MS.  Analyses of sediment cores obtained by the International Ocean 

Drilling Program (IODP) during Expedition 316 (Expedition 316 Scientists, 2009a, b, c) 

provide age constraints on prominent stratigraphic horizons and MTDs within the study 

area.  Utilizing the core data and a 3D seismic reflection survey, we aim to investigate the 

underlying geologic processes and influences on slope failures via a comprehensive 

structural reconstruction. 

 
Regional Setting and Study Area 
The Nankai accretionary prism is within the Nankai Trough subduction zone where the 

Philippine Sea Plate is presently subducting under the Amur Plate at a rate of 4 to 6 cm 

yr-1 (Kimura et al., 2007a).  The NW oblique subduction has led to the prism spanning 

roughly 700 km, with the overall oblique slip being apportioned along a large right lateral 

strike-slip fault, known as the Median Tectonic Line, landward of the prism (Fitch, 1972; 

Taira, 2001).  The sediment comprising the prism is primarily terrigenous detritus from 

Japan and hemipelagic deposits in the Shikoku Basin of the Philippine Sea Plate 

(Underwood & Moore, 2012), the upper part of which is accreted while the lower part is 

subducted beyond the inner prism (e.g., Kinoshita et al., 2009; Kimura et al., 2011; 

Strasser et al., 2011, 2012; Underwood & Moore, 2012; Moore et al., 2014). The rapid 

growth of the accretionary prism is an important factor for large, repeated earthquakes 

(~100 – 200-year recurrence interval (Ando, 1975)) in this subduction zone setting (Ruff 

& Kanamori, 1980). 
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The study area is along the outer accretionary prism just seaward of the Kumano Basin 

where the trench slope basin sediment is being overridden by the MS (Fig. 4.1, 4.2, 4.3).  

The 3D seismic data used for this study is located entirely within the transition zone of the 

accretionary prism between 35 and 50 km from the deformation front (Kimura et al., 

2007b) and covers roughly 275 km2 (Moore & Strasser, 2016).  Water depths vary from 

~2950 m at the seaward edge of the study area to ~2150 m at the landward edge. Notable 

characteristics include the shallow extent of the MS, various landslide scars in both the 

3D survey and bathymetry, and large anticlines (e.g., Strasser et al., 2009, 2011; Moore 

et al., 2013; Lackey et al., 2018a, b). 

 
Fig. 4.1. Study Area.  High resolution bathymetry of the Kumano Basin (location indicated in the regional 

inset).  Barbed red line in 3D cube inset represents the location of the megasplay (MS; see Fig. 4.3 for 

greater detail).  PSP = Philippine Sea Plate; FSC = Fossil Spreading Center; KPR = Kyushu-Palau Ridge. 
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Fig. 4.2. Accretionary prism at IL2675. Location shown in Fig. 4.1.  (a) Uninterpreted seismic cross section 

of prism. (b) Interpreted seismic cross section of prism.  White box indicates the study area for this paper 

while the green box indicates the boundary of the kinematic restoration.  Heavier black lines are major faults 
and orange lines are bottom simulating reflectors (BSR).  C0004 and C0008 show sediment core locations 

(Fig. 4.4). 

 
Methods 
A 3D kinematic structural restoration is carried out via Midland Valley’s MOVE software 

suite (Midland Valley Exploration Ltd., 2018).  Significant stratigraphic and structural 

horizons are initially interpreted from the 3D seismic reflection volume and interpretations 

from previous studies (e.g., Moore et al., 2007; Strasser et al., 2009; Strasser et al., 2011; 

Kimura et al., 2011).  Timing of movement along faults and deposition rates are 

constrained from data obtained by sediment core analyses from IODP Expeditions 316 

and 338 (Expedition 316 Scientists, 2009b, c; Moore et al., 2014).  As the kinematic 
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restoration takes place, erosion (e.g., slope failure) is restored manually via geometric 

interpolation between the eroded and onlap surfaces.  

 

3D Volume 

The full 3D seismic survey (Moore et al. 2009) covers roughly 12 km x 56 km extending 

from the Kumano Basin seaward to the frontal thrust in the dip direction (Fig. 4.1, 4.3).  

Acquisition occurred aboard the M/V Nordic Explorer during April-May 2006 under 

contract by Petroleum Geo-Services (PGS), utilized two air gun arrays (totaling 51 L or 

3090 in3) fired alternately at 37.5 m shot intervals, and four 4500 m long receiver cables 

spaced 150 m apart with 360 receiver groups at 12.5 m spacing.  This geometry yielded 

eight source-receiver common midpoint (CMP) lines per sail line at 37.5 m spacing 

(Moore et al., 2009).  The interval between lines and cross lines of the resulting dataset 

is 18.75 m and 12.5 m, respectively.  The vertical resolution is ~5-7 m near the seafloor, 

degrading to ~10-20 m at depths near 1400 meters below seafloor (mbsf; Moore et al., 

2009). Standard pre-processing to reduce noise preceded pre-stack depth migration 

(PSDM) and produced a clear seismic image in depth (Moore et al., 2009). 

 

Core Data 

Coring of the trench slope sediments was accomplished on IODP Expeditions 316 and 

338 (Expedition 316 Scientists, 2009a, b, c; Moore et al., 2014) aboard the D/V Chikyu.  

The cored intervals consist primarily of hemipelagic mud interbedded with several MTDs, 

sandy/silty turbidites, and volcanic ash (Fig. 4.4). Biostratigraphic and 

magnetostratigraphic dates were obtained by Expedition 316 Scientists (2009b, c).  Here, 

we chose to use the average date as determined by the two dating methods to provide a 

single target date for our reconstructions.  For a more detailed analysis of the core data 

see Strasser et al. (2011), Expedition 316 Scientists (2009b, c), and Moore et al. (2014). 

 

Structural Restoration 

A kinematic structural restoration of three 2D cross sections oriented approximately 

across strike of the MS are performed stepwise using the structural geology software 

suite MOVE (Midland Valley Exploration Ltd., 2018).  We utilize 2D tri-shear and simple 
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shear geometric algorithms to restore interpreted cross sections.  A trial and error 

approach is taken to determine the most appropriate tri-shear deformation parameters for 

successful restoration of fault displacement and horizon geometry.  These parameters 

include displacement, tri-shear angle, tri-shear angle offset, tri-shear apex, and 

propagation to slip (p/s) ratio (Allmendinger, 1998; Allmendinger et al., 2004).  This 

approach has also been successfully used in other tri-shear restoration models in 

convergent margin settings (Boston et al., 2016; Ghisetti et al., 2016).  It is important to 

note that, while admissible, the cross sections cannot be fully balanced due to a lack of 

layer-cake stratigraphy.  Additionally, depositional layers were not deposited on a 

completely horizontal surface and large volumes of material have been eroded and 

transported away from the study area. 

 
Fig. 4.3. Seismic cube.  Three-dimensional seismic cube of the study area extracted from the 3D survey of 

the M/V Nordic Explorer showing prominent structural and surficial features.  Note the spatial correlation 

between slide scars and the buried anticline (green line) and landslide scars and the UHW.  IODP drill sites 

along IL2675 are shown for reference.  UHW – Upper hanging wall; LHW – Lower hanging wall; USB – 

Upper slope basin; MSB – Middle slope basin; LSB – Lower slope basin; MS – Megasplay; MTD6 – Mass 

transport deposit 6 identified by Strasser et al. (2011). 
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Fig. 4.4. Core data. Interpretation of seismic inline IL2675 crossing IODP Sites C0004, C0022B, C0008A, 

and C0008C. The location is shown in Fig. 4.3.  Lithostratigraphic sections of drill sites are overlain after 

Expedition 316 Scientists (2009c, 2009d). A, B, G, O (after Strasser et al. (2011)), and M indicate key 

seismic stratigraphic horizons.  Ages are biostratigraphic ages as determined by Expedition 316 Scientists 
(2009a, b, c). 

 

Inline geometry is used as the primary direction for structural restoration.  Although this 

is not exactly perpendicular to the strike of the MS or other structures within the study 

area, there is little difference between the inline and perpendicular geometries.  Because 

the underlying stratigraphy does not notably change between these geometries, we chose 

to utilize the inline geometry as it allows for a more comprehensive view of the entire 3D 

volume. 

 

The along strike boundaries of our restoration are inlines 2640 in the NE and 2240 in the 

SW of the 3D volume.  The landward boundary is delineated by a smaller slope basin that 
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overlies the upper hanging wall.  While this basin surely influences the development of 

the middle slope basin (MSB), there are no traceable horizons between the two.  

Therefore, we chose not to include it in the restorations.  The seaward boundary is an 

onlap surface identified by Strasser et al. (2011) and Kimura et al. (2011).  They explained 

that this surface represents a slip zone onto which younger sediments onlap, causing the 

apparent offset in the stratigraphic horizons between the MSB and lower slope basin 

(LSB).  This is further supported by the numerous slope failures identified in the 

bathymetric data that spatially correlate with the failure surface (Fig. 4.3).  Because this 

surface represents a consistent parameter throughout the evolution of our restoration 

(constant slope failure) and because it lies above the seaward flank of the anticline, we 

believe it to be an appropriate boundary for each cross section. 

 

Many faults and folds are either simplified or not included in our restoration due to their 

deformation being below or near the resolution of our seismic data.  For instance, the 

internal thrust faults that likely exist within the upper hanging wall (UHW; Fig. 4.3) are too 

numerous, complex, and unresolvable to fully map.  To account for this, we map 

prominent internal thrusts (UI) in each cross section based on both the 3D volume and 

the shape of the UHW top surface (Figs. 4.5, 4.6, 4.7).  These thrusts represent the 

collective movement of all thrust faults within the UHW. 

 

The anticline that spans the study area also presented several challenges to the 

restorations.  While a reconstruction of the overall anticline is attempted, a full, internal 

reconstruction is beyond the scope of this paper.  Normal faults (e.g., Strasser et al., 

2009; Kimura et al., 2011) on top of the structure are not restored.  These faults, while 

important indicators of anticline activity, are unimportant in the overall kinematic 

restoration.  Due to the anticline’s high degree of deformation, there are few instances of 

horizons being traceable between cross sections, therefore, we interpret most of the 

anticline in each cross section independently.  Additionally, the timing of displacement 

along faults within the anticline cannot be constrained with the available core data.  We 

thus restore this displacement as needed to correct otherwise unaccounted for 

deformation within the overlying horizons.    
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Due to their unique geometry, we restore slope failures manually by using the geometry 

of overlying horizons that have been deformed but have not yet failed.  For instance, to 

restore horizons A and B against the upper hanging wall, we attempt to recreate the same 

type of deformation as seen in horizons G and M by using their geometries as templates 

(Fig. 4.5).  After a horizon and movement along a fault are restored, imperfections in the 

geometry of the horizon contacts can be attributed to errors in interpolation to create said 

contacts. 
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Fig. 4.5. IL2640. (a) Uninterpreted seismic cross section. (b) Interpreted seismic cross section indicating 

all key faults and horizons. (c) Representation of the cross section showing all key faults, horizons, and 

major structural blocks. 
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Fig. 4.6. IL2410. (a) Uninterpreted seismic cross section. (b) Interpreted seismic cross section indicating 

all key faults and horizons. (c) Representation of the cross section showing all key faults, horizons, and 

major structural blocks. 
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Fig. 4.7. IL2240. (a) Uninterpreted seismic cross section. (b) Interpreted seismic cross section indicating 

all key faults and horizons. (c) Representation of the cross section showing all key faults, horizons, and 

major structural blocks. 
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Results 
We successfully restored each cross section to age tie points from the IODP sediment 

cores and were able to approximate and restore deformation prior to 1.95 Ma based on 

horizon geometry within the anticline. 

 

IL2640 

Inline 2640 (Fig. 4.5) is in the eastern most portion of the study area ~650 m west of the 

IODP drill sites.  This represents the thickest deposit of MSB sediments and the largest 

displacement within the UHW via the MS.  We restore an overall shortening of 5,516 m, 

with 89% of this occurring between 1.7 – 2.4+ Ma.  Much of the inline displacement is 

accommodated along the anticline main thrust (AMT; 47%) and MS (38%).  Deformation 

within the lower hanging wall (LHW) and anticline is at a minimum in this cross section.  

This suggests that most of the deformation here is accommodated along major faults 

such as the MS. 

 

IL2410 

Inline 2410 (Fig. 4.6) is in the middle of the study area ~4300 m W of IL2640 and ~3200 

m E of IL2240.  This cross section represents a transition of displacement from primary 

fault structures to fault branches and more LHW and anticline deformation.  We restore 

an overall shortening of 4,841 m, with 90% of that occurring between 1.7 – 2.4+ Ma.  Inline 

displacement is accommodated mostly along the AMT (49%) followed by the lower 

hanging wall fault system (LHWF; 26%) and MS (22%).  The LHW becomes a more 

prominent feature that begins to override the anticline.  Fault zones, where there are no 

traceable horizons, are also present both within the LHW and anticline.  Additionally, 

thrust faults that cut the tops of both the LHW and the anticline are identified in this cross 

section.  Although these features can be traced in the 3D volume, they do not continue 

far enough to be identified in either of the other cross sections. 

 
IL2240 

Inline 2240 (Fig. 4.7) is in the western portion of the study area ~3200 m W of IL2410.  

This cross section represents the highest degree of LHW and anticline deformation and 
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contains the fault we believe to be the primary trigger of MTD6 (Strasser et al., 2011).  

We restore an overall shortening of 5,680 m, with 96% of that occurring between 1.7 – 

2.4+ Ma.  Inline displacement is accommodated mostly along the LHW (64%) while the 

MS exhibits the least displacement (11%).  The LHW is the prominent structural feature 

here, overriding the anticline while the basal shear surface of MTD6 dominates the MSB. 

 

3D Observations 

Overall (Fig. 4.8), we observe most fault displacement and prism shortening occurring in 

the early stages of MS development and anticline deformation (1.7 – 2.4+ Ma).  The AMT 

accounts for almost all (90%) of the displacement between 1.95 – 2.4+ Ma, after which 

the MS system initiates and begins to dominate.  From 1.95 – 1.7 Ma we restore ~1,838 

m, ~1,195 m, and ~3,920 m of shortening between IL2640, IL2410, and IL2240 

respectively.  However, shortening is accommodated differently between each cross 

section.  Most of the shortening is along the MS (66%) at IL2640.  Along strike to the SW, 

shortening is transferred deeper into the prism toward IL2240 where the LHWF 

accommodates the most shortening (89%).  The movement along thrusts that cut the tops 

of the LHW and anticline at IL2410 (Fig. 4.8e & f) help support this observation. 

 

There is a notably large decrease in displacement from 1.7 – 1.55 Ma along all cross 

sections.  Except for 55 m of displacement within the LHW, all displacement during this 

period occurs within the UHW.  As with the previous 250Ky, IL2640 contains the most 

shortening and displacement (357 m and 370 m, respectively) decreasing along strike to 

IL2240 (80 m and 115 m, respectively).  This trend continues throughout the remainder 

of the restoration, helping to explain the degree to which the UHW overrides the MSB at 

IL2640. 

 

From 1.55 Ma – present, most displacement and shortening remain in the UHW and 

decrease from NE to SW.  IL2640 shortens a total of 267 m while IL2410 and IL2240 

shorten 207 m and 147 m respectively.  Notable displacements occur within the UHW at 

1.55 – 1.3 Ma and along the MS at 1 – 0.44 Ma.  Between 1.55 – 1.3 Ma an internal thrust 

(UI1) within the UHW initiates (Kimura et al. 2011) with a displacement of 75 m. 
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Fig. 4.8. Kinematic restoration. Each panel represents 

the tectonic state of the study area according to age tie 
points identified by Strasser et al. (2009).  Black boxes in 

(f) and (g) show the location of (a) – (e).  (a) UHW (yellow) 

landsliding; critical taper. (b) and (c) Internal deformation 

and landsliding; growing towards critical taper. (d) LWH 

(purple) displacement and UHW landsliding; subcritical 

taper. (e) MS (fault between UHW and LHW) initiation 

and landsliding. (f) Trench slope sedimentation and 

forward imbrication. (g) Prism toe position; critical taper. 
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While there is no evidence of fault displacement outside of this period, we restore 

movement along UI1 periodically to represent movement within the entirety of the UHW.  

MS3 slips at ~0.9 Ma (Kremer et al., 2017) with a restored displacement of 21 m.  We 

believe this directly correlates with the emplacement of MTD6 as proposed by Strasser 

et al. (2011). 

 

Discussion 
Our restoration points to numerous influences on the overall development of the MSB.  

Movement along the MS and deformation of the LHW and regional anticline could be 

driven by regional subsurface geology, the prism attempting to maintain critical taper, 

subduction processes, and/or slope failures. 

 

Accretionary Wedge Shortening 

Our reconstruction estimates a minimum shortening that accounts for roughly 5.7 km 

(~4.3 – 6.5%) of the total plate convergence rate (4 – 6 cm yr-1, or 88 – 132 km) since 

~2.2 Ma.  However, this estimate accounts only for seismic scale faulting.  Other 

quantifiable factors that can accommodate shortening within an accretionary wedge 

include sub-seismic scale deformation (up to 30 – 50%; e.g., Mitra, 1994; Koyi, 1995; 

Koyi et al., 2004) and de-watering and compaction (up to 40%; Moore et al., 2011).  

Taking these into account, total shortening across the entire wedge due to fault 

displacement is between 8.8 – 26.4 km and 13.2 – 39.6 km.  It is unlikely that our study 

area constitutes the majority of fault displacement across the entire wedge as it accounts 

for only 4.5 km (~13%) of the prism as measured across strike.  Therefore, we choose to 

assume that a maximum of ~70% of the plate convergence is accommodated by sub-

seismic scale deformation and de-watering and compaction.  Under this assumption, the 

total plate convergence accommodated by fault displacement is 26.4 – 39.6 km.  Our 

study area then represents 14.4 – 21.6% (5.7 km) of the total plate convergence.  This 

means that there is another 8.4 – 15.6% of total shortening that is unaccounted for 

between our reconstruction, sub-seismic scale deformation, and de-watering and 

compaction.  The most likely explanations for this difference are seismic slip along the 

décollement (e.g., Ujiie and Kimura, 2014), forward propagation of the décollement (e.g., 
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Morgan and Karig, 1995), reactivation of buried faults (Moore et al., 2015), unquantifiable 

errors within the chosen tri-shear parameters, and deformation that occurs outside the 

plane of the 2D restorations.  

 

Anticline Formation 

The general formation of the anticline in our restoration is explainable using critical taper 

theory and the history of the Nankai accretionary prism.  Prior to ~2.2 Ma, when the study 

area was in the prism toe position (Fig. 4.8g), the entire prism was likely at critical taper 

as evidenced by in-sequence forward imbrication (Davis et al., 1983; Strasser et al., 

2009).  This may have initiated the AMT.  Heavy trench slope sedimentation starting 

between ~2.06 – 1.6 Ma (Underwood & Moore, 2012; Buchs et al., 2015) and subsequent 

surface denudation between ~1.62 – 1.24 Ma then caused a subcritical taper (Bigi et al., 

2010; Alves et al., 2014).  This permitted the prism to grow back toward critical taper via 

internal faulting (Davis et al., 1983) such as we restore along both the MS and LHW fault 

system between ~ 1.95 – 1.24 Ma.  Critical taper continued to reestablish via the formation 

of the Kumano Basin between ~1.3 – 1 Ma (Gulick et al., 2010) by movement along the 

MS fault system somewhere outside of our study area.  With critical taper reestablished, 

the prism again grew via forward imbrication from ~1 Ma – present with minimal internal 

faulting along the MS and within our study area. 

 

While the anticline presently shows signs of activity (Fig. 4.9), the AMT shows no signs 

of displacement since ~1.95 Ma when the MS initiated (Moore et al., 2007).  Therefore, 

we infer that the current anticline activity is contained within the anticline itself and is the 

result of compressional stress imparted by the UHW and LHW and uplift as the prism 

grows.  This interpretation is supported by our restoration, the orientation of faults within 

the anticline, and by its break-backward imbricate structure as shown in Fig. 4.9 (McClay, 

1992; Shaw et al., 1999).  After movement along the AMT ceases due to continued 

forward imbrication of the accretionary prism, an incipient fault ruptures along the same 

basal detachment (the AMT) landward of the initial thrust fault resulting in the LHW.  All 

three cross sections show at least one break-backward imbricate branch of the AMT with 

increasing faulting and complexity to the SW.  We attribute both the faulting and its 
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increasing complexity to the structure of the anticline seaward of the study area (right side 

of Fig. 4.9a, b, c).  The differences in AMT angle and structure of the seaward anticline, 

acting as a backstop to anticline growth along the AMT, permit break-backward faulting 

to occur.  Because the angle of the AMT decreases to a point where it projects below the 

crest of the seaward anticline in the SW, break-backward faulting is more predominant in 

the SW than in the NE. 

 

The anticline’s structural variability and resultant LHW are major influences on the depth 

of the MSB.  At IL2640, accommodation space is created between the anticline’s crest 

and the tip of the MS because of the anticline’s seaward movement along the AMT.  The 

UHW then overthrusts the sediments as fault displacement along the AMT slows and 

transfers to the MS.  Less accommodation space is created at IL2410 than at IL2640 as 

there is less displacement along the AMT.  Additionally, displacement along the LHW fault 

system places the crest of the LHW directly beneath the MSB, filling the accommodation 

space.  Accommodation space increases toward IL2240 where the LHW propagates the 

furthest seaward thanks to the largest displacement along its fault system.  This leads to 

increased deformation and compression at the crest of the LHW.  This creates an 

anticline-like structure (Fig. 4.9c) and accommodation space much like the anticline at 

IL2640.  As a result, sediment thickness is at a minimum in the middle of the study area 

(450 m at IL2410; Fig. 4.9b) with increasing thicknesses toward the NE and SW 

boundaries (620 m at IL2640; Fig. 4.9a; 580 m at IL2240; Fig. 4.9c).  
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Fig. 4.9. Anticline regional structure. Comparison of the 

anticline structure from the landward most boundary of the 

restoration seaward to the following imbricate thrust and 
resultant anticline.  White lines indicate AMT thrust vector, 

white boxes indicate pop-up blocks at the apex of the 

seaward anticline’s kink bend fold, and green circles indicate 

where horizon AA from the restoration meets the AMT.  

Question marks indicate horizons that were inferred from 

surrounding seismic horizons and our restoration.  AMT – 

Anticline Main Thrust; AA – Anticline A.  (a) IL2640.  The 

AMT angle is at its greatest here resulting in the fault 
trajectory projecting above the seaward anticline.  

Displacement along the AMT is at a maximum as a result.  

(b) IL2410.  The AMT angle is reduced here causing the fault 

trajectory to approach the seaward anticline.  Displacement 

along the AMT is reduced as this cross section represents a 

transition zone from primarily forward imbricate faulting 

(IL2640) to primarily break-backward imbricate faulting 

(IL2240). (c) IL2240. The AMT angle is at its lowest here 
causing the fault trajectory to fall below the seaward 

anticline.  Compared to IL2640, displacement along the AMT 

is reduced and break-backward imbricate faulting dominates 

as a result. 
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Seamount Subduction 

Moore et al. (2009) proposed that a large embayment to the W of the 3D survey at the 

toe of the prism is the likely result of small seamount subduction based on a nearby 2D 

seismic line (ODKM03-I; Taira et al., 2005).  Strike-slip faults located W of the 3D survey 

could be resultant bathymetric features of similar subduction (Fig. 4.1).  While there are 

no clear strike-slip faults directly associated with the embayment (possibly due to the 

oblique subduction of the Philippine Sea Plate), these faults are found to be common 

features of seamount subduction in both sandbox experiments and along other 

subduction zones (Dominguez et al., 1998; Dominguez et al., 2000).  The strike-slip faults 

would relieve compressional stress within the prism that would otherwise cause the MS 

to rupture in the W part of the study area.  That these faults appear to clearly offset the 

seafloor indicates that they have likely been active since ~0.9 Ma.  If displacement had 

ceased since ~0.9 Ma, there would be either a less pronounced bathymetric manifestation 

or they would be completely buried by MTD6.  Because of this relative timing, it is 

reasonable to infer that displacement along these faults is a contributing factor to the lack 

of MS displacement in the W part of the study area since ~0.9 Ma. 

 

Seamount subduction has also been proposed by Kimura et al. (2011) to explain the 

differences in strike between the imbricate thrust zone and the frontal thrust zone and the 

movement along the MS.  The timing they suggest (~1.55 – 1 Ma) places this collision 

prior to those proposed by Moore et al. (2009).  Such timing is consistent with regional 

bathymetry as the scar from the larger seamount to the NE (Fig. 4.1) displays signs of an 

infilled shadow zone (seamount is fully subducted) while the scars to the SE show clear 

reentrants (seamount is just subducted).   

 

Slope Failures 

Slope failures occur throughout the study area (Lackey et al., 2018a, b) but can be broadly 

categorized into three groups based on their spatial correlation with the MSB’s underlying 

structure.  The first group is located above the onlap surface (Strasser et al., 2011) on the 

seaward flank of the anticline (Fig. 4.3).  This surface has been maintained through 

anticline growth (McClay et al., 1999) and slope failures.  As the anticline grows, normal 
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faulting associated with extensional stress at the anticline’s crest both preconditions and 

causes slope failure as evidenced by MTDs in the LSB stratigraphy and the modern 

bathymetric scars. 

 

The second group of failures occur along the flank of the UHW (Fig. 4.3).  This surface is 

similar to the onlap surface on the flank of the anticline.  It separates the MSB from the 

upper slope basin (USB) and is a surface on which slope failures continually occur as 

evidenced by both MSB stratigraphy (e.g. Expedition 316 Scientists, 2009a, b, c; Kimura 

et al., 2011; Strasser et al., 2011) and bathymetry (e.g. Moore et al., 2009; Lackey et al., 

2018a, b).  The cause of these failures, however, is likely different as the UHW is not 

growing like the anticline.  Here, the flank of the UHW is steeper than the flank of the 

anticline.  This over steepened condition is likely the primary factor in slope instability that 

precedes slope failure via MS displacement and faulting within the UHW. 

 

The third group of slope failures occur because of the displacement along the MS.  Here 

again there are multiple examples in both the stratigraphy (e.g. Expedition 316 Scientists, 

2009a, b, c; Kimura et al., 2011; Strasser et al., 2011) and bathymetry (e.g. Moore et al., 

2009; Lackey et al., 2018a, b).  However, the most striking example is MTD6 as identified 

by Strasser et al. (2011).  There is ~21 m of displacement along the MS at ~0.9 Ma.  

Tracing MS fault 3 (MS3) through the volume, the fault tip is localized between IL2280 

and IL2177 to the area below the basal shear surface (BSS).  At IL2240 (Fig. 7), MS3 

clearly cuts horizons B, G, and MTD6’s BSS with the same offset for each and without 

any growth structures detectable at the seismic scale.  This suggests that the fault may 

have been created over a relatively short period of time after or coincident with the 

emplacement of MTD6 as proposed by Strasser et al. (2011).   

 

Our restoration shows little to no displacement along the MS between ~1.3 – 1 Ma, 

contrary to Gulick et al. (2010).  However, we do not believe that the interpretation of 

Gulick et al. (2010) is incorrect.  Instead, we suggest that the shortening proposed 

between ~1.3 – 1 Ma that lead to the uplift of the outer forearc and development of the 

Kumano Basin is accommodated along branches of the MS that break further landward 
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than our study area (Fig. 4.2).  The USB is also overthrust by a branch of the MS and is 

not included in our restoration of the MSB.  Therefore, we suggest that while movement 

along the MS in our restoration is at a minimum between ~1.55 Ma – present, movement 

along more landward branches may be greater.  Additional, broader scale restoration is 

needed to validate this conclusion, however. 

 

Compaction 

Lithostatic compaction and dewatering affect the sediment layers within the MSB but are 

not significant enough to include in the reconstruction.  We modeled the lithostatic 

decompaction as a function of porosity using a Sclater-Christie relationship (Fig. 4.10; 

Sclater and Christie, 1980) 

 

f = fo(e
-cy) 

 

where f = porosity at depth y, fo = surface porosity, c = porosity depth coefficient (km-1), 

and y = depth in km.  We input porosities and depths from Expedition 316 Scientists 

(2009a, b, c) in an effort to determine an appropriate depth coefficient.  However, we 

calculated that a coefficient > 1 km-1 is required to match the data.  We then calculated a 

best fit line for the data to utilize in lithostatic decompaction calculations (Fig. 4.10) and 

observed a total change in depth between the present day and de-compacted seafloor of 

~10.8 m, or 4% over the 270 m of available porosity data.  This assumes that the vertical 

change is due solely to a loss of porosity.  We believe this to be accurate as other 

available core data show an increase in bulk density from ~1.6 g/cm3 to ~1.87g/cm3 and 

a consistent grain density of ~2.96 g/cm3 over the same depth interval (Expedition 316 

Scientists, 2009a, b, c).  Because this vertical change is near the vertical resolution of our 

seismic data (~10 m at 270 m depth; Moore et al., 2009), we can exclude lithostatic 

decompaction from the reconstruction.  However, it is worth noting that the cored data 

shows a porosity of 0.5 at 270 m compared to the calculated value of 0.59 utilizing the 

Sclater-Christie relationship.  Comparing the two, we find that the Sclater-Christie curve 

(Sclater and Christie, 1980) utilizes a depth coefficient of 0.39 km-1 while the required 

depth coefficient to match the core data under strictly lithostatic conditions would be > 1 
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km-1.  This far exceeds the highest observed depth coefficient by Sclater and Christie 

(1980) (chalk at 0.71).  We believe the porosity difference (0.09, or ~15%) between the 

Sclater-Christie relationship (Sclater and Christie, 1980) and the core data (0.09) is due 

to the added stress of horizontal compaction of the MSB sediments.  Moore et al. (2011) 

demonstrated the significance of horizontal compaction in accretionary environments 

along the Muroto transect of the Nankai Trough.  They concluded that horizontal 

shortening due to de-watering and compaction is ~40% within the accreted sediments.  

While the sediments within the MSB are deposited and not accreted, compaction still 

occurs because of the UHW and LWH displacements as evidenced by numerous small-

scale thrust faults and folds within the MSB (Fig. 4.5, 4.6, 4.7).  Therefore, we infer that 

the ~15% difference between calculated and observed porosities is due to horizontal 

compaction resulting from regional tectonic activity.  

 

Fig. 4.10. Porosity data from Expedition 316 Scientists (2009a, b, c) (blue) compared to a standard Sclater-

Christie curve (Sclater and Christie, 1980) and the application of the curve’s depth coefficient to the cored 

data (Midland Valley Exploration Ltd., 2018) (orange and green respectively).  The white box highlights the 

difference in porosity between the cored data (blue) and the projected value of the data (green) using a 

depth coefficient of 0.39 km-1. 
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Conclusions 
Three main conclusions are drawn from our 3D kinematic restoration of a trench slope 

basin on the Nankai accretionary prism: 

 

1. The patterns of faulting that created and influenced the trench slope basin can be 

explained by changes in prism taper relative to critical (critical taper theory). 

 

2. Development of the MSB is driven and influenced by the underlying anticline 

formation and deformation, regional seamount subduction, and slope failure above 

and within the basin. 

 

3. Uplift of the outer forearc that formed the Kumano Basin was likely accommodated 

on the MS fault system landward of the study area. 
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

 
We set out to better understand the mechanisms by which landsliding is distributed and 

initiated along the Nankai accretionary prism off southwest Japan.  Overall, we believe 

that these goals have been met.  Through a robust examination of the seafloor, via high 

resolution bathymetric data, we were able to catalog an unprecedented number of 

landslide scars along the prism and correlate them to surficial faulting.  Because of the 

detailed analysis of each scar, this data set can contribute to a larger global database of 

submarine landslides to help better understand their impacts of the seafloor and human 

populations. 

 

Our 3D investigation of a nested series of landslides that occurred from ~1 – 0.44 Ma in 

the Kumano Basin highlights indirect links between earthquakes and landslides.  Large 

scale, megathrust earthquakes are not required to relieve stress within the prism, 

meaning smaller earthquakes that sufficiently reorient the primary compressional stress 

within the prism could cause moderate to large landslides and, by consequence, tsunami.  

That the inter-seismic period of the earthquake cycle can lead to slope failure in forearc 

basins should be a key consideration in the construction of submarine and costal 

infrastructure due to the threat of landslide generated tsunami. 

 

The tectonic reconstruction of the outer wedge and a spatially-correlated trench slope 

basin directly relates accretionary tectonics with slope failures and sedimentation.  By 

back-striping movement along the megasplay and other prominent faults within the 

region, we have further constrained the timing and evolution of the prism.  Now, we better 

understand how sedimentation is both affected by regional tectonics and how the prism 

responds to sedimentation throughout its evolution. 

 

For future students that want to study accretionary environments, furthering this work 

should involve a broader scale reconstruction of the accretionary prism from the proto-

thrust zone landward to the Kumano Basin incorporating all the data and conclusions to 
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date.  Being one of the most heavily studied subduction zones on the planet, there are 

numerous studies along the entirety of the Nankai Trough, accretionary prism, and 

Kumano Basin to include IODP cores, seismic data, seismicity studies, sedimentation 

rates, etc.  The integration of all these data, combined with the knowledge and skills 

gained within this dissertation, would permit such a broad reconstruction and provide an 

unprecedented view of subduction related tectonics on a regional scale. 

 

It is my hope that these studies serve to further the understanding and knowledge of the 

Earth Sciences and allow future scientists to continue studying and broadening our 

knowledge of our planet. 
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