133 Hotspots, Large Igneous Provinces, and Melting Anomalies

MD Ballmer, University of Hawaii, Honolulu, HI, USA; Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
PE van Keken, University of Michigan, Ann Arbor, MI, USA
G Ito, University of Hawaii, Honolulu, HI, USA

© 2015 Elsevier B.V. All rights reserved.

This article is a revision of the previous edition article by [G Ito and P E van Keken], Volume 7, pp. 371–435, © 2007, Elsevier BV.

133.1 Introduction 2
133.2 Characteristics 2
133.2.1 Volcano Chains and Age Progression 2
133.2.1.1 Long-lived age-progressive volcanism 2
133.2.1.2 Short-lived age-progressive volcanism 8
133.2.1.3 Non-age-progressive volcanism 9
133.2.1.4 Continental hot spots and melting anomalies 11
133.2.1.5 The hot spot reference frame 11
133.2.2 Topographic Swells 14
133.2.3 Flood Basalt Volcanism 15
133.2.3.1 Intraplate continental LIPs 15
133.2.3.2 LIPs near or on continental margins 16
133.2.3.3 Oceanic LIPs 18
133.2.3.4 Connections to hot spots 19
133.2.3.5 Connections to climate crises and mass extinction 19
133.2.4 Geochemistry and Petrology of OIB 20
133.2.4.1 Isotope geochemistry 20
133.2.4.2 Major-element geochemistry 20
133.2.5 Mantle Seismic Anomalies 22
133.2.5.1 Global seismic studies 22
133.2.5.2 Seismic studies of major hot spots 23
133.2.6 Summary of Observations 32
133.3 Dynamic Mechanisms and Their Implications 33
133.3.1 Methods 33
133.3.2 Generating Magmas for Volcanism 33
133.3.2.1 Temperature 34
133.3.2.2 Composition 34
133.3.2.3 Mantle upwelling 34
133.3.3 Dynamics of Mantle Upwellings 34
133.3.3.1 Thermal boundary layer instabilities 35
133.3.3.2 Thermal plumes 35
133.3.3.3 Thermochemical plumes 36
133.3.3.4 Effects of variable mantle properties on plume dynamics 37
133.3.3.5 Small-scale sublithospheric convection 38
133.3.3.6 Buoyant decompression melting 39
133.3.3.7 Shear-driven upwelling and viscous fingering 40
133.3.3.8 Vertical motion of the lithosphere 42
133.3.4 Swells 42
133.3.4.1 Swell support mechanisms 42
133.3.4.2 Plume models and hot spot swells 43
133.3.5 Large Igneous Provinces 43
133.3.6 The Origin of OIB Geochemical Signatures 44
133.3.6.1 Tracing mantle heterogeneity by isotopic signatures of OIB 44
133.3.6.2 Constraining source materials from major-element characteristics of OIB 45
133.3.6.3 The origin of geographic variations in OIB geochemistry 46
133.3.7 Plumes in the Context of Mantle Convection and Plate Tectonics 46
133.3.7.1 Connection of hot spots with thermochemical structures in the deep mantle 46
133.3.7.2 Interaction of plumes with plate tectonic processes 47
133.3.7.3 Lithospheric controls on volcanism 50
133.4 Conclusion 50
Acknowledgments 51
References 51
Hotspots, Large Igneous Provinces, and Melting Anomalies

133.1 Introduction

Volcanism on Earth and the generation of the oceanic and continental crust predominantly occur along divergent or convergent margins. At mid-oceanic ridges, decompression of the upwelling mantle induces magmatism. At subduction zones, the influx of fluids released from the metamorphic dehydration reactions in the downgoing slab leads to partial melting of the overlying hot mantle wedge. In contrast, several forms of volcanism are less readily explained by plate tectonic processes. These include, for example, the formation of intraplate hotspot islands (such as Hawaii) and excessive flood basalt volcanism at plate boundaries (such as at Iceland).

The most prominent melting anomalies typically occur on top of a broad swelling of topography and are trailed by a volcano chain that parallels plate motion. In some cases, these chains project back to massive volcanic plateaus (large igneous provinces, LIPs), suggesting that hotspot activity began with magmatic outbursts as large as any in the geologic record (Duncan and Richards, 1991; Morgan, 1972; Richards et al., 1989; White and McKenzie, 1989). These observations have led to the establishment of classical ‘hotspot’ theory proposed by Wilson (1963, 1973). Morgan (1971, 1972), and Crough (1978), who describe hotspots as positive thermal anomalies in the mantle that are fixed relative to the motion of the tectonic plates. These plumes cause excess seafloor elevation and feeding age-progressive volcanism.

Modern dating techniques, however, recover complex age patterns for many volcano chains and reveal that intraplate volcanism cannot universally be ascribed to activity at localized hotspots (Koppers et al., 2003; McNutt et al., 1997). In addition, some hotspots are not confidently linked to anomalously high mantle temperatures (Klein and Langmuir, 1987; Langmuir et al., 1992). In turn, most hotspots are fed by melting of a source that is geochemically distinct and typically more fertile than ‘normal’ mantle that feeds mid-ocean-ridge (MOR) melting (Hart et al., 1973; Hofmann, 1997; Jackson and Dasgupta, 2008; Schilling, 1971, 1973). Thus, the term ‘melting anomaly’ may be more general and appropriate to describe the topic of this chapter.

The differences between the hotspot source and the ‘normal’ mantle in both major elements and isotopes (Jackson and Dasgupta, 2008) suggest that volcanism at melting anomalies has origins that are only partly decoupled from plate tectonic processes. A straightforward explanation is that magmatism is sustained by convective upwellings or plumes of unusually hot, buoyant mantle, which rise from the lower mantle (Morgan, 1971, 1972; Whitehead and Luther, 1975; Wilson, 1963, 1973), possibly through a chemically heterogeneous mantle (e.g., Richter and McKenzie, 1981). The morphology of a mantle plume, simulated in laboratory and numerical experiments, is predicted to have a large ‘mushroom’-shaped head and a trailing, narrower plume stem. This geometry is similar to that expected for the formation of an LIP followed by a hotspot track (e.g., Campbell and Griffiths, 1990; Richards et al., 1989). Recent regional (e.g., Wolfe et al., 2009) and global seismic studies (e.g., Boschi et al., 2007; Montelli et al., 2006; Zhao, 2007) are providing increasingly convincing evidence for mantle plumes originating in the lower mantle.

Another observational link to the deep mantle is the spatial relation of hot spot and LIP locations to the edges of large low-shear-wave-velocity provinces (LSVVPs) imaged at the base of the mantle (Boschi et al., 2007; Burke and Torsvik, 2004; Torsvik et al., 2006).

Studies of hotspots have flourished over the past few decades. Recent articles and textbooks discuss some of the classic ties of hot spots to mantle plumes (e.g., Campbell, 2007; Campbell and Kerr, 2007; Condie, 2001; Davies, 1999; Foulger and Jurdy, 2007; Foulger et al., 2006; Jackson, 1998; Schubert et al., 2001; Sleep, 2006), the role of mantle plumes in deep mantle convection and chemical transport (e.g., Deschamps et al., 2011; Jellinek and Stanga, 2004; Kumagai et al., 2008), and oceanic hot spots (e.g., Ballmer et al., 2011; Hekinian et al., 2004; Ito et al., 2003). It has become apparent that only a few hot spots confidently show all of the previously mentioned characteristics of the classic plume description (Clouard and Bonneville, 2001; Courtillot et al., 2003). The term ‘hotspot’ itself implies a localized region of anomalously high mantle temperature, but some features that were originally called hotspots may involve little or no excess heat or large distances of coeval volcanism. To understand these discrepancies, there has been significant exploration of the interaction of mantle plumes with plate tectonic processes (e.g., Kincaid et al., 2013; Mittelstaedt et al., 2012), the dynamic effect of compositional heterogeneity (Ballmer et al., 2013b; Davaille, 1999; Kumagai et al., 2008; Lin and van Keken, 2005), and mechanisms that can feed non-hot spot volcanism (Ballmer et al., 2007; Clouard and Gerbault, 2008; Conrad et al., 2011). The progress made in the last decade motivates a comprehensive review on studies of hotspots, LIPs, and melting anomalies. We here summarize the main observations, outline the mechanisms that have been proposed to cause hotspots and other melting anomalies, and pose questions that need quantitative answers.

133.2 Characteristics

Guided by the classical description of hot spots, we examine four main characteristics: (1) geographic age progression along volcano chains, (2) initiation by massive flood basalt volcanism, (3) a swell of anomalously shallow topography surrounding volcanoes, and (4) basaltic volcanism with geochemical distinction from most MOR basalts (MORBs). Given the marked progress in seismic methods over the past decade, we also summarize the findings of mantle seismic structure beneath hot spots and surface melt anomalies. Table 1 provides a compilation of the previously mentioned characteristics for the 67 hot spots and melting anomalies. Figure 1 shows a global map of their locations with abbreviations and the main LIPs that we will discuss.

133.2.1 Volcano Chains and Age Progression

133.2.1.1 Long-lived age-progressive volcanism

At least 13 hotspot chains record volcanism enduring for more than 50 My. The Hawaiian–Emperor and the Louisville chains, for example, span thousands of kilometers across the Pacific
Table 1: Summary of characteristics

<table>
<thead>
<tr>
<th>Name (abbreviation)</th>
<th>Hot spot E. long., N. lat.</th>
<th>Age progression?</th>
<th>Age range</th>
<th>Swell? and width (km)</th>
<th>Connection to LIP?</th>
<th>Geochemically distinct from MORB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baja (BAJ)</td>
<td>113, 27</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Bowie–Kodiak (BOW)</td>
<td>130, 49.5</td>
<td>Ok</td>
<td>0.1–23.8 Ma</td>
<td>Yes/250 km</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Caroline (CAR)</td>
<td>163, 5.3</td>
<td>Weak</td>
<td>1.4 Ma (east) to 4.7–13.9 Ma (west)</td>
<td>–</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Cobb (COB)</td>
<td>128.7, 43.6</td>
<td>Good</td>
<td>1.5–29.2 Ma</td>
<td>Yes/370</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Cook (CK)</td>
<td>149.5, –23.5</td>
<td>No</td>
<td>0.2–19.4 Ma</td>
<td>Yes/500</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Austral (AU)</td>
<td>140.0, –29.37</td>
<td>No</td>
<td>0–58.1 Ma</td>
<td>Yes/600</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Easter (EAS)</td>
<td>109, –27</td>
<td>Good</td>
<td>0–25.6 Ma</td>
<td>Yes/580</td>
<td>Maybe Tuamotu and Mid-Pac</td>
<td>206Pb/204Pb</td>
</tr>
<tr>
<td>Foundation (FOU)</td>
<td>111, –39</td>
<td>No</td>
<td>2.1–21 Ma</td>
<td>Yes/250</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Galapagos (GAL)</td>
<td>91.6, –0.4</td>
<td>Yes</td>
<td>0–14.5 Ma offshore; 69–139 Ma, Caribbean LIP</td>
<td>Yes/300</td>
<td>Caribbean LIP</td>
<td>206Pb/204Pb</td>
</tr>
<tr>
<td>Geologist (GEO)</td>
<td>157, 19</td>
<td>No</td>
<td>82.7–84.6 Ma</td>
<td>–</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Guadalupe (GUA)</td>
<td>118, 29</td>
<td>–</td>
<td><3.4 to ~20.3 Ma</td>
<td>Maybe/204Pb</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Hawaii–Emperor (HAW)</td>
<td>–155.3, 18.9</td>
<td>Good</td>
<td>0–75.8 Ma</td>
<td>Yes/920</td>
<td>Doubtfully OJP</td>
<td>206Pb/204Pb, maybe 87Sr/86Sr</td>
</tr>
<tr>
<td>Japanese–Wake (JWK)</td>
<td>–</td>
<td>No</td>
<td>78.6–119.7 Ma</td>
<td>–</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Juan Fernandez (JFE)</td>
<td>–79, –34</td>
<td>Weak</td>
<td>1–4 Ma (2 volcanoes dated)</td>
<td>Yes/204Pb</td>
<td>No</td>
<td>3He/4He and 87Sr/86Sr for Hawaiian Islands but not Emperor Seamounts</td>
</tr>
<tr>
<td>Line Islands (LIN)</td>
<td>–</td>
<td>No</td>
<td>35.5–91.2 Ma</td>
<td>Partially/204Pb</td>
<td>Maybe Mid-Pac</td>
<td>–</td>
</tr>
<tr>
<td>Louisville (LOU)</td>
<td>–141.2, –53.6</td>
<td>Good</td>
<td>1.1–77.3 Ma</td>
<td>Yes/540</td>
<td>Doubtfully OJP</td>
<td>206Pb/204Pb, maybe 87Sr/86Sr</td>
</tr>
<tr>
<td>Magellan Seamounts</td>
<td>–</td>
<td>No</td>
<td>87–118.6 Ma</td>
<td>No</td>
<td>No</td>
<td>87Sr/86Sr and 206Pb/204Pb</td>
</tr>
<tr>
<td>Marquesas (MOS)</td>
<td>–138.5, –11</td>
<td>Ok</td>
<td>0.8–5.5 Ma</td>
<td>Yes/850</td>
<td>Maybe Shatsky or Hess</td>
<td>87Sr/86Sr, maybe 206Pb/204Pb</td>
</tr>
<tr>
<td>Marshall Islands (MI)</td>
<td>–</td>
<td>No</td>
<td>68–138 Ma</td>
<td>Maybe/204Pb</td>
<td>No</td>
<td>206Pb/204Pb</td>
</tr>
<tr>
<td>Mid-Pacific Mountains (MPM)</td>
<td>–</td>
<td>No</td>
<td>73.5–128 Ma</td>
<td>No</td>
<td>It could be an LIP</td>
<td>–</td>
</tr>
<tr>
<td>Musician (MUS)</td>
<td>–</td>
<td>Ok</td>
<td>65.5–95.8 Ma</td>
<td>No</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Pitcairn (PIT)</td>
<td>–129.4, –25.2</td>
<td>Good</td>
<td>0–11.1 Ma</td>
<td>Yes/570</td>
<td>No</td>
<td>87Sr/86Sr</td>
</tr>
<tr>
<td>Pukapuka (PUK)</td>
<td>–165.5, –10.5</td>
<td>Ok</td>
<td>5.6–27.5 Ma</td>
<td>Yes/204Pb</td>
<td>No</td>
<td>206Pb/204Pb</td>
</tr>
<tr>
<td>Samoa (SAM)</td>
<td>–169, –14.3</td>
<td>Weak</td>
<td>0–23 Ma</td>
<td>400</td>
<td>87Sr/86Sr, 3He/4He, and 206Pb/204Pb</td>
<td></td>
</tr>
<tr>
<td>San Felix (SF)</td>
<td>–80, –26</td>
<td>–</td>
<td>–</td>
<td>Yes/204Pb</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Shatsky (SHA)</td>
<td>–</td>
<td>Yes</td>
<td>128–145 Ma</td>
<td>No</td>
<td>It is an LIP</td>
<td>No</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Name (abbreviation)</th>
<th>Hot spot E. long., N. lat.</th>
<th>Age progression?</th>
<th>Age range</th>
<th>Swell? and width (km)</th>
<th>Connection to LIP?</th>
<th>Geochemically distinct from MORB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society (SOC)</td>
<td>−148, −18</td>
<td>Good</td>
<td>0.01–4.6 Ma</td>
<td>Yes/?</td>
<td>No</td>
<td>Sr/Sr and Pb/Pb</td>
</tr>
<tr>
<td>Socorro (SCR)</td>
<td>−111, 19</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Tarava (TAR)</td>
<td>173, 3</td>
<td>Weak</td>
<td>35.9 Ma and 43.5 Ma</td>
<td>Yes/?</td>
<td>No</td>
<td>−</td>
</tr>
<tr>
<td>Tuamotu (TUA)</td>
<td>−</td>
<td>Good</td>
<td>58–74 Ma</td>
<td>Yes/?</td>
<td>No</td>
<td>−</td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellowstone (YEL)</td>
<td>−111, 44.8</td>
<td>Yes</td>
<td>16–17 Ma</td>
<td>Yes/600</td>
<td>Maybe Columbia River basalts</td>
<td>−</td>
</tr>
<tr>
<td>Balleny (BAL)</td>
<td>164.7, −67.4</td>
<td>Weak</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>East Australia (AUS)</td>
<td>143, −38</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Lord Howe (LHO)</td>
<td>159, −31</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Tasmanitid (TAS)</td>
<td>153, −41</td>
<td>Yes</td>
<td>−</td>
<td>Yes/300</td>
<td>Maybe Lord Howe Rise</td>
<td>−</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atar (AF)</td>
<td>42, 12</td>
<td>No</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>East Africa/Lake Victoria (EAF)</td>
<td>34, 6</td>
<td>No</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Darfur (DAR)</td>
<td>24,13</td>
<td>No</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Ahaggar (HOG)</td>
<td>6, 23</td>
<td>No</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Tibesti (TIB)</td>
<td>17, 21</td>
<td>No</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Ascension/Circe (ASC)</td>
<td>−14, −8</td>
<td>−</td>
<td><1 Ma (Ascension) and 6 Ma (Circe) 0–20 Ma, possibly ~85 Ma</td>
<td>Yes/800</td>
<td>No</td>
<td>Pb/Pb</td>
</tr>
<tr>
<td>Azores (AZO)</td>
<td>−28, 38</td>
<td>Seafloor spreading</td>
<td>0–20 Ma, possibly ~85 Ma</td>
<td>Yes/2300</td>
<td>No</td>
<td>Sr/Sr and Pb/Pb</td>
</tr>
<tr>
<td>Bermuda (BER)</td>
<td>−65, 32</td>
<td>−</td>
<td>−</td>
<td>Yes/500 × 700 (parallel × perp to plate motion)</td>
<td>No</td>
<td>−</td>
</tr>
<tr>
<td>Bouvet (BOU)</td>
<td>3.4, −54.4</td>
<td>−</td>
<td>−</td>
<td>Yes/900</td>
<td>Agulhas Plateau?</td>
<td>−</td>
</tr>
<tr>
<td>Cameroon (CAM)</td>
<td>6, −1</td>
<td>No</td>
<td>1–32 Ma</td>
<td>Yes/500–600</td>
<td>No</td>
<td>−</td>
</tr>
<tr>
<td>Canaries (CAN)</td>
<td>−17, 28</td>
<td>Ok</td>
<td>0–68 Ma</td>
<td>No</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Cape Verde (CAP)</td>
<td>−24, 15</td>
<td>No</td>
<td>Neogene</td>
<td>Yes/800</td>
<td>No</td>
<td>−</td>
</tr>
<tr>
<td>Discovery (DIS)</td>
<td>−6.45, −44.45</td>
<td>−</td>
<td>35–41 Ma</td>
<td>Yes/600</td>
<td>No</td>
<td>−</td>
</tr>
<tr>
<td>Fernando Do Noronha (FER)</td>
<td>−32, −4</td>
<td>−</td>
<td>−</td>
<td>Yes/200–300</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Great Meteor (GM)</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Yes/800</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Iceland (ICE)</td>
<td>−17.6, 64.6</td>
<td>Yes</td>
<td>0–62 Ma</td>
<td>Yes/2700</td>
<td>N. Atlantic LIP</td>
<td>He/He</td>
</tr>
<tr>
<td>Madeira (MAD)</td>
<td>−17.5, 32.7</td>
<td>Yes</td>
<td>0–67 Ma</td>
<td>No</td>
<td>−</td>
<td>Pb/Pb</td>
</tr>
<tr>
<td>New England (NEW)</td>
<td>−57.5, 35</td>
<td>Yes</td>
<td>81–103, 122–124 Ma</td>
<td>No</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Shona–Agulhas (SHO)</td>
<td>−4, −52</td>
<td>−</td>
<td>2.5–81 Ma</td>
<td>~900</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Sierra Leone (SL)</td>
<td>−29, 1</td>
<td>Not dated</td>
<td>−</td>
<td>−</td>
<td>It could be an LIP</td>
<td>−</td>
</tr>
</tbody>
</table>

(Continued)
Basin (~6000 and >4000 km, respectively), record volcanism starting before 75 Ma (Duncan and Clague, 1985; Duncan and Keller, 2004; Koppers et al., 2004; Watts et al., 1988), and were among the first chains that led to the establishment of the hotspot hypothesis. As both chains terminate at subduction zones, the existing volcanoes likely record only part of the activities of these hot spots (cf. Portnyagin et al., 2009).

In addition to Hawaii and Louisville, the Galápagos is the third Pacific hotspot with a similar duration. Its interaction with the Galápagos Spreading Center has produced two chains: the Galápagos archipelago–Carnegie Ridge on the Nazca Plate (Sinton et al., 1996) and the Cocos Ridge on the Cocos Plate. The Cocos Ridge records oceanic volcanism for >14.5 My (Werner et al., 1999) and projects toward the Caribbean LIP (Duncan and Hargraves, 1984) with 40Ar/39Ar dates of 69–139 Ma (e.g., Hoernle et al., 2002, 2004).

The geochemical similarity of these lavas with the Galápagos archipelago is a compelling evidence for a total life span for the Galápagos melting anomaly of >139 My (Hoernle et al., 2002, 2004).

In the Indian Ocean, at least four hot spots have been related to long-term activity. Muller et al. (1993b) compilation of ages associates the Réunion hotspot to volcanism on the Mascarene Plateau at 45 Ma (Duncan et al., 1990), the Cocos–Laccadive Plateau at >60 Ma (Duncan, 1978, 1991), and finally the Deccan flood basalts in India with dates as old as ~70 Ma (see also Sheth, 2005). The Comoros hotspot can be linked to volcanism around the Seychelles islands at 63 Ma (Emerick and Duncan, 1982; Müller et al., 1993b). Volcanism on Marion (<0.5 Ma; cf. McDougall et al., 2001) projects along a volcanic ridge to Madagascar (Meert and Tamrat, 2006).

While geologic dating is sparse, Storey et al. (1997) inferred

<table>
<thead>
<tr>
<th>Name (abbreviation)</th>
<th>Hot spot E. long., N. lat.</th>
<th>Age progression?</th>
<th>Age range</th>
<th>Swell? and width (km)</th>
<th>Connection to LIP?</th>
<th>Geochemically distinct from MORB</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Helena (SHE)</td>
<td>–10, –17</td>
<td>Yes</td>
<td>3–81 Ma</td>
<td>Yes/720</td>
<td>No</td>
<td>206Pb/204Pb</td>
</tr>
<tr>
<td>Tristan–Gough (TRI)</td>
<td>–9.9, –40.4</td>
<td>Yes</td>
<td>0.5–80 Ma and 130 Ma</td>
<td>Yes/850</td>
<td>Rio Grande–Walvis and Paraná–Etendeka</td>
<td>87Sr/86Sr</td>
</tr>
<tr>
<td>Vema (VEM)</td>
<td>16, –32</td>
<td>–</td>
<td>>11 Ma</td>
<td>Yes/200–300</td>
<td>Yes/300–500</td>
<td>–</td>
</tr>
<tr>
<td>Amsterdam–St. Paul (AMS)</td>
<td>77, –37</td>
<td>No</td>
<td>–</td>
<td>Yes/200–300</td>
<td>Maybe Kerguelen</td>
<td>–</td>
</tr>
<tr>
<td>Comores (COM)</td>
<td>44, –12</td>
<td>Yes</td>
<td>0–5.4 Ma on island chain and ~50 Ma (Seychelles)</td>
<td>Yes/700–800</td>
<td>–</td>
<td>87Sr/86Sr and 206Pb/204Pb</td>
</tr>
<tr>
<td>Conrad (CON)</td>
<td>48, –54</td>
<td>–</td>
<td>Not dated</td>
<td>Half width 400 south of seamounts</td>
<td>Yes/1120</td>
<td>It could be an LIP</td>
</tr>
<tr>
<td>Crozet (CRO)</td>
<td>50, –46</td>
<td>–</td>
<td>Not dated</td>
<td>–</td>
<td>Maybe Madagascar</td>
<td>–</td>
</tr>
<tr>
<td>Kerguelen (KER)</td>
<td>63, –49</td>
<td>Yes</td>
<td>0.1–114 Ma (Kerguelen) and 38–82 Ma (Ninetyeast–Broken Ridge)</td>
<td>Yes/1310</td>
<td>Mascarene, Chagos–Laccadive, and Deccan 30–70 Ma</td>
<td>87Sr/86Sr</td>
</tr>
<tr>
<td>Marion (MAR)</td>
<td>37.8, –46.8</td>
<td>Weak</td>
<td><0.5 Ma (Marion) and 88 Ma (Madagascar)</td>
<td>Half width 500 or along axis</td>
<td>Madagascar Plateau and Madagascar island flood basalts</td>
<td>Maybe 87Sr/86Sr</td>
</tr>
<tr>
<td>Réunion (REU)</td>
<td>55.5, –21</td>
<td>Yes</td>
<td>0–70 Ma</td>
<td>Yes/1380</td>
<td>–</td>
<td>3He/4He and 87Sr/86Sr</td>
</tr>
<tr>
<td>Eurasia</td>
<td>Eifel (EIF)</td>
<td>No</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Blank spaces indicate that there are no data, where we did not find any data, where available data are inconclusive.
an age progression along this track back to ~88 Ma. The Kerguelen hot spot is linked to Broken Ridge and Ninetyeast Ridge on the Australian Plate and multiple stages of volcanism on the Kerguelen Plateau dating to 114 Ma (Frey et al., 2000; Krishna et al., 2012; Nicolaysen et al., 2000; Figure 2).

In the Atlantic Ocean, at least seven long-lived melting anomalies have been documented. The Tristan–Gough and St. Helena chains record volcanism on the African Plate for ~80 My (O’Connor and Duncan, 1990; O’Connor and Roex, 1992; O’Connor et al., 1999). For Tristan–Gough, a connection to the Paraná flood basalts in South America and the Etendeka basalts in Namibia may even extend the duration of the melting anomaly to ~130 My (O’Connor et al., 2012; Peate, 1997). O’Connor et al. (2012) further proposed a connection of the Shona seamounts with the Agulhas Ridge to form another (zigzag-shaped) long-lived hotspot trail in the South Atlantic (~80 My). The Trindade–Martim Vaz chain on the South American Plate (Fodor and Hanan, 2000) extends to the Alto Paranaiba and Poxoreu volcanic provinces of ages ~85 Ma (Gibson et al., 1997). In the North Atlantic, the Madeira and Canary chains have recorded age-progressive volcanism for nearly 70 My (Geldmacher et al., 2005; Guillou...
The Canaries are unusual in that single volcanoes often remain active for tens of My (Geldmacher et al., 2005), much longer than, for example, the typical duration of the Hawaiian volcanoes' shield stage of ~1 My (e.g., Clague and Dalrymple, 1987; Ozawa et al., 2005). The long life span of some of the Canary volcanoes has contributed to uncertainty in defining a geographic age progression but is consistent with the slow motion of the African Plate over the hot spot.

Finally, Iceland is often cited as a classic Atlantic hotspot with volcanic tracks on two plates due to its location on a MOR (Figure 3). The thickest crust of the hotspot tracks occur along the Greenland–Iceland and Faeroe–Iceland Ridges extending NW and SE from Iceland. Anomalously thick oceanic crust immediately adjacent to these ridges shows datable magnetic lineations (Jones et al., 2002b; Macnab et al., 1995; White, 1997). Extrapolating the ages of these lineations onto the Greenland–Iceland and Faeroe–Iceland Ridges suggests the occurrence of age-progressive volcanism with seafloor spreading, which is most easily explained by the Iceland hot spot causing excess magmatism very near to or at the Mid-Atlantic Ridge since the time of continental breakup (White, 1988, 1997; Wilson, 1973). Earlier volcanism occurring as flood
At a few volcano chains, the continuous record of volcanism is poorly constrained. For example, the New England Seamount chain records ~20 My of oceanic volcanism (Duncan, 1984), but an extrapolation to the volcanic provinces in New England could extend the duration by another 20 My (cf. O’Neill et al., 2005). The duration of the Azores hotspot is also unclear. Gente et al. (2003) hypothesized the Azores hotspot and the Great Meteor and Corner Rise Seamounts (~85 Ma) to be conjugate features. Yet, age constraints of these features are poor and any geochemical association with the Azores group remains unknown.

In the Pacific Ocean (see Clouard and Bonneville (2005) and references therein), the total durations of the Cobb (1.5–29.2 Ma; Desonie and Duncan, 1990; Turner et al., 1980) and Bowie-Kodiak chains (0.2–23.8 Ma; Turner et al., 1980) remain unknown, as they terminate at the subduction zone south of Alaska. The Easter chain extends to at least ~30 Ma on the Nazca Plate (Clouard and Bonneville, 2005; Ray et al., 2012). On the Pacific Plate, the record extends perhaps even further into the past, but the tentative link with the Tuamotu Plateau (Clouard and Bonneville, 2001; Ito et al., 1995) clearly requires further dating.

At least ten volcanic provinces show age-progressive volcanism lasting less than 25 My (e.g., Clouard and Bonneville, 2005). The Samoan hot spot has been active for 20 My (Hart et al., 2004) and possibly longer (Duncan and Clague, 1985). The hot-spot-like age progression along the Samoan track is obscured by voluminous secondary volcanism covering the main islands of the archipelago (e.g., Natland, 1980) but has been revealed by recent sampling of the submarine flanks of the volcanoes (Koppers et al., 2008, 2011b). The Society and Marquesas Islands represent voluminous volcanism but for...
geologically brief durations of ~4.6 My and ~4.7 My, respectively (Chauvel et al., 2012; Guillou et al., 2005; Legendre et al., 2006). Clouard and Bonneville (2001) argued that the Marquesas hotspot could have formed the Line Islands and Hess Rise based on geometric arguments. If this interpretation is correct, the large gap in volcanism between the three provinces implies strongly episodic volcanism. However, the age trend of the Marquesas volcanoes departs from Pacific Plate motion in both speed and direction and thus contradicts a hotspot origin altogether (cf. Legendre et al., 2006). Similar to the Marquesas, the Foundation chain (duration from 2.1 to 21 Ma) displays an age progression that is somewhat faster than Pacific Plate motion (O'Connor et al., 2004), which could suggest an absolute drift of the underlying melting anomaly (cf. O'Neill et al., 2005). Short hotspot durations of 11–24 My further occur along the Pitcairn (0–11 Ma), Caroline (1.4–13.9 Ma), Tarawa (35.9–43.5 Ma; Clouard et al., 2003), Tokelau (58–74 Ma; Koppers et al., 2007), and Japanese seamount (94–118 Ma; Koppers et al., 2003) chains on the Pacific Plate, as well as the Tasmanid seamounts near Australia (7–24.3 Ma; McDougall and Duncan, 1988; Müller et al., 1993b). Such short hotspot durations do not fit in with the classical explanation that hotspots are underlain by long-lived mantle plumes.

An intriguing yet enigmatic form of age-progressive volcanism is represented by the Pukapuka, Sojourn, and Hotu Matua ridges, which trend WNW–ESE and away from the East Pacific Rise. With respect to its geographic trend and duration, the Pukapuka ridge resembles some of the other volcano chains in the region, such as the Foundation chain (Maia et al., 2001; O’Connor et al., 2002, 2004), but it stands out because of its age pattern as well as its smaller volcanic volume and morphology: the Pukapuka is not built of discrete conical seamounts, but rather of en echelon elongate ridges (Lynch, 1999). Moreover, Pukapuka’s rapid and variable rate of age progression (Janney et al., 2000; Sandwell et al., 1995) suggests that the magma source has migrated eastward by rates of ~20 cm year$^{-1}$ (Figure 4), which is difficult to reconcile with the concept of a near-stationary hot spot source. While the Sojourn and Hotu Matua ridges lack the lateral extent to robustly define an age progression, they appear very similar to the parallel Pukapuka ridge, not only in terms of the available ages and the morphology of the volcanic edifices (Forsyth et al., 2006) but also in terms of their association with gravity, bathymetry, and seismic wave speed anomalies (Figure 4; Harmon et al., 2011).

133.2.1.3 Non-age-progressive volcanism

An important form of oceanic volcanism does not involve simple geographic age progressions. Amsterdam–St. Paul and Cape Verde are two examples that each represent opposite extremes in terms of size and duration. The Amsterdam–St. Paul hot spot represents a relatively small and short-lived (≤5 My) melting anomaly on the Southeast Indian Ridge that...
is geochemically separate from the Kerguelen hot spot (cf. Doucet et al., 2004; Graham et al., 1999). Its small size and duration, as well as its location on a MOR, likely contribute to the lack of an identifiable age progression. The Cape Verde volcanoes, on the other hand, are larger and have likely existed since Early Neogene (e.g., McNutt, 1988). The islands also lack a clear linear age progression, but this can be expected for a hot spot located very close to the Euler pole of the African Plate (McNutt, 1988).

Examples of volcano chains with complex age–space relations on the rapidly moving Pacific Plate are more difficult to explain within the hotspot framework. While the lack of modern dates on samples of the Mid-Pacific Mountains and the Geologist seamounts precludes robust interpretations, the Marcus–Wake seamounts and Gilbert Ridge, as well as the Marshall, Magellan, and Line Islands, clearly display synchronous or near-synchronous volcanism over large distances of 1500–2000 km (e.g., Davis et al., 2002; Koppers et al., 2003; Clouard and Bonniveille, 2005 and references therein). These volcano groups also show long-lived, recurrent activity at individual islands (Figure 5). They can thus more reasonably be explained by ‘hot lines’ or melting anomalies that are elongated in the direction of plate motion (Bonatti and Harrison, 1976; Bonatti et al., 1977) or even by much broader magmatic anomalies with melt extraction limited by the lithosphere (see Section 133.3.7.3). The Cameroon volcanic line, which extends from Cameroon to the SW straddling the passive continental margin of Africa (Figure 6), may represent an analogue to the Pacific cases of volcanism with coeval activity over distances greater than 1000 km (Marzoli et al., 2000; Montigny et al., 2004).

Recent volcanism along the prominent Cook–Austral Islands in the South Pacific also displays overall complex geographic age patterns (McNutt et al., 1997) and complex uplift history at individual volcanoes (Adam and Bonniveille, 2008; Jordahl et al., 2004). The geographic age pattern of a younger episode of volcanism (0–20 Ma) alone requires either the activity of two parallel hot lines (Ballmer et al., 2009) or that of four closely spaced, short-lived hot spots (representing the Macdonald, Arago/Rurutu, Raivavae and Rarotonga tracks; Bonniveille et al., 2002; 2006) (cf. dashed lines in Figure 5). In the framework of a hot spot interpretation, geochemical affinities with seamounts near the Samoan Islands have been suggested to indicate long life spans (of up to ~25 and ~50 My) for some of the tracks (Arago/Rurutu and Macdonald, respectively) (Jackson et al., 2010).

The remaining oceanic hot spots in Table 1 do not have sufficient data to define time–space relations. This list includes volcano chains that simply have not yet been adequately dated (Socorro, Tuamotu, and Great Meteor), hot spots that have small footprints (e.g., Discovery, Ascension/Circe, Sierra Leone, Conrad, Bermuda), or spatial patterns...
There are a number of continental melting anomalies that are not directly associated with present-day subduction, orogeny, or continental rifting. Such activity occurs, for example, in Mongolia (Hunt et al., 2012), Antarctica (e.g., Giordano et al., 2012), western North America (Lipman and Glazner, 1991; Nelson and Tingey, 1997), eastern Australia (e.g., Griffin and McDougall, 1975), eastern China, Europe, and Africa (Lustrino and Wilson, 2007; green dots in Figure 7). A number of these areas are also shown in Figure 1 and listed in Table 1, such as the North American Yellowstone (YEL)–Snake River Plain volcanic progression (YSRP), the European Eifel hot spot (EH) (cf. Lustrino and Wilson, 2007 and references therein), and the African hot spots such as expressed by the volcanic mountains of Jebel Mara (DAR), Tibesti (TIB), and Ahaggar (HOG) (Burke, 1996).

The Yellowstone hot spot stands out among these, because it is the only one that displays a clear age progression. It is recorded by silicic caldera forming events starting at 16–17 Ma at the Oregon–Nevada border at a distance of ~700 km. Initial rhyolitic volcanism is followed by long-lived basaltic volcanism along the present-day Snake River Plain (SRP) (Figure 8). The effective speed of the hot spot track is 4.5 cm year⁻¹, which includes a component of the present-day plate motion (2.5 cm year⁻¹) and a component caused by the basin and age extension. The YSRP track appears to be mirrored by the westward-progressing High Lava Plains (HLP) track in southern Oregon (Kincaid et al., 2013; Long et al., 2012; Figure 8). The lack of age progression of the other hot spots is usually attributed to the nearly motionless African Plate and the slow motion of the European Plate.

133.2.1.5 The hot spot reference frame

The existence of many long-lived volcano chains with clear age progressions led Morgan (1971, 1972) to suggest that hot spots remain relatively stationary to one another and therefore define a global kinematic reference frame separate from plate motions (Duncan and Clague, 1985; Morgan, 1983). Such an absolute reference frame was used to anchor the well-constrained relative motions of the tectonic plates with respect to the lower mantle and to quantify absolute displacements of the Earth’s spin axis (i.e., true polar wander) through geologic time (Biggin et al., 2012; Torsvik et al., 2002, 2010b, 2012). The concept of a fixed hot spot reference frame, however, has been challenged by observations that indicate relative motions between hot spots, particularly between the Indo-Atlantic and Pacific hot spot groups (Acton and Gordon, 1994; DiVenere and Kent, 1999; Molnar and Stock, 1987; Raymond et al., 2000; Tarduno and Gee, 1995; Torsvik et al., 2002). Relative motion between these two groups is slow but robust and independent of the plate.
circuit chosen to connect the Indo-Atlantic and Pacific hemispheres. Accordingly, uncertainties in the hot spot reference frame inevitably increase looking back into the geologic past.

In addition to slow motion between the Pacific and the Indo-Atlantic hot spot groups, somewhat slower relative motion occurs among hot spots within each of the two groups. In the Pacific, relative motion has been inferred for many hot spot pairs but is best documented from interchain distances of coeval volcanoes within the well-sampled Hawaii and Louisville chains (Koppers and Staudigel, 2005; Koppers et al., 1998, 2011a, 2012; Wessel and Kroenke, 2008, 2009). Most importantly, the rapid southward motion of the Hawaiian hot spot while forming the Emperor seamounts before ~50 Ma has been identified to modulate these distances (Pares and Moore, 2005; Tarduno et al., 2003, 2009). In the Indian Ocean, the inferred absolute southward motion of the
Kerguelen hot spot since 100 Ma hinges on the weakly constrained location of its present location (Steinberger and Antretter, 2006; Weis et al., 2002). At or near present day (i.e., 4–7 Ma), motion between hot spots globally is unresolved or at least much slower than it has been in the geologic past (Gripp and Gordon, 2002; Wang and Wang, 2001). For a more complete description of these issues, we refer the reader to Chapter 111.

Whereas fixity of the source of volcanism relative to the drifting plates has been widely used as diagnostic test for a
hot spot origin, slow relative motion of hot spots is naturally expected in the framework of mantle plume theory. Rising plumes are disturbed by large-scale mantle convection that should slowly yet steadily displace their surface expressions. Within this concept, the drift between hot spots is limited due to the relatively sluggish convection in the lower mantle combined with the potential for chemical anchoring of plumes at the base of the mantle (cf. Davaille et al., 2002; Jellinek and Manga, 2002; McNamara and Zhong, 2004; see also Chapter 136). Global geodynamic models that simulate plumes rising in a convecting mantle predict directions and amplitudes of motion between hot spots that are consistent with observations for a large range of model parameters (Steinberger, 2000; Steinberger and Antretter, 2006). For example, these models can reproduce the westward motion of the Iceland hot spot relative to both the Indo-Atlantic and Pacific hot spots (Norton, 2000; Raymond et al., 2000) for a relatively shallow plume source near the transition zone (Mihalffy et al., 2008). Also, they routinely predict independent drift for a given hot spot pair (Figure 9), as is evident for the Hawaii and Louisville hot spots (Koppers et al., 2012). Such model predictions have been used to define ‘moving hot spot’ reference frames (Doubrovine et al., 2012). However, these reference frames may have similar results as the single fixed hot spot reference frame in explaining volcano age–distance relations when considering the associated uncertainties (O’Neill et al., 2005). Future work is needed to be able to use hot spot motions as a constraint, for example, to infer mantle properties from the best-fitting geodynamic models.

Sudden changes in the direction of hot spot drift are routinely predicted by many of these models (Steinberger and Antretter, 2006; Steinberger et al., 2004; Figure 9), and these can further contribute to bends in hot spot chains, with the Hawaiian–Emperor bend near 50 Ma being a prominent example. The classical explanation for such bends invoked sudden changes in plate motion over fixed hot spots (Andrews et al., 2006; Sharp and Clague, 2006; Whittaker et al., 2007). As a general explanation, however, it is challenged by evidence for prominent bends in seamount chains on the same plate that did not occur at the same time (Koppers et al., 2007). In addition, paleomagnetic evidence along the Hawaiian–Emperor chain indicates a sudden change in hot spot motion from being dominantly southward to being nearly stationary (in the N–S sense) right near the 50 Ma bend (Kono, 1980; Sager et al., 2005; Tarduno et al., 2009). A combination of changes in both hot spot and plate motion may therefore have occurred during the formation of the Hawaiian–Emperor bend (O’Connor et al., 2013).

133.2.2 Topographic Swells

Figure 1 illustrates that most oceanic hot spots and melting anomalies are associated with anomalously shallow topography that extends several hundred km beyond the area of excess volcanism. For individual hot spots, we identify the presence of such a seafloor swell if residual topography exceeds an arbitrarily chosen value of 300 m and extends appreciably (>100 km) away from the center of volcanism. Such hot spot
swells are indeed very common. Near major hot spots, they rise to ~2 km above the surrounding seafloor and extend many hundreds of km away from the center of volcanic activity (Crough, 1983). They are also apparent on chains with very small volcanoes such as the Socorro and Tasmanid tracks, as well as the Pukapuka and Sojourn ridges (Harmon et al., 2006, 2011). In contrast, the Madeira and Canary hot spots are two cases that break this pattern. The lack of obvious swells around these large and long-lived hot spots indeed motivates more detailed investigation.

Hot spot swells are typically restricted to the younger portions of the volcano chain (Table 1). The Hawaiian swell, for example, is prominent beneath the youngest (southeast) part of the Hawaiian ridge but begins to fade near ~17°W and disappears near the Hawaiian-Emperor bend (~50 Ma). Swells also decay along the Louisville (near a volcanic age of ~34 Ma) and the Tristan chains (on the Walvis Ridge near 62–79 Ma). Similar behavior is seen for the Kerguelen track with shallow seafloor that extends away from the Kerguelen Plateau on the Antarctic Plate juxtaposed to normal topography along the southernmost portion of Broken Ridge (~43 Ma) on the Indian Plate. Swells associated with hot spot tracks in the South Atlantic also systematically decay with age, perhaps except for that associated with the St. Helena track, which however is juxtaposed to the active Cameroon volcanic line. Old chains that lack swells in our analysis include the Japanese–Wake seamounts (>70 Ma), the Magellans (>70 Ma), the Mid-Paciﬁc Mountains (>80 Ma), and the Musicians (>65 Ma). This suggests that if a swell forms at a hot spot, it decreases in height with time until it can no longer be detected at an age of ~50 Ma or less.

Whereas swells are more difﬁcult to measure on the thick and compositionally heterogeneous continental plates, the Yellowstone hot spot is associated with well-documented extensive topography. The measured topographic bulge (~200 m high and ~600 km wide) is centered around the Yellowstone caldera (cf. Figure 8) and is associated with high heat ﬂow, extensive hydrothermal activity, and a 10–12 m positive geoid anomaly (Smith and Braile, 1994). Systematic topographic decay along the track in the SRF is consistent with thermal contraction in response to the progression of the American Plate over a hot spot (Smith and Braile, 1994).

The South Paciﬁc Superswell is a much larger swell that spans ~3000 km and supports the hot spots in French Polynesia (Adam and Bonneville, 2005; Hillier and Watts, 2004; McNutt and Fischer, 1987). Other swells of comparable size include the ancient Darwin Rise in the northwestern Paciﬁc (McNutt et al., 1990) and the African Superswell (e.g., Nyblade and Robinson, 1994), which encompasses the southern portion of Africa and the South Atlantic down to the Bouvet Triple junction. Both the South Paciﬁc and African Superswells are associated with active volcanism, geoid anomalies (Adam et al., 2010; Cadio et al., 2011), and broad seismically slow structures in the lower mantle (e.g., Dalevonski et al., 2010; Lekic et al., 2012; see also Section 133.2.5.1 in the succeeding text). While the oceanic hot spots near Africa to ﬁrst order display the key characteristics predicted by hot spot theory (e.g., O’Connor et al., 2012), the hot spots in the South Paciﬁc are mostly short-lived, including some with extreme geochemical signatures (Koner et al., 2008; Koppers et al., 2003; Staudigel et al., 1991) and complex age progressions (see Section 133.2.1; Ballmer et al., 2009; McNutt, 1998; McNutt et al., 1997). The Darwin Rise is often interpreted as the Cretaceous counterpart of the South Paciﬁc Superswell (Cadio et al., 2011; Koppers et al., 2003; McNutt and Judge, 1990). We will discuss the geodynamic mechanisms for swell and superswell support in Sections 133.3.4 and 133.3.7.1, respectively.

133.2.3 Flood Basalt Volcanism

Large igneous provinces provide further constraints on the nature of hot spots and mantle dynamics. LIPs are characterized by massive outpourings and intrusions of basaltic lava, often occurring within a couple of million years. Fundamental reviews of the nature and possible origins of LIPs are provided by Richards et al. (1989), Coffin and Eldholm (1994), Mahoney and Coffin (1997), Courtillot and Renne (2003), and Bryan et al. (2010). As characterized by Coffin and Eldholm (1994), intraplate continental LIPs (such as the Siberian Traps or the Columbia River basalt) often form by large-scale eruptions and horizontal flows of massive tholeiitic basalts. Another form of LIP volcanism occurs at passive margins (such as the North Atlantic Volcanic Province or Eendeka–Parmi) that are associated with continental rifting (White and McKenzie, 1989). The initial prerift pulse of volcanism tends to be rapid and often followed by a more prolonged production of thicker-than-normal oceanic crust and sometimes by long-lived hot spot activity. Oceanic LIPs form broad, ﬂat-topped features of anomalously thick crust with some eruptions being subaerial (Kerguelen oceanic plateau).

Other eruptions appear to be conﬁned to below sea level (e.g., Ontong Java Plateau and Shatsky Rise). Regional uplift with often rapid onsets commonly accompanies the formation of continental and oceanic LIPs (Saunders et al., 2007). This section reviews some basic geophysical and geologic observations of LIPs that formed since the Permian. For information on older LIPs, we refer the reader to White and McKenzie (1995), Ernst and Buchan (2001; 2003), and Ernst (2007). Figure 1 shows locations with indicated abbreviations; Figure 10 summarizes the areas and volumes of the provinces described in the succeeding text.

133.2.3.1 Intraplate continental LIPs

Columbia River Basalts (CRBs). The Columbia River basalts erupted a volume of ~0.17 Mkm between 16.6 and 15.3 Ma (Courtillot and Renne, 2003). Excellent exposures provide insights into ﬂow structures and relationships to feeder dikes. Individual eruptions have volumes in excess of 2000 km and ﬂow over distances up to 600 km (Hooper, 1997). The lack of collapse structures suggests that large amounts of magma were rapidly derived from the base of the crust (Hooper, 1997). The volumetrically most important pulse of volcanism is the Grande Ronde basalt that was emplaced in less than 0.5 My (Barry et al., 2010). Detailed geochemical work suggests that the CRBs rose from a centralized magmatic system following crustal assimilation of plume-derived magmas (Wolfe et al., 2008).

Emeishan (EM). The Emeishan province in western China is estimated to have spanned an area of at least 2 Mkm and volume of 1 Mkm when it first formed (Zhou et al., 2002).
Eruption ages have been measured at ~258 Ma (Courtillot and Renne, 2003), which is confirmed by a zircon U–Pb date of ~259 Ma (Ali et al., 2005) and by more precise recent U–Pb ages (Shellnutt et al., 2012). Granitic intrusions indicate significant crustal assimilation in magmas that were sourced from the mantle (Shellnutt and Jahn, 2011; Xu et al., 2007; Zhong et al., 2007) A rapid, kilometer-scale uplift preceded the basaltic eruptions by 3 My (He et al., 2003; Sun et al., 2010; Xu et al., 2004). Basalts erupted rapidly (Zheng et al., 2010) and were accompanied by high-MgO basalts (He et al., 2003) and contemporaneous felsic and mafic intrusions (Zhong et al., 2011). Since their eruption, the Emeishan Traps have been fragmented and eroded, currently encompassing an area of ~0.3 Mkm² (Xu et al., 2001).

Siberia (SIB). The Siberian Traps occupy at present only 0.4 Mkm² and have an average thickness of 1 km (Sharma, 1997). There are strong indications, however, that they extend below the sedimentary cover and into West Siberian basin (Reichow et al., 2005). Additional dikes and kimberlites suggest a maximum extent of 3–4 Mkm² with possible extrusive volume of >3 Mkm³. Individual flows can be as thick as 150 m and be traced over hundreds of kilometers. This large eruption took place within only 1 My and coincides with the Permo-Triassic boundary at 250 Ma (Courtillot and Renne, 2003; Reichow et al., 2009). The lack of significant sedimentary rocks or paleosols between flows confirms rapid extrusion (Sharma, 1997). The use of industry seismic and borehole data in the West Siberian basin shows that the basin elevation remained high during rifting, indicating dynamic mantle support (Saunders et al., 2005). Magnetic data elucidate that the eruption took place during oblique rifting (Allen et al., 2006), which may have increased the magmatic output. Petrologic and geodynamic models also agree that lithospheric thinning is required to reconcile the large magmatic output and lava geochemistry (Sobolev et al., 2011; White and McKenzie, 1995). Paleomagnetic reconstructions suggest that the Siberian Traps had erupted over the same part of the mantle where at ~60 Ma the North Atlantic Igneous Province formed (Smirnov and Tarduno, 2010), providing an interesting suggestion for a connection of both LIPs to a long-lived, deep, and nearly stationary source.

Yemen/Ethiopian/East African Rift System (EAF). An early volcanic episode in southernmost Ethiopia starting ~45 Ma was followed by widespread flood basalt volcanism in northwestern Ethiopia, Eritrea, and Yemen at ~30 Ma. The 30 Ma event consisted of tholeiites and ignimbrites (Pik et al., 1998) that erupted within 1–2 My (Ayalew et al., 2002; Hofmann et al., 1997). In Yemen, 0.35–1.2 Mkm³ of mafic magmas were produced within 2 My, followed by less voluminous silicic volcanism starting ~29 Ma (Menzies et al., 1997).

Flood volcanism appears to have occurred several My prior to the onset of extension along the East African Rift (EAR) at ~23 Ma (Hendrie et al., 1994; Morley et al., 1992) and in the Gulf of Aden at ~26 Ma (Menzies et al., 1997). Volcanism is bimodal with shield volcanoes forming on top of tholeiitic basalts (Courtillot and Renne, 2003; Kieffer et al., 2004). Currently, the Ethiopian and Kenyan rift systems are on an area of elevated topography of ~1000 km in diameter. A negative gravity anomaly suggests this topography is dynamically supported in the mantle (Stewart and Rogers, 1996). The analysis of primitive magmas indicates that the EAF magmas arise from mantle that is 140–170 K hotter than normal (Rooney et al., 2012).

Older continental flood basalts are often more difficult to detect in the geologic record due to the effects of surface uplift and erosion. For a review, see Ernst (2007). A general characteristic that is attributed to continental LIPs is radiating dike swarms (Mayborn and Lesher, 2004; Mege and Korne, 2004). These dike swarms provide the main pathways for basaltic magmas vertically from the mantle, as well as lateral over distances up to 2500 km (as suggested for the 1270 Ma Mackenzie dike swarm in N. America (Lechminin and Heaman, 1989; Ernst and Baragar, 1992)).

133.2.3.2 LIPs near or on continental margins

Central Atlantic Magmatic Province (CAMP). The CAMP is primarily delineated by giant dike swarms and is associated with the early breakup of Gondwana between North Africa, eastern United States, and central South America. Ar/Ar dates suggest rapid production from 200 to 202 Ma over an area of 7 Mkm² and volume of >2 Mkm³ (Courtillot and Renne, 2003; Hames et al., 2000; Marzoli et al., 1999), although more recent work puts the CAMP at slightly younger ages of ~199 Ma (Verati et al., 2007; Schaltegger et al., 2008; Jourdan et al., 2009; Marzoli et al., 2011).
Chon Aike (CHON). In contrast to the other LIPs discussed in the chapter, the Chon Aike province in Patagonia is primarily silicic with rhyolites dominating over mafic and intermediate lavas. The rhyolites may have formed due to intrusion of basaltic crust that was susceptible to melting. The province is relatively small with an area of 0.1 Mkm² and total volume of 0.235 Mkm³ (Pankhurst et al., 1998). Chon Aike had an extended and punctuated eruptive history from Early Jurassic to Early Cretaceous (184–140 Ma). Pankhurst et al. (2000) recognized episodic eruptions with the first eruptions accompanied by the Karoo and Ferrar LIPs. The province potentially extends into West Antarctica.

Decan (DEC). The Decan Traps provide one of the most impressive examples of continental flood basalts. It formed by eruptions of primarily tholeiitic basalts over Archean crust over an area of >1.5 Mkm² and volume of 8.2 Mkm³ (Coffin and Eldholm, 1993). The main eruptions straddle magnetic chron 29r and 29n within 1 My around the K–T boundary, as confirmed by Ar/Ar and Re-Os dating (Allegre et al., 1999; Courtillot et al., 2000; Hofmann et al., 2000). The main pulse may have been preceded by a smaller pulse of volcanism at 68–67 Ma (Chenet et al., 2007). An Ir anomaly embedded in the flows suggests that the Chicxulub impact happened while the Decan Traps were active (Courtillot and Renne, 2003), which is confirmed by stratigraphic work (Keller et al., 2008). Seafloor spreading between India and Seychelles is generally thought to have started in the final stages of flood basalt volcanism (Hooper et al., 2010) at ~63 Ma (Vandamme et al., 1991), although some evidence for an earlier event exists (Collier et al., 2008; Minshull et al., 2008). Unlike older continental flood basalts associated with the breakup of Gondwana, the basaltic rocks that are least contaminated by continental lithosphere closely resemble seafloor basalts in oceanic areas with major-element concentrations in agreement with predictions for high-temperature melting (Kumar et al., 2004).

Karoo–Ferrar (KAR–FER). The Karoo province in Africa and Ferrar basalts in Antarctica record a volume of 2.5 Mkm³ combined, which erupted at ~184 Ma (Encarnacion et al., 1996; Minor and Muksa, 1997), possibly followed by a minor event at 180 Ma (Courtillot and Renne, 2003). The short (~1 My) duration is questioned by Jourdan et al. (2004, 2005), who obtained ages of ~179 Ma for the northern Okavango dike swarm in Botswana and thus inferred long-lived initial activity that propagated northward. More recent zircon U–Pb work on samples collected over an 1100 km range across the Karoo again suggests rapid emplacement (Svensen et al., 2012). In Africa, tholeiitic basalts dominate but some picrites and rhyolites are also exposed (Cox, 1988). The triple-junction pattern of the radiating dike swarm that supplied the Karoo basalts was likely controlled by preexisting lithospheric discontinuities that include the Kaapvaal and Zimbabwe Craton boundaries and the Limpopo mobile belt (Jourdan et al., 2006). The Ferrar province spans an area of ~0.35 Mkm² (Elliot and Fleming, 2004) along the Transantarctic Mountains. The two provinces were split by continental rifting and then by seafloor spreading at ~156 Ma.

Madagascar (MDR). Widespread voluminous basaltic flows and dikes occurred near the northwestern and southeastern coasts of Madagascar during rifting from India around 88 Ma (Storey et al., 1997). Flood volcanism was probably prolonged as it continued to form the Madagascar Plateau to the south, perhaps 10–20 My later as inferred from the reconstructed positions of Marion hot spot.

North Atlantic Volcanic Province (NAVP). The NAVP covers an area of ~1.3 Mkm² (Saunders et al., 1997) with an estimated volume of 6.6 Mkm³ (Coffin and Eldholm, 1993) and is closely localized to continental rifting and oceanic spreading (e.g., Nielsen et al., 2002; White and McKenzie, 1989). Prior to the main pulse of flood volcanism, seafloor spreading was active south of the Charlie–Gibbs Fracture Zone at 94 Ma and propagated northward into the Rockall Trough until the Late Cretaceous near or prior to the earliest eruptions of the NAVP. The early NAVP eruptions occurred as large picritic lavas in western Greenland and Baffin Island (Gill et al., 1992, 1995; Holm et al., 1993; Kent et al., 2004), soon followed by massive tholeiitic eruptions in west and southeast Greenland, the British Isles, and Baffin Island at ~61 Ma (2 Mkm³) as well as in east Greenland and the Faeroes at 56 Ma (~2 Mkm³) (Courtillot and Renne, 2003; Storey et al., 2007). These initial episodes were succeeded by rifting between Greenland and Europe (recorded by chron 24, 56–52 Ma), continental margin volcanism, and oceanic crust formation, which included the formation of thick seaward-dipping reflector sequences. Spreading slowed in the Labrador Sea at ~50 Ma, stopped altogether at 56 Ma, but continued further to the east on the Aegir Ridge and eventually along the Kolbeinsey Ridge at ~25 Ma, where it has persisted since (Breivik et al., 2006; Mosar et al., 2002). This provides an intriguing suggestion that the presence of hot spots can guide the location of passive ridges during continental breakup. Many of the volcanic margin sequences erupted subaerially at shallow depths, suggesting widespread regional uplift during emplacement (Clift and Turner, 1995; Hopper et al., 2003). Uplift in the early Tertiary is documented by extensive erosion and changes in the depositional environments as far as the North Sea basin (e.g., Mackay et al., 2005; Nadin et al., 1997 and references therein). Reconstructions from drill cores elucidate that uplift was rapid and synchronous and preceded the earliest volcanism by >1 My (Clift et al., 1998).

Paraná–Etendeka (PAR–ET). Paraná and Etendeka are conjugate volcanic fields split by the breakup of South America and Africa. The Paraná field in South America covers 1.2 Mkm² with estimated average thickness of 0.7 km (Peate, 1997). Extensive dike swarms surrounding the provinces suggest the original extent could have been even larger (Trumbull et al., 2004). Tholeiitic lavas and rhyolites cause a bimodal distribution of eruptives and intrusives. Ar/Ar dates indicate that volcanic activity peaked at ~133–130 Ma (Courtillot and Renne, 2003; Renne et al., 1996; Turner et al., 1994), preceded by minor eruptions in the northwest of the Paraná Basin at 135–138 Ma (Stewart et al., 1996). Younger magmatism persisted along the coast (128–120 Ma) and into the Atlantic Ocean, forming the Rio Grande (RIO) and Walvis (WAL) oceanic plateaus.

The Etendeka province covers 0.08 Mkm² and is very similar to the Paraná flood basalts in terms of eruptive history, petrology, and geochemistry (Ewart et al., 2004; Renne et al., 1996). Seafloor spreading in the South Atlantic progressed northward, with the oldest magnetic anomalies on the seafloor near Cape Town (137 or 130 Ma). The oldest seafloor near
133.2.3.3 Oceanic LIPs

Caribbean (CBN). The Caribbean LIP is a Late Cretaceous plateau, which is now partly accreted onto the continental margin in Colombia and Ecuador. Its present area is 0.6 Mkm² with oceanic crust thickness ranging from 8 to 20 km. A volume of 4 Mkm³ of extrusives erupted in discrete events during 91–88 Ma (Courtillot and Renne, 2003). The full range of 40Ar/39Ar dates of 69–139 Ma (e.g., Hoernle et al., 2004; Sinton et al., 1997) suggests a protracted volcanic history that is poorly understood. The origin of the volcanism is likely in the eastern Pacific with a subsequent highly mobile evolution. Clogging of eastward subduction in the Caribbean likely led to reversal with westward subduction in the Antilles trench. The accretion of terranes in Ecuador and Colombia, which started in the Late Cretaceous and early Tertiary, led to westward stepping of the subduction zone (Kerr et al., 1997). A 5 km lava succession in Curacao contains picrites with up to 31 wt% MgO.

Kerguelen (KER). The Kerguelen hot spot has a complex history of continental and oceanic flood eruptions, rifting, and prolonged volcanism (Figure 2). The breakup of India, Australia, and Antarctica coincided closely with the eruption of the Bunbury basalts in southwest Australia, dated at 123 and 132 Ma (Coffin et al., 2002). The first massive volcanic episode formed the southern Kerguelen Plateau at 119 Ma, the Rajmahal Traps in India at 117–118 Ma, and the lamprophyres in India and Antarctica at 114–115 Ma (Coffin et al., 2002; Kent et al., 2002). The central Kerguelen Plateau and Broken Ridge formed at ∼110 Ma and 95 Ma, respectively (Coffin et al., 2002; Frey et al., 2002). During 82–43 Ma, northward motion of the Indian Plate with a jump of the triple junction between the Pacific, Izanagi, and Farallon Plates toward the plateau (Nakanishi et al., 1999; Sager et al., 2012; Sager et al., 1999) and by ocean drilling (Mahoney et al., 2005) and Pb, Sr, Hf, and Nd isotope characteristics (Tejada et al., 2004) resemble MORB.

Besides its gigantic volume, another enigmatic aspect is that the OJP appears to have erupted below sea level with little evidence for uplift (Coffin, 1992; Igle and Coffin, 2004; Ito and Clift, 1998; Korenaga, 2005; Roberge et al., 2005). This observation has to be explained by any successful model for the origin of Ontong Java.

Shatsky Rise–Hess Rise (SHA–HES). Shatsky Rise is one of the large Pacific oceanic plateaus with an area of 0.48 Mkm², a thickness of 9–30 km, and a volume of 4.3 Mkm³ (Korenaga and Sager, 2012; Sager et al., 1999). The most voluminous portion of the plateau extends from its center to the SW (Figure 1). This whole portion has recently been proposed to be made up of a single volcanic edifice with very low slopes, something that would probably make it the largest volcano on Earth (Sager et al., 2013). Initial eruption at Shatsky is associated with a jump of the triple junction between the Pacific, Izu-Bonin, and Farallon Plates toward the plateau (Nakanishi et al., 1999; Sager, 2005) near 145 Ma (Mahoney et al., 2005). Subsequently, volcanism progressed northeast together with the triple junction (which migrated with repeated jumps as indicated by seafloor magnetic lineation) until ∼128 Ma. Thus, Shatsky appears to show short-lived age-progressive volcanism on timescales much like many smaller volcano groups (e.g., Society).
Volcanism, however, may have continued with a renewed pulse starting some 10–20 My later with the formation of the Hess Rise, which is comparable in area to Shatsky. Age constraints on Hess Rise are poor due to the lack of sampling and its location on Cretaceous quiet zone seafloor. The possible coincidence of both plateaus at an MOR suggests a dynamic linkage between their formation and seafloor spreading. Another notable aspect is that Pb and Nd isotope compositions for Shatsky are indistinguishable from those of the present-day East Pacific Rise (Mahoney et al., 2005; Sager, 2005).

133.2.3.4 Connections to hot spots

The possible links between hot spots and LIPs are important for testing the mechanism of origin for both phenomena, with particular regard to the concept of a starting mantle plume head and trailing, narrower plume stem. While linkages are clear for some cases, a number of proposed connections are obscured by ridge migrations or breakup of the original LIP. In the succeeding text, we list the connections of hot spots to LIPs, in approximate order of decreasing clarity.

At least six examples have strong geographic, geochronological, and geochemical connections between hot spot volcanism and flood basalt provinces. These are (1) Iceland and the North Atlantic Volcanic Province, including Greenland, Baffin Island, Great Britain volcanics, and Greenland–United Kingdom (Faeroe) Ridge (Saunders et al., 1997; Smallwood and White, 2002); (2) Kerguelen, Bunbury, Naturaliste, and Rajasthan (E India) and Broken Ridge and Ninetyeast Ridge (Kent et al., 1997); (3) Réunion and Deccan (Roy, 2003). W. Indian, Chagos–Laccadive, Mascarine, and Mauritius; (4) Marion and Madagascar (Meert and Tamrat, 2006; Storey et al., 1997); (5) Tristan da Cunha and Paraná, Eendeka, Rio Grande, and Walvis Ridge (Peate, 1997); and (6) the Galápagos and Caribbean (Feigenson et al., 2004; Hoernle et al., 2004). For other flood basalts provinces, the links are less clear – in part due to the lack of data. The Bouvet hot spot has been linked to the Karoo–Ferrar; the Balleny hot spot may be connected to the Tasmanian province or the Lord Howe Rise (Lanyon et al., 1993); and the Fernando hot spot has been linked to the Central Atlantic Magmatic Province. Only three Pacific hot spots possibly link back to LIPs: Louisville–OJP, Easter–Mid-Pac, and Marquesas–Hess–Shatsky (Clouard and Bonneville, 2001). The Louisville–OJP connection is highly tenuous: Kinematic arguments against such a link have been made (Anttretter et al., 2004), and geochemical differences between the oldest Louisville seamounts and OJP would require distinct chemistry between plume head and tail or a difference in melting conditions (Mahoney et al., 1993; Neal et al., 1997). Nevertheless, some hot spots such as Hawaii, Bowie–Kodiak, and Cobb terminate at subduction zones, so any record of a possible connection to an LIP has been destroyed.

It is interesting to note that the strongest connections involve flood basin provinces near continental margins. The possible exceptions are Kerguelen and Marion–Madagascar, which also involve continental lithosphere, as well as the tentative links in the Pacific. The presence of continents may indeed play a large role in the origin of flood basalt volcanism (Anderson, 1994b).

133.2.3.5 Connections to climate crises and mass extinction

The eruption of LIPs has been a leading explanation for a number of climate crises and mass extinctions. This volcanic cause of mass extinctions poses an alternative to extraterrestrial causes such as impacts by asteroids or comets, which are probably best documented to be associated with the K–T mass extinction (Schulte et al., 2010). The connection between mass extinctions and LIPs is generally justified by the coincidence of LIP formation and extinctions as well as the ability of rapid and massive extrusions to dramatically change climate and the chemistry of the atmosphere and oceans. The episodicity of mass extinction events and their correlation with LIPs lead to the speculation that the slow convection and heat release from the solid Earth control evolutionary patterns at the Earth’s surface (e.g., Courtillot and Olson, 2007). Increasingly, a connection is seen between flood basalts and other transient episodes in the global climate system. Aside from direct effects on ocean and atmospheric chemistry due to volcanic outgassing, the igneous intrusions associated with LIPs can lead to significant release of CO2 and methane (i.e., major greenhouse gases) from metamorphic interactions with coal, evaporates, and other sedimentary rocks (e.g., Canino and Arndt, 2009; Retallack, 2013). Such links are also suggested for flood basalts that occur during continental breakup, as illustrated by the correlation between North Atlantic flood basalts with the Paleocene–Eocene thermal maximum at ~55 Ma (Storey et al., 2007) and the Caribbean and Madagascar flood basalts with the Late Cretaceous anoxic event (Kuroda et al., 2007). Interestingly, while the short-term effect of CO2 release from flood basalt volcanism is likely to lead to global warming, the longer-term effect may be global cooling due to more efficient silicate weathering that acts as a carbon sink (Schaller et al., 2011, 2012).

Significant recent work has refined early indications that mass extinctions coincide with LIP formation. Indications have indeed been strengthened for the four major extinctions that pair up with LIP formation since the Permian: end of Cretaceous extinction with the Deccan Traps at ~65 Ma, the end of Triassic extinction with the CAMP at ~200 Ma, the end of Permian extinction with the Siberian Traps at ~250 Ma, and the end of Guadalupian (an epoch in the Permian) extinction with the Emeishan at ~258 Ma (for reviews, see Courtillot and
Renne, 2003; Bryan et al., 2010). In some cases, the suggested temporal coincidence has been questioned because of inherent uncertainties in magnetostratigraphy and geochronological techniques (Whiteside et al., 2007). Yet, future geochronological work using high-precision dating tools is expected to resolve these discrepancies. For example, Blackburn et al. (2013) demonstrated using a new zircon U–Pb methodology that the end of Triassic extinction coincides with four episodes of magma release in the CAMP and atmospheric changes that have occurred over a short period of only 0.6 My. A combination of multiple geochronological techniques further confirms the connection between CAMP and the end of Triassic extinction (Deen et al., 2010).

The LIP–extinction connection is further strengthened by a better quantification and qualification of the duration and chemical output of eruptions, as well as a better understanding of the impact of flood volcanism on the global climate system (e.g., Black et al., 2012; Kidder and Worsley, 2010; Payne and Clapham, 2012; Self et al., 2006) and ocean geochemistry (Brand et al., 2012). This understanding is enhanced by a better physical description of the interaction between magmas and sediments (Aarnes et al., 2010; Ogden and Sleep, 2012). Some of this work indicates intriguing differences in magmatic composition between LIPs, such as the anomalously high concentration in sulfur and halogens observed in the Siberian Traps flood basalts (Black et al., 2012), which may have significantly contributed to the dramatic deterioration of the environment at the end of the Permian. The anomalous impact of the Siberian Traps is generally attributed to the intrusion of the basalt into a deep sedimentary basin with significantly higher gas release (Ganino and Arndt, 2009; Svensen et al., 2009) although differences in the source have also been noted (Carlson et al., 2006; Sobolev et al., 2009, 2011).

133.2.4 Geochemistry and Petrology of OIB

133.2.4.1 Isotope geochemistry

Studying the geochemistry of MORB and basalts from oceanic hot spots and melting anomalies (often referred to as ocean island basalts, OIBs) has played a central role in understanding mantle dynamics and heterogeneity. Isotope ratios of key trace elements reflect long-term (102–103 My) concentration in sulfur and halogens observed in the Siberian Traps flood basalts (Black et al., 2012), which may have significantly contributed to the dramatic deterioration of the environment at the end of the Permian. The anomalous impact of the Siberian Traps is generally attributed to the intrusion of the basalt into a deep sedimentary basin with significantly higher gas release (Ganino and Arndt, 2009; Svensen et al., 2009) although differences in the source have also been noted (Carlson et al., 2006; Sobolev et al., 2009, 2011).

Helium isotopes are not yet available at these locations, but 87Sr/86Sr and 206Pb/204Pb compositions for each case fall within or very near to the MORB range. These examples span a wide range of forms, from a small, short-lived seamount chain (the Carolines), to longer-lived, age-progressive volcanism (Bowie–Kodiak and Cobb), to an oceanic LIP (Shatsky). The possibility that these cases are geochemically indistinguishable from MORB may have far-reaching implications for mantle processes and composition and thus clearly motivates further sampling and analysis.

133.2.4.2 Major-element geochemistry

In contrast to isotopic ratios, major-element signatures of OIB lavas do not directly reflect that of the mantle source. Major-element concentrations in primary magmas (i.e., magmas that segregated from the mantle melting zone without further modification by shallow processes) are sensitive to the depths and extents of melting. Moreover, they are affected by magma mixing, interaction with the wall rock, and fractional crystallization during ascent. The effects of fractional crystallization are not only large but also relatively well understood and thus can be corrected for when estimating the composition of primary magmas. Alternatively, primary magma compositions can be inferred from melt inclusions or olivine phenocrysts that are estimated to have been in equilibrium with the primary magma when they were formed. However, such analyses are laborious and costly compared to whole rock analysis and hence form just a small portion of the global dataset.

Despite the difficulties mentioned earlier, major-element signatures of OIB and MORB can be clearly distinguished in properly selected and corrected datasets of whole rock analyses. For example, these datasets are usually restricted to samples with MgO contents between >5 wt% (or even >10 wt%) and <15 wt% in order to exclude lavas that have experienced significant fractional crystallization of clinopyroxene (Dasgupta et al., 2010; Jackson and Dasgupta, 2008; Pilet et al., 2008). Fractional crystallization of olivine instead is routinely corrected for by retroactive incremental addition or subtraction of olivines that have been in equilibrium with the corresponding liquid. Similar to isotope datasets, such corrected major-element datasets show that OIB global trends overlap with MORB, but display a much greater variability in all oxides and oxide ratios (Figure 12). In contrast to MORB,
OIB commonly follows an alkalic differentiation trend (except for shield lavas from Hawaii, the Galápagos, and Iceland) due to systematically higher $K_2O + Na_2O$ at a given SiO_2 in the primary magmas. This subset of alkalic OIB is hence nepheline-normative, that is, highly undersaturated in SiO_2. They also display higher concentrations of K_2O, MgO, FeO_{tot}, and TiO_2, as well as lower concentrations of Al_2O_3 at a given SiO_2 (e.g., Pilet et al., 2008), than tholeiitic OIB or even MORB. These characteristics are important constraints for the makeup of the OIB mantle source (see Section 133.3.6).
Figure 12 From Pilet et al. (2008) with minor modifications. Select major-element concentrations (a–g) and oxide ratios (h) of basalt samples and experimental melts. Solid gray circles, OIB; solid black circles, continental intraplate basalts; open circles, MORB. Solid diamonds are experimental hornblenditic liquids from three different starting compositions (open diamonds) at various experimental conditions (Pilet et al., 2008); triangles are experimental liquids derived from silica-deficient pyroxenites with (dark blue; Dasgupta and Hirschmann, 2006) or without (light blue; Hirschmann et al., 2003; Kogiso et al., 2003) the addition of CO₂.

Seismic wave propagation in the mantle is generally slowed by elevated temperature, volatile content, and the presence of melt (e.g., Anderson, 1989). In addition, it is affected by the content of mafic materials, such as eclogite (Xu et al., 2008; Zhang and Green, 2007). Seismology is therefore the primary geophysical tool for probing the physical signature of hot spots and melting anomalies and for identifying their depths of origin.

Seismic tomography uses seismic delay times and wave form deviations to map velocity anomalies relative to a particular background model. Applications of these techniques have seen wide popularity as velocity variations can be directly related to chemical and thermal variations in the Earth. Yet, it should be considered that any tomographic image is in fact a...
model of the Earth that is strongly dependent on the method of inversion, choice of damping parameters, and background model and can be quite sensitive to the lack of global coverage of earthquakes and seismometers, as well as standard consequences of wave propagation such as wave-front healing or those associated with finite-frequency effects.

Global seismic tomography has been able to confidently image the remnants of slabs as high-velocity and presumably cold anomalies (e.g., Bijwaard et al., 1998; Grand et al., 1997). The hot mantle upwellings hypothesized to be associated with hot spots are instead expected to be narrow, localized, and much less voluminous than slabs. Any associated low-velocity anomalies may further be obscured by the effects of wave-front healing. Combined, these effects should make plumes very difficult to be imaged with seismic tomography, especially in the lower mantle (Hwang et al., 2011; Nolet et al., 2007; Ritsema and Allen, 2003; Styles et al., 2011). Structures in the lower mantle that are most robustly imaged and likely associated with upwelling are the (1000s of km across) LLSVPs below the South Pacific and African Superswell regions (e.g., Breger et al., 2001; Ni et al., 2005; Trampert et al., 2004; van der Hilst and Karason, 1999). The sharp edges of these anomalies (Ni et al., 2002; To et al., 2005) and their reproduction in dynamic models (McNamara and Zhong, 2005; Tan and Gurnis, 2007) suggest that these features are anomalous in terms of both composition and temperature (see also Chapter 136).

The use of global tomography to probe the existence and nature of smaller-scale (100 s of km across) upwellings associated with individual hot spots continues to be a challenge, but substantial progress has been made with improved resolution in global seismic models (e.g., Boschi et al., 2007; Montelli et al., 2006; Nataf, 2008; Nolet et al., 2007; Ritsema and Allen, 2003; Zhao, 2007 and references therein). Numerous hot spots have been shown to overlie low-velocity anomalies in the upper mantle, and a subset of these anomalies have been argued to extend into the deep lower mantle based on visual inspection (Montelli et al., 2006; Zhao, 2007; Figure 13) or on various statistical tests (Boschi et al., 2007, 2008). Two research groups (Boschi et al., 2007; Zhao, 2007) emphasize that many lower mantle, plume-like anomalies are best explained by plumes, which tilt and whose sources migrate due to flow of the ambient mantle. In addition, evidence shows that lower mantle plumes tend to originate from around the edges of the LLSVPs beneath the South Pacific and Africa (Boschi et al., 2007; Thorne et al., 2004; Figure 13(e)).

The passage of mantle plumes from the lower mantle into the upper mantle can also be detected by measuring the depths of the seismic discontinuities bounding the mantle transition zone. Excess temperature is expected to cause the phase change near 410 km with a positive Clapeyron slope to occur deeper and the phase change near 660 km with a negative Clapeyron slope to occur shallower. In both the cases, the olivine system is assumed to dominate the phase changes (Helffrich, 2000; Ito and Takahashi, 1989). Hot mantle plumes that pass through both phase changes should therefore be associated with unusually thin transition zones. Some global-scale studies suggest this is indeed the case (e.g., Lawrence and Shearer, 2008; Li et al., 2003; Schmerr et al., 2010; Taurin et al., 2008). In some cases, most of the variations in transition zone thickness to topography are suggested at 660 km (Lawrence and Shearer, 2008; Schmerr et al., 2010), whereas many others attributed most of the variations to topography at 410 km (Li et al., 2003; Taurin et al., 2008). The evidence for the transition near 660 km tending to remain flat or deepen – not shoal – in some regions where the mantle is expected to be unusually hot could indicate that the phase change effects are locally dominated by the garnet system (postgarnet to perovskite, with a positive Clapeyron slope) (Cao et al., 2011; Houser and Williams, 2010; Taurin et al., 2008).

Results about the depth of origin of plumes beneath many of the Earth’s major hot spots are beginning to show some consistencies. Between the studies of Montelli et al. (2006) and Zhao (2007), 19 hot spots are associated with plumes originating in the deep lower mantle, but only four (Tahiti, Kerguelen, Hawaii, and Cape Verde) are recognized as such in both of the studies (Figure 14). These four hot spots also show continuity of low-velocity material extending through most of the mantle according to Boschi et al.’s (2007) objective analysis (i.e., normalized vertical extent > 0.5 in Figure 14). An additional seven other hot spots (East Africa/Afar, Réunion, MacDonald/Cook, Samoa, the Canaries, the Azores, Iceland, and Easter) identified as deep plumes by either Montelli et al. (2006) or Zhao (2007), but not both, are also likely to extend through most of the mantle according to Boschi et al. (2007). Of the 19 identified by Montelli et al. (2006) and Zhao (2007), 6 hot spots (Tahiti, Samoa, the Canaries, the Azores, Iceland, and Hawaii) are further associated with anomalously thin mantle transition zones, but 1 (Easter) is associated with a transition zone that is as thick or thicker (246 ± 3 km) than the global average (242 ± 2 km) (Courtier et al., 2007). Six of these nineteen hot spots (Easter, Hawaii, Iceland, Réunion, East Africa, and Louisville) were identified by Courtillot et al. (2003) as being ‘primary plumes’ from the deep mantle on the basis of their association with a buoyancy flux $>10^3$ kg s$^{-1}$, a flood basalt province, and magmas with high 3He/4He (see also purple squares in Figure 7).

Hotspots, Large Igneous Provinces, and Melting Anomalies

133.2.5.2 Seismic studies of major hot spots

Regional studies of the seismic structure of the mantle beneath hot spots are often at higher resolution than global studies. We will discuss the main results of these in geographic order.
Regional seismic studies have confidently imaged a body of anomalously slow seismic wave speeds in the upper mantle beneath Iceland. Conventional ray theory was used to first image the anomaly (Allen et al., 1999, 2002; Foulger et al., 2001; Wolfe et al., 1997). A subsequent study using an improved finite-frequency technique (Allen and Tromp, 2005) resolves the feature to be roughly columnar with lateral dimensions of 250–300 km with peak P- and S-wave anomalies of −2.1% and −4.2%, respectively (Hung et al., 2004; Figure 15). Recent studies using full-waveform tomography (Rickers et al., 2013) or Rayleigh waves and local earthquakes (Li and Detrick, 2006; Yang and Shen, 2005) confirm these high amplitudes, which most likely require a combination of excess temperature and melt.
In addition, studies of surface and S-waves reveal seismic anisotropy in the Icelandic upper mantle. Shear-wave splitting of the SKS phase measures the integrated effects of seismic anisotropy along nearly vertical ray paths across the mantle and is detected at a number of locations on Iceland with the fastest S-waves generally being polarized NW–SE (Bjarnason et al., 2002; Li and Detrick, 2006). Azimuthal anisotropy of Rayleigh waves has also been measured. Along the zones of active rifting and volcanism on Iceland, this anisotropy is strong at shallow depths <50 km with fast directions NNE–SSW and weak when somewhat deeper (Li and Detrick, 2006). West of the rift zones, fast
Figure 15 Tomographic inversions of the mantle below the Iceland hot spot (Hung et al., 2004) for (a) P-waves and (b) S-waves. Top row shows vertical cross sections along three transects (see insets). Bottom row shows horizontal sections at depths as labeled.
directions are instead oriented NW–SE at shallow depths and more variably at depth. Taken together, the S-wave splitting and surface-wave results are not straightforward to interpret and lead to different conclusions about the cause of seismic anisotropy beneath Iceland. Li and Detrick (2006) interpreted the NNE–SSW Rayleigh wave anisotropy as being caused by a preferential alignment of melt channels or by lattice-preferred orientation (LPO) of olivine induced by mantle flow that roughly parallels the NNE–SSW-trending Northern Volcanic Rift Zone and South Iceland Seismic Zone. In contrast, Xue and Allen (2005) interpreted the S-wave splitting to indicate LPO due to flow from the center of the hot spot in eastern Iceland to the Kolbeinsey Ridge north of Iceland.

The vertical extent of the Iceland mantle plume has been examined in a variety of studies. Receiver function studies show that the Iceland plume extends well below 410 km as shown by the thinning of the transition zone beneath Iceland (Du et al., 2006; Shen et al., 1998, 2002). While Shen et al. (1998, 2002) showed evidence for both a deepening of the 410 km and a thinning of the 660 km discontinuity SE of Iceland, Du et al. (2006) argued that the 660 km is instead flat. The precise nature of both discontinuities is important in determining whether the Iceland seismic anomaly initiates in the lower mantle. A recent regional full-waveform tomography model (Rickers et al., 2013) is in agreement with Shen et al. (1998, 2002) and suggests that the anomaly is tilted to the SE and extends into the lower mantle. At least three global tomography models are consistent with such a deep-rooted anomaly (Bijwaard and Spakman, 1999; Boschi et al., 2007; Zhao, 2007; see also Figure 14). A separate study identifies an ultralow-velocity zone near the CMB below Iceland (Helmberger et al., 1998). An updated global tomography model S40RTS (Ritsema et al., 2011) shows that the lower mantle is seismically slow in a broad zone beneath Iceland but with weak and variable amplitude, suggesting difficulty in resolving the continuous Iceland plume from the CMB (Figure 13(f)). A more robust determination of the depth of origin of the Iceland plume probably requires a regional seismic experiment spanning a wider geographic area than just the island of Iceland.

The Azores: Evidence for anomalously hot mantle beneath the Azores hot spot comes from a locally broad area of anomalously slow surface-wave speeds identified in the upper 200 km of the mantle, which appears as a perturbation of the generally low-velocity structure extending along the Mid-Atlantic Ridge (Pilidou et al., 2004). Finite-frequency body-wave tomography reveals an irregularly shaped anomaly of low P-wave speeds beneath the Azores archipelago in the shallowest 200 km, which slants northeast and downward to ~400 km depth (Yang et al., 2006).

Cape Verde: Two groups find conflicting results for the mantle structure beneath the Cape Verde hot spot, while both use receiver function methods. The first group finds that the uppermost mantle beneath Cape Verde has anomalously high seismic velocity and low density (Lodge and Helffrich, 2006) and that the transition zone has a normal thickness (Helffrich et al., 2010). The former result was interpreted as revealing a layer of depleted residue from hot spot melting and the latter as indicating that the mantle upwelling sustaining the hot spot originates in the upper mantle. In contrast, Vinnik et al. (2012) found low seismic velocities and normal densities in the shallow upper mantle, as well as a ~30 km thinning of the transition zone, due to a deepening of the 410 km discontinuity and a shoaling of the 660 km discontinuity. These results are consistent with the seismic structure being controlled by temperature in the presence of a hot mantle plume rising from the lower mantle. Vinnik et al.’s (2012) study was based on a larger dataset than used in the two studies of the first group (see preceding text). Vinnik et al. (2012) also argued that frequency-dependent effects may contribute to the discrepancies between the two groups.

Hawaii: Early tomography studies of the Hawaiian hot spot revealed the presence of anomalously slow seismic velocities in the upper mantle beneath the Hawaiian hot spot swell (Laske et al., 2007) and beneath the Hawaiian Islands (Priestley and Tilmann, 1999; Tilmann et al., 2001; Wolfe et al., 2002). Additional evidence for an upper mantle melt anomaly was provided by a seafloor magnetotelluric study (Constable and Heinson, 2004), which suggests a columnar zone of 5–10% partial melting with a radius <100 km and a depth extent of 150 km. Ritsema et al.’s (2011) global tomography model shows a broad volume of low velocities in the upper mantle beneath Hawaii that appears to connect to a low-velocity body extending through and to the base of the lower mantle (Figure 13(g)).

More recently, the Hawaiian Plume-Lithosphere Undersea Melt Experiment (PLUME) (Wolfe et al., 2009) involved one of the largest deployments of ocean bottom and land seismometers to image the seismic structure of the upper mantle and shallow lower mantle beneath the Hawaiian hot spot. Rayleigh wave tomography from the PLUME project reveals low velocities within the lithosphere at depths of 10–60 km beneath the island chain and the surrounding hot spot swell (Laske et al., 2011). Separate tomographic inversions of Rayleigh waves (Laske et al., 2011), S-waves (Wolfe et al., 2009), and P-waves (Wolfe et al., 2011) all image a volume of relatively low seismic velocities in the upper mantle underlying the Hawaiian swell (Figure 16). The volume is asymmetrical and irregular in shape. Lower seismic velocities SW of the island of Hawaii than NE correlate with an asymmetrical bathymetric swell, which is shallower to the SW than the NE (Crosby and McKenzie, 2009; Wessel, 1993), and with variations in the depth of seismic converters constrained by receiver functions (Rychert et al., 2013). These observations indicate that the Hawaiian swell is supported by hot and buoyant mantle interpreted to be plume material ponding beneath the lithosphere (Olson, 1990; Sleep, 1990) like a ‘pancake’ (Section 133.3.4). This pancake-shaped feature is asymmetrical about the axis of the volcano chain and appears to be hotter in – or to extend further to – the SW than the NE. In addition, all three tomography studies show that the low-velocity body is surrounded by seismically fast material, which is interpreted to be relatively cool, sublithospheric material that is sinking like a curtain around the plume pancake. The asymmetry as well as short-wavelength variability of the Hawaiian plume pancake is not
predicted by models of steady-state plume–plate interaction (Ribe and Christensen, 1994, 1999).

Another surprising finding of the body-wave studies (Wolfe et al., 2009, 2011) is that the low velocities underlying the Hawaiian swell are present from the base of the lithosphere all the way down to the transition zone (Figure 16). If these low velocities indeed identify ponding plume material, the inferred plume pancake is several times thicker than predicted by the classical models of thermally buoyant mantle plumes (e.g., Ribe and Christensen, 1999; van Hunen and Zhong, 2003). A possible explanation is that the Hawaiian plume contains compositionally dense mafic materials that reduce the net buoyancy of plume material to the degree that the rise of the plume temporarily stalls at the depths of 300–410 km, forming a ‘deep eclogite pool’ (Ballmer et al., 2013b; see Section 13.3.3.3.3). This explanation is supported by joint surface-wave and body-wave tomography (Cheng et al., in press) as well as independent constraints from receiver functions (Huckfeldt et al., 2013).

Below the upper mantle, the tomography studies image a vertically elongated body of low velocities near the southeast end of island chain that extends into the lower mantle (Figure 16; Wolfe et al., 2009; 2011). This feature is interpreted to be the stem of the Hawaiian mantle plume with an estimated thermal anomaly of 250–300 °C, confirming prior discoveries of transition zone thinning by 40–50 km beneath Hawaii (Li et al., 2000, 2004; Collins et al., 2002). A still deeper origin is suggested by a tomographic study that incorporates core phases (Lei and Zhao, 2006). Compelling evidence for an origin at CMB is the imaging of an ultralow-velocity zone (ULVZ) at the base of the mantle having one of the largest known velocity reductions (~20%) yet documented (Cottaar and Romanowicz, 2012).

The Galápagos: The Galápagos hot spot is part of a broad region in the Nazca–Cocos basin with significantly reduced long-period Love and Rayleigh wave speeds (Heintz et al., 2005; Vdovin et al., 1999). The mantle transition zone in the region has a similar thickness as that of the rest of the Pacific Basin except for a narrow region of ~100 km in radius slightly to the west of the Galápagos archipelago, where it is thinned by ~18 km (Hooft et al., 2003). This amount of thinning suggests an excess temperature of ~130 K. A regional body-wave tomography study detected a low-velocity feature of comparable dimension, extending from above the transition zone into the shallow upper mantle (Toomey et al., 2001). Rayleigh wave tomography (Villagomez et al., 2007) shows laterally averaged S-wave velocities at depths 75–150 km that are 0.05–0.2 km s⁻¹ lower than that beneath normal Pacific mantle with comparable seafloor ages. This velocity anomaly is consistent with excess temperatures of 30–150 °C, plus ~0.5% melt. The low-velocity material appears to trend diagonally from its greatest depth beneath the Galápagos archipelago upward and to the NE, interpreted to reflect the flow of plume material from the plume stem toward the Galápagos Spreading Center. Ritsema et al.’s (2011) global tomography

(b) 300 km, and (c) 900 km of velocity variations displayed as colors with percentages labeled on the color bars. Seismometer locations are denoted with white boxes. (d) Vertical cross section along the diagonal line in and with color scale as in (c).
model suggests that the upper mantle anomaly connects to a broader plume-like feature extending all the way down to the CMB (Figure 13(h)).

To examine seismic anisotropy in the mantle, shear-wave splitting was also studied (Fontaine et al., 2005). At the western edge of the archipelago, splitting of up to 1 s with fast polarizations directed E–W is consistent with LPO and mantle deformation being dominated by the eastward motion of the Cocos Plate. Directly beneath the archipelago and within the upper mantle seismic anomaly, however, there is no clear splitting, which suggests that melt or complex flow beneath the hot spot superimposes plate motion–derived anisotropy.

Yellowstone: Our understanding of the mantle seismic structure in the area of the Yellowstone hot spot track has evolved dramatically as the data coverage has increased. Recent tomographic studies revealed a complex velocity structure in the upper mantle beneath the SRP (which marks the hot spot track), interpreted to represent compositional heterogeneity associated with melting, without a deep-seated mantle plume (Saltzer and Humphreys, 1997). A subsequent study using data from local seismic networks identified low velocities in the upper mantle beneath the SRP, suggesting the presence of a plume-like feature extending as deep as 400 km to the west of Yellowstone (Waite et al., 2006; Yuan and Dueker, 2005).

The strongest constraints on mantle seismic structure near Yellowstone have been derived from data collected with Earthscope’s USArray (http://www.earthscope.org) with dense seismic coverage over the whole area of the western United States. Such a dense coverage provides the opportunity to image the structure beneath Yellowstone at much higher resolution and to greater depths than beneath any other hot spot on Earth. The aperture of the seismic array provides good resolution down to depths of ~1000 km or more. Several groups have probed P–wave tomography of the mantle beneath the western United States (Dziewolski and Humphreys, 2013; Fouch, 2012; James et al., 2011; Obrebski et al., 2010; Schmandt et al., 2012; Sigloch, 2011; Tian and Zhao, 2012). The images differ in detail but common elements related to the Yellowstone hot spot include low velocities in the shallowest 300 km of the upper mantle below the SRP and a relatively narrow (<200 km wide) low-velocity feature beneath Yellowstone that extends continuously through the upper mantle and connects to a broader (~300–500 km across) low-velocity zone in the shallow lower mantle (Figure 17). These studies suggest that the deep low-velocity anomaly is irregular in shape, with variable amplitude, and surrounded by seismically fast material without a clear extension to depths greater than 900 km depth.

Earlier receiver function studies of the mantle transition zone found a depression of the 410 km discontinuity near Yellowstone but did not image an upward deflection of the 660 km discontinuity, as expected for the effect of high temperatures on phase changes in the olivine system (Fee and Dueker, 2004; Yuan and Dueker, 2005). The most recent receiver function study using data from the USArray, however, shows that the 660 km discontinuity shoals by 12–18 km over an area ~200 km wide and centered on the low-velocity feature (Schmandt et al., 2012). In contrast, the 410 km discontinuity appears to be only marginally perturbed (~5 km) (Figure 17(b)).

Interpretation of the seismic structures beneath Yellowstone remains controversial. On the one hand, there is agreement concerning the shallower structure. The seismically slow material just beneath the SRP is interpreted to be a zone of partial melting and to be bound to the NW and from below by the seismically fast remnants of the subducted Farallon Plate and to the SE by foundering lithospheric material. On the other hand, there is disagreement concerning the deeper structure, with one group (James et al., 2011) dismissing a plume origin for the seismic and volcanic anomaly altogether (see Section 133.3.7.2).

Despite these controversies, the good resolution of the seismic structure well into the lower mantle beneath both Yellowstone and Hawaii motivates a brief comparison between the two. Common features involve a horizontal low-velocity anomaly beneath the hot spot tracks that extends in the direction of plate motion, as well as a narrow, vertical anomaly near the leading edge of the hot spots that protrudes into the lower mantle. The simplest explanation for these two common features is a plume rising from the lower mantle and ponding beneath the lithosphere. A notable difference is that the deep anomaly beneath Yellowstone is not clearly continuous with depth compared to the inferred continuity for that beneath Hawaii. Another difference concerns the depth extent of the horizontal upper mantle anomaly, which is completely contained in the shallowest 200–300 km beneath Yellowstone’s hot spot track (SRP), whereas it extends through most of the upper mantle (Wolf et al., 2009) or even splits up into two separate layers (Cheng et al., in press) beneath the Hawaiian Islands.

Eifel: The Eifel region in western Germany is characterized by numerous but small volcanic eruptions with contemporaneous uplift of 250 m in the last 1 My. Tomographic imaging indicates a mantle low-velocity anomaly extending to depths of at least 200 km (Passier and Wielandt, 1996; Litou et al., 2005). Inversions using a high-resolution local array study indicate a fairly narrow (100 km) P-wave anomaly of 2% that possibly extends to 400 km (Keyser et al., 2002; Ritter et al., 2001). The connection with the deep mantle is unclear but has been suggested to include the low-velocity structure that is imaged in the lower mantle below central Europe (Goes et al., 1999). Shear-wave splitting measurements show the largest split times for S-waves polarized in the direction of absolute plate motion, but the pattern is overprinted by complex orientations, suggestive of parabolic mantle flow around a plume stem with the overlying plate motion (Walker et al., 2005).

Cameroon Volcanic Line: Body-wave tomographic studies using global data and those obtained from the recent Cameroon Broadband Seismic Experiment show that the Cameroon volcanic line (CVL) is underlain by a fingerlike low-velocity anomaly that extends from the Gulf of Guinea in the SW to the Chad–Cameroon border in the NE (e.g., Reusch et al., 2010; Ritsema et al., 2011). The anomaly ranges from ~100 to ~400 km depth with the depth of peak amplitudes shoaling toward the SW, and is juxtaposed by a high-velocity anomaly associated with the Congo Craton (and subcratonic mantle) toward the SE (Reusch et al., 2010). The peak-to-peak difference between the two anomalies is ~5%, corresponding to a temperature contrast of ~280 °C (Reusch et al., 2010).
This contrast may suggest anomalously hot mantle beneath the CVL, anomalously cool mantle beneath the Congo Craton (e.g., due to downwelling; King and Ritsema, 2000), or both. A rather moderate thermal anomaly beneath the CVL itself is consistent with receiver function constraints on the ratio of P- to S-wave speed (VP/VS), which indicate the presence of only very small fractions of melt in the asthenosphere (Gallacher and Bastow, 2012).

Shear-wave splitting measurements display fast directions dominantly parallel or subparallel to the CVL (Koch et al., 2012). These directions are consistent with a strong component of local northeastward asthenospheric flow, as is
predicted by numerical simulations to result from large-scale mantle convection patterns (Conrad and Behn, 2010; Forte et al., 2010). A weaker component of flow perpendicular to the CVL, perhaps related to small-scale convection along the edge of the Congo Craton (cf. King and Ritsema, 2000), may contribute to subparallel (i.e., dominantly N–S) splitting directions measured by Koch et al. (2012) at a subset of stations. Such edge-driven convection (see Section 133.3.3.5) may also provide a good explanation for volcanism itself (King and Ritsema, 2000). An alternative plume origin for volcanism is ruled out by nonanomalous transition zone thicknesses (Reusch et al., 2011) and the lack of hot spot-like age–distance relations (Figure 6, inset).

East Africa: The hot spots in East Africa overlie the northeastern flank of the African LLSVP (Figure 13(e)). The African LLSVP is rooted at the CMB beneath southern Africa (Helmberger et al., 2000). It is a large low-velocity body (~4000 km by ~2000 km) that tilts up and to the northeast beneath East Africa (Forte et al., 2010; Ritsema et al., 1999) (Figure 13(i)). The relationship of the African LLSVP to volcanism and rifting in East Africa remains controversial. One suggestion is that volcanism is not attributed to the LLSVP at all, but instead to small-scale, sublithospheric convection along the edges of the African Craton (King and Ritsema, 2000). Another idea attributes the numerous volcanic centers to one or more mantle plumes of ~100 km in width rising from the top of the LLSVP to the base of the lithosphere (e.g., Chang and Van der Lee, 2011; Ebinger and Sleep, 1998; Montelli et al., 2006). A third concept attributes volcanism directly to the rise into the shallow upper mantle and decompression melting of a ‘superplume’ (cf. Davaille, 1999) as a whole, which would be imaged as an extension of the LLSVP itself (Bastow et al., 2005; Benoit et al., 2006; Park and Nyblade, 2006).

With the arrival of data from permanent and temporary seismic arrays of the AfricaArray (http://www.africaarray.psu.edu/), a general consensus is forming among the most recent studies (Hansen and Nyblade, 2013; Hansen et al., 2012). S-wave tomography (Nyblade, 2011) and surface-wave (Adams et al., 2012) tomography reveal that the shallow upper mantle in East Africa from just south of the Tanzania Craton to NE of the Ethiopian Rift is seismically slow (Figure 18). Associated with this low-velocity anomaly, the 410 km seismic discontinuity is 30–40 km deeper than normal suggesting excess temperatures of >250 °C (Cornwell et al., 2011; Huerta et al., 2009). The seismically slow material in the upper mantle is therefore too thick, geographically broad, and pervasive to be explained by the shallow process of edgethe driven convection or by separate, smaller-scale mantle plumes. The observed seismic structure appears to be most consistent with the penetration of a large and broad (super)plume into the upper mantle where it causes decompression melting. Fast polarization directions of shear-wave splitting that are dominantly oriented NE–SW have been interpreted to reflect

Figure 18 Tomography images of the mantle beneath Africa from P-wave inversions of Hansen et al. (2012). (a)–(d) Horizontal cross sections of P-wave velocity perturbations at the labeled depths. (e) Vertical cross section along the profile A–A' as marked in (a). The ± values indicate the bounds of the color scales in each corresponding panel; blue is fast, while red is slow. Dashed lines in (e) mark depths of 410, 660, 800, 900, and 1000 km.
Potential challenges for a superplume origin arise from a South Pacific Superswell. A recent deployment of temporary seismometers on the seafloor and a number of islands enabled a regional tomographic study of the middle and upper mantle beneath the South Pacific Superswell. The P-wave and S-wave tomography results reveal that the area is underlain by multiple low-velocity regions in the depth range from 400 to 1600 km (Tanaka et al., 2009). Two low-velocity regions at 1200 km depth are centered beneath the Society and Pitcairn hot spots, while two at 800 km depth are located beneath the Tuamotu and Austral Islands. There are also relatively short-wavelength (hundreds of km) variations at 400 km depth. A prior study of underside reflections of S-waves at the 410 and 660 km discontinuities found the mantle transition zone to have normal thicknesses, except in a ~500 km wide area beneath the Society hot spot (Niu et al., 2002a).

The incorporation of Rayleigh wave tomography highlights the presence of short-wavelength variability in the upper mantle, showing that the Society, Pitcairn, Macdonald, Marquesas, and Arago hot spots are underlain by low velocities in the depth range of 60–180 km (Suetsugu et al., 2009). Only the low-velocity bodies beneath Society and Macdonald appear to connect to the low-velocity anomalies in the lower mantle. The shallow anomalies beneath the other hot spots appear to be restricted to the upper mantle. Suetsugu et al. (2009) interpreted this structure as reflecting the presence of a number of small-scale (hundreds of km across), plume-like upwellings emanating from the south Pacific LLVPN, some of which have risen above and become separated from the LLVPN. This conclusion is in contrast to the conclusions for the African LLVPN rising as a whole superplume into the shallow upper mantle. These contrasting results lead to questions about the dynamics of LLVPs. For example, are the contrasting dynamics related to internal forces (differences in composition and temperature) or instead driven by external ones (ambient mantle flow shaping the LLVPN; McNamara and Zhong, 2005; Steinberger and Torvik, 2012)?

133.2.6 Summary of Observations

Intraplate volcanic activity can be mainly grouped in three categories: long-lived age-progressive volcanism, short-lived age-progressive volcanism, and volcanism with complex age patterns (Courtillot et al., 2003). Long-lived (>50 My) age-progressive volcanism is documented for at least 13 hot spots. At present day, these hot spots define a global kinematic reference frame that is deforming slower than average, present-day plate velocities. Over geologic time, however, the motion between the Indo-Atlantic hot spots, the Pacific hot spots, and Iceland has been significant. Short-lived (<24 My) age-progressive volcanism is documented along at least ten volcanic chains. The directions and rates of age progression in the short-lived chains suggest relative motion between these hot spots, even on the same plate. Finally, the available dates of rocks from a number of volcanic groups (e.g., Line and Cook–Austral Islands and Cameroon volcanic line) do not show evidence for simple age–distance relations but instead suggest these groups to have formed by episodic volcanism over tens of millions of years with coeval volcanism over large distances.

Hot spots are commonly associated with topographic anomalies (i.e., swells). These swells are usually centered by the most active volcanoes, span distances of hundreds of km to ~1000 km, and rise hundreds of meters above the surrounding seafloor. Hot spot swells usually diminish with time or distance from the center of active volcanism and exclusively support volcanoes no older than ~50 My. LIPs display a huge range in magmatic volumes and durations and have been related to climate change and mass extinction events. They represent the largest volume eruptions of magma from as large as 50 Mkm³ (OIP) to <2 Mkm³ (CRB) (see Figure 10). This voluminous magmatism can occur in a dramatic short bursts, lasting 1–2 My (CAMP, CRB, EM, OIP, and SIB), or can be prolonged over tens of My (e.g., CHON, CBN, KER, NAVP, and SHA). Main eruptive products are tholeiitic basalts that, on the continents, typically are transported through radiating dike swarms. High-MgO basalts or picrites are found in a number of provinces (NAVP, OIP, and CAR) indicating high degrees of mantle melting. Smaller rhyolitic eruptions in continental flood basalts (KAR, PAR, CHON, and EARS) instead suggest secondary melting of the continental crust. Dynamic topographic uplift (analogous to hot spot swells) is evident around the main eruptive stages of some LIPs (EME, NAVP, SIB, and KER) but may not have occurred at others (OIP and SHA). While an appreciable amount of the geologic record is lost to subduction, about six active hot spots are confidently linked to LIPs. Most of these hot spots are currently located at or very close to an oceanic spreading center with the Kerguelen hot spot being a notable exception. Flood basalt volcanism itself is also typically associated with rifting, either between continents (PAR, KAR, CAMP, NAVP, DEC, and MAD) or at MORs (OIP–MAN–HIK, KER, and SHA–HES). These links between LIPs and plate tectonics compel substantial revisions or alternatives to the hypothesis of an isolated head of a starting mantle plume as the sole origin of LIPs.
Basalts from hot spots and other sites of intraplate volcanism, commonly referred to as OIB, are geochemically distinct from MORB. Both isotope ratios and major elements display a much greater variability among OIB than among MORB. Generally, OIBs are more mafic (i.e., lower SiO₂ content) and alkaline (higher Na₂O + K₂O) than MORB. For the most part, they also differ in at least one of three commonly analyzed isotope ratios: 87Sr/86Sr, 206Pb/204Pb, and 3He/4He. Exceptions are the Bowie–Kodiak, Cobb, and Caroline chains, which show MORB-like 87Sr/86Sr and 206Pb/204Pb compositions (but lack 3He/4He data). In terms of major elements, the most productive hot spots (Hawaii, Iceland, and the Galápagos) overlap most heavily with MORB.

Hot spots are typically associated with anomalously low seismic-wave speeds below the lithosphere and in the upper mantle. Transition zone thicknesses are often anomalously thin by tens of km. The previously mentioned findings are consistent with elevated mantle temperature (by 150–200 K) and with the abundance of partial melt in the shallow upper mantle. Improved understanding of mineral physics at appropriately high pressure and temperature is needed to better constrain the magnitude of the putative temperature anomalies and to quantify the potential contribution of compositional heterogeneity. Especially with recent regional studies and the availability of EarthScope data, we have seen increasing evidence for a lower mantle origin for a selected number of hot spots.

The key characteristics described earlier provide important constraints to test dynamic mechanisms proposed for the origin of melting anomalies. It seems unlikely that a single overarching mechanism can account for the diversity seen in the geologic record. In the next section, we discuss the implications and predictions of each of these mechanisms.

133.3 Dynamic Mechanisms and Their Implications

This section reviews the mechanisms proposed to generate intraplate volcanism. We begin with a summary of methods that are used to quantitatively explore dynamic mechanisms (Section 133.3.1). We then discuss the geodynamic processes for generating mantle upwelling (Section 133.3.3) and related magmatism (Section 133.3.4). Candidate mechanisms to compensate hot spot swell and to sustain flood basalt volcanism are explored in Sections 133.3.4 and 133.3.5, respectively. In the context of the discussed dynamic processes, we continue revisiting the geochemical and petrologic signatures of hot spot lavas and their distinctions from MORB (Section 133.3.6). Finally, we discuss these processes in the broader context of mantle convection and plate tectonics (Section 133.3.7).

133.3.1 Methods

The origin and evolution of hot spots and melting anomalies can be constrained by systematically comparing predictions of geodynamic models with observations. Such models simulate the transport of energy, mass, and momentum in the solid mantle that may have local patches of partial melt. They indeed provide a means to directly test conceptual ideas against the basic laws of physics and to delineate the conditions under which a proposed geodynamic mechanism can operate.

Key aspects of material and energy transport in the mantle can be described mathematically and solved by analytic or numerical approaches or can be studied in laboratory experiments using analogue materials. Analytic approaches provide scaling laws that reveal relationships between phenomena and key parameters for simple or simplified problems (see also Chapter 129). Numerical simulations can address much more complex problems. Their accuracy, however, may be limited by the discretization of the differential equations and the parameterizations made (see also Chapter 130). Laboratory experiments (see also Chapter 128) involving analogue materials such as sucrose syrup and silicon putty instead provide natural experiments that do not suffer from numerical discretization but require significant extrapolation over length scales and timescales. For simplified cases, such as the ascent of plumes through a nearly isoviscous or Newtonian fluid, benchmarks have revealed good agreement of numerical and analogue simulations (e.g., van Keken’s [1997] numerical benchmark of the classic Griffiths and Campbell [1990] laboratory experiments; see also Vatteville et al. [2009], van Keken et al. [2013]). It is nevertheless essential to resort to computational modeling to simulate some of the complexities that arise with the features of the Earth’s mantle such as compressibility, phase transitions, melting, and realistic rheology dependent on grain size, pressure, and stress (see also Chapter 127).

133.3.2 Generating Magmas for Volcanism

Understanding the causes for melt generation is essential for studying the origin of hot spots and intraplate volcanism. Partial melting of rocks can conceptually occur due to (1) a change in temperature, (2) a closed-system decompression, and (3) an open-system change in composition. While the scenarios (1) and (3) are relevant for melting the crust (e.g., near intrusions) and the mantle wedge (i.e., at subduction zones), respectively, isentropic decomposition melting (2) is the dominant process of melt generation at MORs, hot spots, and other melting anomalies.

For decompression melting, the total volumetric rate of melt generation is approximately proportional to the rate of decompression (or mantle upwelling) and the melt productivity at constant entropy (−∂H/∂P)S, integrated over the volume V of the melting zone:

\[
Q_m = \frac{\rho_m}{\rho_r} \left(\frac{\partial F}{\partial P} \right)_S \int V \left(\frac{\partial P}{\partial T} \right) dV \quad [1]
\]

where \(\rho_m\) is mantle density and \(\rho_r\) is igneous crustal density. \((-\partial H/\partial P)_S\) is generally positive above the solidus and zero otherwise. The solidus temperature and \((-\partial H/\partial P)_S\) depend on the equilibrium composition of the solid and liquid at a given pressure (e.g., Hirschmann et al., 1999; McKenzie, 1984; Phipps Morgan, 2001). Mantle magmatism thus requires some combination of excess temperature, presence of fertile or fusible material, and mantle upwelling. Higher temperatures boost melting by increasing the pressure range over which the solidus is exceeded, composition controls melting by changing both this pressure range and \((-\partial H/\partial P)_S\), and both factors may influence the rate of decompression \((-\partial P/\partial T)\) through their effects on mantle buoyancy and upwelling rate.
Excess melting sustained by elevated temperatures has been a major focus of previous studies. Mantle-source temperatures are commonly estimated from the Fe-Mg content of primary magmas and the olivine phenocrysts with which they equilibrate. One group suggests that the mantle is no hotter beneath Hawaii than beneath many MORs (Falloon et al., 2007; Green et al., 2001). Other groups, however, suggest elevated temperatures of, for example, 100–300 °C beneath Hawaii, 50–100 °C beneath Iceland or the Azores, and ~150 °C beneath Afar (Beier et al., 2012; Herzberg, 2004a; Herzberg and Gazel, 2009; Herzberg et al., 2007; Lee et al., 2009; Putirka, 2005; Putirka et al., 2007, 2011; Rooney et al., 2012). Most, if not all, lavas sampled at hot spots have evolved to varying degrees after leaving the mantle source, and it is therefore difficult to estimate the parental liquids’ MgO content. For example, Putirka (2005) argued that the lower MgO contents derived by Green et al. (2001) for Hawaii could lead to an underestimate of temperature. Restricting the analyses to melt inclusions would mitigate this uncertainty, but such an approach is intricate.

Complementary methods rely on peridotite melting models that invert or forward model a whole suite of major-element and/or minor-element concentrations, sometimes including crustal thicknesses as an additional constraint. Beneath Iceland, estimates for excess mantle temperatures based on such methods range from ~100 to ~250 °C (e.g., Herzberg, and O’Hara, 2002; Klein and Langmuir, 1987; Langmuir et al., 1992; Maclellan et al., 2001; McKenzie and Bickle, 1988; Presnall et al., 2002; Shen and Forsyth, 1995; White and McKenzie, 1995). Excess temperatures are further estimated at 200–300 °C beneath Hawaii, based on a combination of geodynamic and melting models (Ribe and Christensen, 1999; Watson and McKenzie, 1991), and at ~100 °C beneath Afar, based on incompatible trace-element forward modeling (Ferguson et al., 2013). Along these lines, most of the signatures of Archean rocks converge to high thermal anomalies beneath Hawaii and moderate thermal anomalies at other hot spots, but discrepancies between methods remain large.

An additional source of uncertainty for the previously mentioned temperature estimates is the composition of the mantle source. Volatile species such as H2O and CO2 can dramatically reduce solidus temperatures even in small proportions, sometimes including crustal thicknesses as an additional constraint. Beneath Iceland, estimates for excess mantle temperatures based on such methods range from ~100 to ~250 °C (e.g., Herzberg, and O’Hara, 2002; Klein and Langmuir, 1987; Langmuir et al., 1992; Maclellan et al., 2001; McKenzie and Bickle, 1988; Presnall et al., 2002; Shen and Forsyth, 1995; White and McKenzie, 1995). Excess temperatures are further estimated at 200–300 °C beneath Hawaii, based on a combination of geodynamic and melting models (Ribe and Christensen, 1999; Watson and McKenzie, 1991), and at ~100 °C beneath Afar, based on incompatible trace-element forward modeling (Ferguson et al., 2013). Along these lines, most of the signatures of Archean rocks converge to high thermal anomalies beneath Hawaii and moderate thermal anomalies at other hot spots, but discrepancies between methods remain large.

The mantle beneath hot spots may also contain more fusible, mafic lithologies, such as those generated by the recycling of subducted oceanic crust. The presence of more fusible or ‘fertile’ mantle has been suggested for hot spots such as Hawaii (Hauri, 1996; Herzberg, 2006; Sobolev et al., 2005; Takahashi, 2002), Iceland (Korenaga and Kelemen, 2000), the Columbia River basalts (Takahashi et al., 1998), the Galápagos (Sallares et al., 2005), the Canaries (Day et al., 2009; Gurenko et al., 2009; Herzberg, 2011), and others (Hofmann, 1997). Mafic lithologies tend to have a lower solidus and much greater isotropic melt productivity (∂F/∂P) than peridotite (Pertermann and Hirschmann, 2003; Spandler et al., 2008; Yasuda and Fujii, 1994) and therefore require significantly lower temperatures to produce the same volume of magma compared to peridotite.

Some have argued that such fertile mantle melting could generate large melting anomalies with very small or even no excess temperatures (Korenaga, 2005). An important difficulty with this hypothesis is that mafic materials will tend to form eclogite, which is significantly denser than lherzolite throughout the upper mantle (Aoki and Takahashi, 2004; Hirose et al., 1999; Irifune et al., 1986). To undergo decompression melting, this material would therefore have to be supported by rapid ambient mantle upwelling. Korenaga proposed that rapid upwelling driven by shallow small-scale convection (cf. Section 133.3.3) or fast seafloor spreading could entrain eclogite upward from the uppermost lower mantle (Korenaga, 2004, 2005), where eclogite becomes positively buoyant (Hirose et al., 1999) and hence perhaps accumulates. More recent experiments, however, suggest that the excess density of quartz-normative eclogites is actually near doubled in the depth range of 300–410 km (Aoki and Takahashi, 2004), which would make it difficult for plate-driven mantle flow to entrain significant amounts of eclogite into the asthenosphere. A more complete understanding of the properties and phase relations of different lithologies at a range of mantle pressures and temperatures is needed to test the ability of fertile materials to give rise to mantle melting without thermal anomalies.

The final major factor that can lead to melting anomalies is enhanced mantle upwelling (which determines the decompression rate, −∂P/∂t). Not only thermal buoyancy but also compositional buoyancy may fuel upwelling. However, compositionally lighter materials such as those with less iron and garnet than the ambient mantle, perhaps due to prior melting (Jordan, 1979; Oxburgh and Parmeinter, 1977), are typically less fertile than dense, undepleted materials.

Behaving in complementary fashion to fertile mantle, depleted mantle must be light enough such that the associated increase in upwelling (−∂P/∂t) overcomes the reduction in fusibility (∂F/∂P); (cf. eqn [1]).

Geodynamic modeling studies have explored a wide range of processes that can create and influence mantle upwellings. Upwellings may occur in columnar plumes or diapirs. The
style of ascent of such upwellings can be greatly affected by variable rheology, thermal expansivity, and conductivity. Compositional heterogeneity can further complicate ascent styles if entrained by plumes. Alternatively, upwelling may be passively driven, for example, by downdwellings that remove the cool and negatively buoyant base of the lithosphere or by vertical motion of the whole lithosphere itself. Another form of vertical motion in the mantle, shear-driven upwelling, is independent of density variations as an energy source, but is rather induced by shearing of a rheologically variable mantle.

133.3.3.1 Thermal boundary layer instabilities

Density variations near thermal boundary layers can become convectively unstable and lead to plume-like upwelling. In the simplest case of a thermally stratified mantle, the energy source comes from a density inversion with cool rocks overlying hot rocks. Upwelling thermal instabilities develop from small anomalies within such a hot thermal boundary layer as long as they grow faster by advection than they dissipate by thermal diffusion. In the Earth’s mantle, the core–mantle boundary (CMB) is the main candidate for a plume-generating thermal boundary layer (e.g., Boehler, 2000), but other boundary layers may exist at locations where sharp transitions in material properties or composition occur, such as the bottom of the transition zone at 670 km depth or the top of a proposed thermochemical layer in the deep mantle.

In its simplest form, the growth of an upwelling from a hot boundary layer can be approximated as a Rayleigh–Bénard instability with the onset time and growth rate controlled by the local (or boundary) Rayleigh number:

\[
Ra = \frac{\rho g \Delta T \delta^3}{\kappa n^2} \tag{2}
\]

The instability is enhanced by larger thermal expansivities \(\alpha\), temperature jumps across the boundary layer \(\Delta T\), or layer thicknesses \(\delta\) and hampered by higher viscosities \(\mu\) and effective thermal diffusivities \(\kappa\). Of all these parameters, mantle viscosity \(\mu\) is the least well constrained and thus \(\mu\) is the largest source of uncertainty in \(Ra\). For more specifics on the governing equations for boundary layer instabilities and examples of their modeling with laboratory and numerical techniques, see Chapters 6 and 11 of Schubert et al. (2001). Analytic methods provide important insights into the rate of formation of the instability and the dependence on ambient conditions (see, e.g., Whitehead and Luther, 1975; Ribe and de Valpine, 1994). The growth of the instability to a full diapir or plume can be understood with nonlinear theory. For example, Beresovski and Kelly (1997) showed that growth may be retarded due to draining of the source layer by an intermittently stalling diapir. Experimental and numerical work confirms and expands on these predictions (e.g., Olson et al., 1988; Ribe et al., 2007). In general, most studies find that for reasonable lower mantle conditions, boundary layer instability will grow on a timescale of about 10–100 My (e.g., Christensen, 1984; Olson et al., 1987; Ribe and de Valpine, 1994; see also Chapter 129).

133.3.3.2 Thermal plumes

Laboratory experiments in the absence of large-scale ambient mantle flow show that an unstable boundary layer can lead to numerous simultaneous plumes that interact with each other as they rise through the fluid (e.g., Kelly and Bercovici, 1997; Lithgow-Bertelloni et al., 2001; Manga, 1997; Olson et al., 1987; Whitehead and Luther, 1975). To study the dynamics of a single plume, it has become common to use a more narrow, point-like source of heat, which in laboratory experiments can be achieved by inserting a small patch heater at the base of the tank (e.g., Davaille and Vatteville, 2005; Kaminski and Jaupart, 2003) or alternatively by injecting hot fluid through a small hole (Griffiths and Campbell, 1990). These single-plume experiments predict the formation of a broad rounded head that leads the rising thermal instability and is trailed by a (usually) thinner columnar tail that connects to the deep source of the plume.

The morphology of the plume head and tail is controlled by the viscosity contrast between the hot plume and the ambient fluid (see Ribe et al. (2007) for a thorough review). A more viscous plume will tend to form a head with approximately the same width as the tail (a ‘spout’ or ‘finger’ morphology), whereas a lower-viscosity plume will tend to form a voluminous plume head much wider than the tail (a ‘mushroom’ or ‘balloon’ morphology). Since mantle viscosity is a strong function of temperature, the mushroom or balloon geometry should dominate thermal plumes (Kellogg and King, 1997; Olson and Singer, 1985; Richards and Griffiths, 1989; Whitehead and Luther, 1975).

The rise speed of plumes is proportional to its buoyancy and the square of its radius and inversely proportional to viscosity. Uranium-series geochemistry provides constraints for ascent rates near the base of the lithosphere; these upwelling speeds are often found to be comparable to plate velocities (Bourdon et al., 1998, 2005, 2006; Kokfelt et al., 2003), except for the much faster (i.e., by 1–2 orders of magnitude) rising Hawaiian plume (Pietruszka et al., 2001; Sims et al., 1999).

A range of instabilities, however, can induce oscillations in rise speeds and mass fluxes of thermal plumes. For example, perturbations within or above the deep thermal boundary layer can induce solitary waves that travel up the plume conduit much faster than average plume ascent rates for strongly temperature-dependent rheology (Olson and Christensen, 1986; Olson et al., 1993; Schubert and Olson, 1989; Scott et al., 1986; Whitehead and Helfrich, 1988). Other experiments have shown that a strongly tilted plume tends to break up into multiple diapiric upwellings (Olson and Singer, 1985; Richards and Griffiths, 1989; Skilbeck and Whitehead, 1978).

Such instabilities can have important implications for thermal entrainment of ambient mantle materials, through which the plume rises. In contrast to the classic work by Griffiths (1986), Richards and Griffiths (1989), and Griffiths and Campbell (1990, 1991), numerical models have revealed that thermal entrainment is generally limited to the periphery of plume tails (and even of plume heads) and hence insufficient to allow for partial melting of entrained materials beneath the hot spot (Farnetani and Hofmann, 2009; Farnetani and Richards, 1995; Farnetani et al., 2002). Solitary waves traveling rapidly and in isolation up the plume conduit moreover preclude any mixing of the hottest plume pulses with the ambient mantle (e.g., Whitehead and Helfrich, 1988). In contrast, strongly tilted plumes may be able to entrain ambient material more efficiently, perhaps even into the hot center of the
Thermochemical plumes

Thermal plumes rising from deep boundary layers have certainly guided much of our understanding of the causes for the largest hot spots. It is nevertheless likely that the density of many plumes is influenced by composition in addition to temperature. A large volume of compositionally dense but still hot and thermally buoyant material is thought to be present in the deep part of the lower mantle (Kellogg et al., 1999; McNamara and Zhong, 2005) and feed rising thermochemical plumes (e.g., Deschamps et al., 2011).

The structure of the thermochemical boundary layer at the base of the mantle can control the thermal, compositional, and rheological structure of the rising plumes. Without rapid ambient flow, materials originating from deeper versus shallower parts of the layer are expected to be entrained into the more central versus more peripheral plume conduit, respectively (Farnetani and Hofmann, 2009). If the layer is compositionally stratified, the deepest (i.e., densest albeit hottest) parts of the layer tend to remain stable and not rise into the plume (Farnetani, 1997; Lenardic and Jellinek, 2009). In addition to effects on plume composition and rheology (and therefore ascent style), such a situation may result in plume temperatures significantly smaller than CMB temperatures. These moderately hot plumes, further cooling along an adiabat that is steeper than that of the ambient mantle (Leng and Zhong, 2008), may reconcile the discrepancy between temperature anomalies at hot spots (e.g., Herzberg et al., 2007) and the much larger estimates for the temperature jump across the CMB (e.g., Boehler, 2000).

In addition, ambient mantle flow can trigger the creation of a plume and influence its thermochemical structure. For example, large-scale mantle convection tends to modulate the topography of the thermochemical boundary layer to focus plume upwellings (Steinberger and Torsvik, 2012). On a more regional scale, Tackley (2011) showed that the impingement of downdraging slabs on a thermochemical boundary layer can trigger plumes of various types (Figure 19). The angle of slab impingement influences the amount of mafic (and harzburgitic) materials entrained by, and the distribution of these materials within, the plume (e.g., the presence of mafic and/or refractory harzburgitic materials in the plume head). These predictions are relevant for the geochemical expression of LIP and hot spot volcanism, as well as LIP–hot spot connections (see Chapter 134).

Due to a competition between negative chemical and positive thermal buoyancy forces, entrainment of compositionally dense (e.g., mafic) materials strongly affects thermochemical-plume behavior (Figure 20). Plume behavior is predominantly controlled by the lateral thermal and compositional buoyancy profiles across the plume. These profiles depend on the temperature and density contrasts across the boundary layer from which they rise, the thickness of the chemical layer, and the contrast in compressibility between the two materials (Huang et al., 2010; Lin and van Keken, 2006a,b,c; Samuel and Bercovici, 2006; Tan and Gurnis, 2007). Predicted plume ascent styles for different density (Figure 20(e)–20(l)) and compressibility contrasts range from nearly stagnant, wide plumes in the lower mantle (‘domes’ or ‘superplumes’) to fast episodic pulsations traveling up the plume conduit (e.g., Davaille, 1999; Kumagai et al., 2008; Lin and van Keken, 2005). For somewhat lower density contrasts, the dense layer may get entrained into the plume and then cause the ascent of the plume to stall in the lower mantle (Samuel and Bercovici, 2006) or to oscillate for a range of conditions (Davaille, 1999; Lin and van Keken, 2006b,c; Huang, 2008). The large range in predicted morphologies combined with the potential for stalling or sinking of thermochemical plumes at different depths (Figure 20(e)–20(l)) will complicate identifications of mantle upwellings in seismic images (Farnetani and Samuel, 2005; Kumagai et al., 2008; Lin and van Keken, 2006b,c), independent of how chemically dense materials (such as eclogite) influence seismic wave velocities (cf. Abalos et al., 2011; Connolly and Kerrick, 2002; Xu et al., 2008; Zhang and Green, 2007).

Further complexities arise from the interaction of thermochemical upwellings with mantle phase transitions. Farnetani and Samuel (2005) showed that the endothermic phase transition (and the associated viscosity jump) between the lower mantle and the upper mantle can alter thermochemical plume morphologies, for example, by promoting spout morphologies in the upper mantle (Figure 20(a)–20(d)). Furthermore, the density maximum of eclogite relative to peridotite in the depth range of 300–410 km (Aoki and Takahashi, 2004) can cause mantle upwellings to intermittently stall in the mid-upper mantle (Ballmer et al., 2013b; Figure 20(m)), which as discussed in Section 133.2.5.2 can address the seismic structure of the Hawaiian plume (Cheng et al., in press; Wolfe et al., 2009).

The characteristics of thermochemical plume dynamics are relevant for our understanding of hot spot and flood basalt volcanism. The gravitational pull exerted by high-density eclogites in thermochemical plumes may account for the lack of...
premagmatic uplift for the Siberian Traps (Sobolev et al., 2011) and other flood basalt provinces (see Section 133.2.3). Oscillatory plume behavior may not only explain the episodicity of LIP emplacement (Lin et al., 2005) but also reconcile magmatic-flux variations evident in the geologic record along many hot spot tracks (e.g., Adam et al., 2007; Mjelde et al., 2010; Zhang et al., 2011) such as Hawaii (van Ark and Lin, 2004; Vidal and Bonneville, 2004) and Iceland (Ito et al., 1999; Parnell-Turner et al., 2013; Poore et al., 2011). Finally, small plumes are predicted to rise intermittently from large, stagnant thermochemical domes (Davaille, 1999) to provide an explanation for short-lived hot spot activity as evident in the S and W Pacific (Clouard and Bonneville, 2005; Courtillot et al., 2003; Koppers et al., 2003).

133.3.4 Effects of variable mantle properties on plume dynamics

In addition to thermochemical effects, variations in mantle material properties can lead to complex forms and time dependence of mantle plumes. For example, a combination of increasing ambient mantle viscosity and thermal conductivity and decreasing thermal expansivity with depth has been shown...
to cause plumes to be relatively broad in the deep mantle but become thinner when migrating upward (Albers and Christensen, 1996; Leng and Gurnis, 2012). Several effects that are often ignored in geodynamic models, such as those related to radiative heat transport (Matsyska et al., 1994), the postperovskite transition (Matsyska and Yuen, 2005, 2006), and/or the iron spin-state crossover (Matsyska et al., 2011), also tend to increase plume widths in the deep mantle, perhaps to extents comparable to thermochemical domes.

The largest variations in mantle material properties occur at the upper mantle-to-lower mantle transition at 660 km depth. The sharp decrease in viscosity from the lower to upper mantle causes a sudden drop in the width of rising plumes, as well as a related increase in ascent rate (Kumagai et al., 2007; Leng and Gurnis, 2012; van Keken and Gable, 1995). The density contrasts associated with the 660 km discontinuity can further contribute to acceleration and episodocity of plume flow (Brunet and Yuen, 2000; Nakakuki et al., 1997). Tosi and Yuen (2011) showed that plumes with strongly temperature-dependent rheology may be deflected horizontally just below the 660 km discontinuity, which itself has been identified as a potential source region for plumes (Cseperes and Yuen, 2000).

An important aspect of mantle rheology is that under high-strain-rate conditions, the rheology is dominated by non-Newtonian effects with a nonlinear dependence of viscosity on stress. Such a rheology can dramatically enhance the deformation rate of boundary layer instabilities and lead to much higher rise speeds than observed in Newtonian fluids (Larsen and Yuen, 1997; Larsen et al., 1999; van Keken, 1997). Starting plume heads can rise sufficiently fast to almost completely separate from the narrower (and thus slower) tail, a behavior that may form an alternative explanation for the observed LIP episodicity (van Keken, 1997). In turn, nonlinear yield-stress rheology has been shown to promote spoutlike instead of mushroom-like morphologies (Daveille et al., 2013; Massmeyer et al., 2013).

In summary, the classical descriptions of plumes as cylindrical, axisymmetric, continuously rising features from the CMB to the lithosphere captured many of the first-order physical processes and thus provided a powerful framework for understanding localized upwellings that give rise to hot spots. New observations and more sophisticated models, however, have shown that plume-like upwellings are likely to take on complex morphologies, be time dependent, and originate from different depths in the mantle. Systematic comparison of model predictions with observations, as well as new constraints from mineral physics, is required to identify the range of behaviors that are most applicable to the Earth’s mantle.

3.3.3.5 Small-scale sublithospheric convection

Beyond the complexities of active plume ascent, other forms of upwelling have been proposed to sustain intraplate volcanism. While plumes rise from a hot thermal boundary in the deep mantle, passive upwelling can be triggered by instabilities dripping down from the cold thermal boundary layer at the base of the lithosphere. Analogous to bottom-up Rayleigh–Bénard instabilities discussed earlier, such top-down-driven small-scale convective instabilities are promoted by the thickening of the cool material at the base of the lithosphere and low viscosities of the underlying asthenosphere. Small-scale convection (SSC) has been shown to be typically organized as rolls (Figure 21(a)), aligned by the direction of plate motion (Richter, 1973). Rolls are at first limited to the asthenosphere with typical wavelengths of 200–300 km but may extend deeper beneath mature plates (Korenaga and Jordan, 2004). In both cases, SSC acts to remove the cool base of the lithosphere and to replace it by warm materials from below.

Such a process can provide an explanation for the observed flattening of seafloor bathymetry (and of surface heat flux) in ocean basins of ages >70 Ma (Davaille and Jaupart, 1994; Doin and Fleitout, 1996; Stein and Stein, 1994; Zotinik et al., 2008). Instead, SSC beneath young seafloor may be restricted due to the presence of the residual harzburgite from previous MOR melting (Afonso et al., 2008; Hirth and Kohlstedt, 1996; Lee et al., 2005). The occurrence of SSC can further be tested using seismic observables (cf. Sleep, 2011). For example, it is consistent with the seismically derived thermal structure of the Pacific lithosphere (Ritzwoller et al., 2004; van Hunen et al., 2005).

The removal of the base of the cool (and depleted) lithosphere by SSC may moreover act to induce decomposition melting (Figure 21(b), Ballmer et al., 2007; Buck and Parmeuter, 1986). According to the geometry typical for SSC (Figure 21(a)), magmatism is predicted to emerge along one or multiple hot lines parallel to the direction parallel to plate motion (Bonatti and Harrison, 1976; Bonatti et al., 1977), rather than at localized hot spots. Associated volcanic activity can thus occur coeval over distances of up to 1000–2000 km (Ballmer et al., 2009). Such extensive volcanism can create complex age–distance patterns such as those observed among various seamount chains in the western and southern Pacific (cf. shaded fields in Figure 5).

An important limitation for this mechanism involves that significant decompression melting requires SSC to occur beneath thin lithosphere of moderate or young ages (Ballmer et al., 2007; Buck and Parmeuter, 1986). Accordingly, SSC would likely have to stir up fertile or excessively hot materials to feed significant volcanism (Ballmer et al., 2010). Alternatively, SSC may be advanced toward younger lithospheric ages near fracture zones (Dumoulin et al., 2008; Huang et al., 2003).

Adjacent to larger steps in lithospheric thickness, convection is expected to be triggered almost independently of the thickness of the thermal boundary layer. This form of ‘edge-driven’ thermal convection can spawn decompression melting along rifts, as well as parallel to the edges of thick continental lithosphere (Figure 22) with opportunities for volcanism (Buck, 1986; Haberbol et al., 2012; King, 2007; King and Anderson, 1998; King and Ritsema, 2000; Misnenaard and Cadoux, 2012; Till et al., 2010; van Wijk et al., 2010). Recently, Milelli et al. (2012) showed in analogue experiments that convective instability may also form perpendicular to continental margins, a configuration that could provide an explanation for mantle melting beneath the Cameroon volcanic line (cf. Figure 6). Edge-driven convection along rifted margins, alone or in combination with elevated mantle temperatures,
has been even identified as a possible mechanism for flood basalt volcanism (Korenaga, 2004; Mutter and Zehnder, 1988; Nielsen and Hopper, 2004; Nielsen et al., 2002; Sleep, 2007).

Spatially and temporally more restricted convective processes such as the return flow associated with local foundering and delamination of the lower continental lithosphere have also been proposed to account for intraplate volcanism (e.g., in western North America) and flood volcanism without elevated mantle temperatures (Crow et al., 2011; Elkins-Tanton, 2007; Gogus and Pysklywec, 2008a,b; Hales et al., 2005; Houseman et al., 1981; Le Pourhiet et al., 2006; Levander et al., 2011; Paczowski et al., 2012; Reid et al., 2012; van Wijk et al., 2001; West et al., 2009).

Buoyant decompression melting

A separate form of convective instability can occur in response to melting itself. Partial melting reduces the density of the solid residue (Jordan, 1979; Oxburgh and Parmentier, 1977; Schutt and Lesher, 2006) and generates intergranular melt. Both factors can reduce the bulk density of the partially molten mantle and drive ‘buoyant decompression melting’ (Figure 23). Buoyant decompression melting has been shown to be relevant near MORs, for example, in supporting off-axis melting anomalies (e.g., Jha et al., 1994; Scott and Stevenson, 1989; Sparks et al., 1993; VanDecar et al., 1995). It has also been proposed to be relevant for intraplate volcanism, on both continental and oceanic plates (Hernlund et al., 2008a,b; Raddick et al., 2002; Tackley and Stevenson, 1993). The key ingredients for buoyant decompression melting to occur well away from MORs are an asthenosphere close to or at its solidus and a perturbation that locally initiates melting. Such a perturbation could be caused by extension of the overlying lithosphere (Hernlund et al., 2008b), the flow of mantle across a step in lithospheric thickness (Raddick et al., 2002), or some form of passive mantle...
Numerical model predictions for two different simulations of lateral density variations are what drive upwelling. Melting is therefore limited by the accumulated layer low-density and high-solidus residue.

Figure 22 Numerical model predictions for two different simulations of edge-driven convection along steps in lithospheric thickness. Colors represent temperatures, and arrows mantle flow velocity vectors. Mantle flow in (a) has a strong component of horizontal shear flow that contributes to drive upwelling (cf. Figure 24(a)). White line highlights the mantle domain, in which the solidus temperature is exceeded and melting may occur. Upwelling in (b) is predominantly passively driven by delamination near the sublithospheric step. In both (a) and (b), upwelling occurs ~100 km away from the step in lithospheric thickness. (a) Reproduced from Till CB, Elkins-Tanton LT, and Fischer KM (2010) A mechanism for low-extent melts at the lithosphere-asthenosphere boundary. Geochemistry, Geophysics, Geosystems 11. (b) Reproduced from van Wijk JW, Baldridge WS, van Hunen J, et al. (2010) Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology 38: 611–614.

Figure 23 From Raddick et al. (2002). Predictions of 2-D numerical models that simulate buoyant decompression melting for 3 time steps (different rows as labeled). Left column shows fractional melting rate (red = 0.0021/My, blue = 0), middle column shows melt fraction retained in the mantle f (red = 0.02), and right column shows depletion of the residue F (red = 0.108). Density decreases as linear functions of both f and F, and lateral density variations are what drive upwelling. Melting is therefore limited by the accumulated layer low-density and high-solidus residue.

Shear-driven upwelling due to the presence of a low-viscosity anomaly (situation (2); Figure 24(b)) is an attractive scenario for intraplate volcanism, since such anomalies are likely to be damp or warm and therefore close to the solidus. Regions of anomalously low seismic-wave speeds in the upper mantle (Laske et al., 2011; Schmandt and Humphreys, 2010; Weeraratne et al., 2007) provide evidence for low-viscosity pockets due to excess temperature, partial melt, elevated water content, or a combination thereof. Shear-driven upwelling at the edges of such pockets can support moderate magmatism (Figure 24(c)). Associated age progressions are predicted to be similar to those of (rapidly) drifting hot spots but with more variability (Ballmer et al., 2013a; Bianco et al., 2011a), similar to that evident along, for example, the Pukapuka ridge (cf. Figure 4(c)). Global mantle convection models predict flow. Significant retention of buoyant melts and low mantle viscosities tend to promote this convective instability. Since higher mantle water contents act not only to reduce the viscosity of the solid mantle but also to mobilize the equilibrium liquid, its effects on buoyant decompression melting remain unclear and thus motivate future studies.

133.3.3.7 Shear-driven upwelling and viscous fingering

All processes for decompression melting described so far require an inversion in density stratification (e.g., cool mantle overlying hot mantle) as the (potential) energy source of upwelling. Alternatively, vertical flow can result from horizontal shearing of the asthenosphere independent of mantle density variations (Bianco et al., 2011a; Conrad et al., 2010). Asthenospheric shearing is commonly imposed by the motion of the tectonic plates relative to that of the mesosphere and can drive upwelling in two different situations. First, (1) horizontal shear flow is predicted to be guided upward (or downward) at a step in lithospheric thickness (Figure 24(a)). Second, (2) redistribution of horizontal shear flow due to strong viscosity heterogeneity is predicted to be accommodated by local upwellings and downwellings (Figure 24(b)); vertical motion arises as shear flow is guided around a high-viscosity anomaly or focused within a low-viscosity anomaly.

Regions of anomalously low seismic-wave speeds in the upper mantle (Laske et al., 2011; Schmandt and Humphreys, 2010; Weeraratne et al., 2007) provide evidence for low-viscosity pockets due to excess temperature, partial melt, elevated water content, or a combination thereof. Shear-driven upwelling at the edges of such pockets can support moderate magmatism (Figure 24(c)). Associated age progressions are predicted to be similar to those of (rapidly) drifting hot spots but with more variability (Ballmer et al., 2013a; Bianco et al., 2011a), similar to that evident along, for example, the Pukapuka ridge (cf. Figure 4(c)). Global mantle convection models predict...
that intraplate regions with excessive intraplate volcanic activity, such as the eastern Pacific (Figure 4), western North America, and northeastern Australia (Figure 7), are indeed underlain by a strongly sheared asthenosphere (Conrad et al., 2011).

Identifying shear-driven upwelling as the dominant mechanism for decompression melting in a given volcanic province, however, requires careful analysis of the tectonic setting. In both situations (1) and (2), in which shear-driven upwelling is predicted to occur (near steps in lithospheric thickness and low-viscosity anomalies; Figure 24(a) and 24(b)), alternative mechanisms for decompression melting, such as buoyant decompression melting and (edge-driven) small-scale convection, are also expected to be relevant (e.g., Huang et al., 2003). Increasing asthenospheric background viscosities and/or the rate of asthenospheric shearing promotes shear-driven upwelling relative to convective instabilities.

Future efforts should be specifically directed at testing the general significance of shear-driven upwelling along the margins of low-viscosity anomalies (situation 2; Figure 24(b)). Geophysical studies are needed to assess whether anomalies imaged by tomography can provide sufficient viscosity contrasts (i.e., 1–2 orders of magnitude at a given rate of asthenospheric shearing). Whereas deformation of the pocket in the large-scale flow field has been shown to be less of an issue (cf. Ballmer et al., 2013a; Bianco et al., 2011a), the persistence of magmatism should be limited by the progressive consumption of volatiles or fertile rocks in the pocket. Accordingly, it is imperative to address the origin of the pocket together with that of melting.

A mechanism that can spawn viscosity heterogeneity in the asthenosphere and that may even lead to excess volcanism by itself has been suggested to be operant in the South Pacific. When two fluids are contained in a thin layer and one fluid displaces a more viscous fluid (driven by a pressure gradient), the boundary between the two becomes unstable and undulates with increasing amplitude (Saffman and Taylor, 1958). Such viscous fingering instabilities may occur in nature, where warm and fertile material diffusely rising beneath the South Pacific Superplume is injected into the ambient asthenosphere. This process may account for the apparent 'Haxby' gravity lineations (Goodwillie, 1995; Harmon et al., 2011; Haxby and Weisell, 1986; Sandwell et al., 1995; Weeraratne et al., 2007) and associated volcanism (e.g., along the Pukapuka ridge) as warm and buoyant fingers travel along the base of the oceanic lithosphere (Sleep, 2008; Weeraratne et al., 2007; Figure 4). Whereas related rates of decompression melting should be rather small beneath the quasiflat lithospheres of fast or old plates, a combination with shear-driven upwelling at the tips of the fingers is expected, as both mechanisms are driven by similar physics.

Similarly, material injected into the asthenosphere by mantle plumes (Phipps Morgan et al., 1995b; Yamamoto et al., 2007) may feed warm low-viscosity channels. Geodynamic models predict that the pressure low expected beneath MORs can assist in drawing material from nearby plumes toward ridges in relatively narrow channels (e.g., Sleep, 1996; Yale and Phipps Morgan, 1998), as was originally hypothesized by Morgan (1978). Channeling of plume material is consistent with hot spot-flavored geochemical fingerprints of basalts formed near or at MORs (Geldmacher et al., 2013; Haase et al., 1996; Niu et al., 1999; Vlastelic and Dosso, 2005), as well as between the Canary hot spot and a subduction zone near Gibraltar (see Duggen et al. (2009) and Figure 25), respectively.

Figure 24 Adapted from (a–b) http://www.mantleplumes.org/ShearDrivenUpwelling.html; and reproduced from (c) Bianco TA, Conrad CP, and Smith EI (2011a) Time dependence of intraplate volcanism caused by shear-driven upwelling of low-viscosity regions within the asthenosphere. *Journal of Geophysical Research* 116. (a–b) Cartoon showing two end-member scenarios, in which shear-driven upwelling is expected to occur (see text). Horizontal shear flow in the asthenosphere may be redirected into vertical flow when entering a cavity (a) or a pocket of anomalously low viscosity (b). (c) Snapshot of a numerical model (model time 1 My) quantifying the effects of shear-driven upwelling for the scenario shown in (b). Both damp and warm pockets locally reduce the viscosity (shading and contours) to induce upwelling (not shown) and decompression melting (colors).
Finally, vertical motion of the whole lithosphere and surface of the Earth can cause mantle upwelling and melting. For example, volcanism off southern Greenland (Uenzelmann-Neben et al., 2012) and peaks in volcanic activity in Iceland (Slater et al., 2001, 2008) have been attributed to thermal rejuvenation. Another opportunity for mantle decompression is offered by the growth of large volcanoes (created by another mechanism such as a plume), which not only causes the underlying lithosphere to sink downward but also leads to flexure-induced upwarping in a donut- or arch-shaped zone around the volcano. The small amounts of decompression associated with this flexural uplift are only expected to give rise to magmatism as long as an appreciable portion of the asthenosphere is already near or at its solidus (Bianco et al., 2005). Flexural decompression may thus explain secondary (or rejuvenated-stage) volcanism near the Hawaiian and other major hot spots (e.g., Bianco et al., 2005; Garcia et al., 2010). Upward flexural bulging also occurs on the seaward side of subduction zones and may sustain the activity of ‘petit-spot’ volcanism off the Japan Trench (Hirano et al., 2001, 2008), as well as contribute to extensive rejuvenated volcanism at the Samoan hot spot (Konter and Jackson, 2012).

133.3.4 Swells

133.3.4.1 Swell support mechanisms

The origin of hot spot swells was initially attributed to heat anomalies in the mantle that effectively rejuventate or thin the overriding lithosphere (Crough, 1978; Detrick and Crough, 1978; Crough, 1983). The evidence for such thermal rejuvenation is somewhat ambiguous, as heat flow data fail to show evidence for heated or thinned lithosphere (DeLaughter et al., 2005; Stein and Stein, 1993, 2003). However, it is likely that such evidence would be obscured by shallow hydrothermal circulation (Harris and McNutt, 2007; McNutt, 2002). Seismic studies, in turn, are able to provide evidence for lithospheric thickness variations at some hot spots. For example, Rayleigh-wave tomography reveals strong variations in lithospheric thickness at the Galápagos hot spot (Villagomez et al., 2007). At the Hawaiian hot spot, S-wave receiver functions indicate substantial lithospheric thinning of 50–60 km from the hot spot toward the NW (Li et al., 2004), whereas recent evidence from regional surface-wave tomography as well as SS precursors suggests only modest thinning (by about 10–20 km) (Laske et al., 2011; Schmerr, 2012).

Perhaps, the more prevalent view at this point is that hot spot swells are primarily dynamically supported by the hot and buoyant plume layer that is predicted to pond beneath the lithospheric plate (Cardo et al., 2012; Caerpes et al., 2000; Olson, 1990; Parsons and Daly, 1983; Ribe and Christensen, 1994). For example, dynamic support by anomalously hot mantle (as evident from seismic tomography) can explain excess topography associated with the Yellowstone hot spot (Becker et al., 2013). In addition to the thermal buoyancy of a plume, compositional buoyancy associated with melt extraction may also be important in creating hot spot swells (Phipps Morgan et al., 1995a).

Evidence for such compositional contributions to swell support has been revealed at various hot spots. Exposures of harzburgite along the rifted Marion and Azores Rises, for
instance, indicate compensation by buoyant melt residuum (Zhou and Dick, 2013). Uplift histories and receiver function measurements argue for a combination of buoyant melt residuum and magmatic underplating to support the ~2 km high Cape Verde swell (Lodge and Helffrich, 2006; Ramalho et al., 2010). For the Marquesas swell, geoid observations and seismic reflections also suggest a role for magmatic underplating (Caress et al., 1995; McNutt and Bonneville, 2000).

A viable tool to quantify the compensation depth of the swell and thus to distinguish between crustal (e.g., magmatic underplating), lithospheric (e.g., lithospheric thinning), and mantle (e.g., dynamic support and buoyant melt residuum) contributions is the analysis of the geoid-to-topography ratio (Marks and Sandwell, 1991; Parsons and Daly, 1983; Ribe and Christensen, 1994). For example, once the local effects of volcanic loading are removed (cf. Cserépes et al., 2001), wavelet analysis of the geoid-to-topography ratio reveals that the Hawaiian swell is predominantly compensated at sublithospheric depths (Cadio et al., 2012). The best candidate for such a deep compensation is dynamic support by a mantle plume.

133.3.4.2 Plume models and hot spot swells

The dynamic support hypothesis for the generation of hotspot swells has been quantitatively tested by geodynamic models. Three-dimensional plume models, for example, have successfully predicted the shape and uplift history of the Hawaiian swell (Asaadi et al., 2011; Cadio et al., 2012; Ribe and Christensen, 1994; van Hunen and Zhong, 2003; Zhong and Watts, 2002): they predict that the plume pushes up the plate by ponding like a ‘pancake’ of hot material (cf. red layer in **Figure 26(a)**). They also predict the eventual waning of swell topography to occur due to spreading and thinning as well as cooling of the plume pancake. Consideration of stress-dependent rheology appears to be critical to match the plan-view shape of the swell to the NW of Hawaii (Asaadi et al., 2011). The additional effects of small-scale convection in the pancake removing the base (about 15–20 km) of the lithosphere (Agrusta et al., 2013; Ballmer et al., 2011; Moore et al., 1998) can account for the systematic decrease of the geoid-to-topography ratio that is evident along the Hawaiian swell (Cadio et al., 2012). These predictions provide a straightforward explanation for the decay of hot spot swells along the Hawaiian and Louisville chains as well as the lack of swells around very old portions of other volcano chains.

133.3.5 Large Igneous Provinces

The rapid and massive magmatic production of LIPs, combined with their strong connection to continental breakup and present-day hot spot volcanism, provides major challenges for our understanding of planetary volcanism. The wide range of eruptive volumes (**Figure 10**) and differences in tectonic style (Section 133.2.3) appear to suggest that multiple mechanisms account for flood basalt volcanism.

The observation of large plume heads followed by thin tails in fluid dynamic experiments has traditionally been used to explain LIP–hot spot connections (Richards et al., 1989) and remains, because of its simplicity and plausibility, an attractive base model for the formation of LIPs. Its strengths include that...
material is predicted to erupt first), and (4) it implies contemporaneous uplift and extension as is observed in the geologic record of many LIPs (see Section 133.2.3). The main weaknesses of this model involve that the strong correlation of LIPs and continental breakup and the lack of uplift during OJP formation (d’Acremont et al., 2003) are not explained.

There are a number of alternatives that can address some of the weaknesses of the plume model that include assumptions that LIPs may be generated by processes occurring near the surface of the Earth or by extraterrestrial processes. While the plume model has received significant attention and quantitative hypothesis testing, the majority of the alternatives are currently still in rather qualitative form.

The first alternative involves that the accumulation of heat beneath the insulating continent or supercontinent during tectonic quiescence provides warmer than normal mantle and significantly larger eruptive volumes during continent breakup (Anderson, 1994b; Coltice et al., 2007; Grigne et al., 2007; Coltice et al., 2009). While this hypothesis addresses the correlation between LIPs and continental breakup, it does not clarify why flood volcanism does not generally occur along all rifted margins. Also, the connection to a long-lived hot spot trail remains unpredicted. Nevertheless, the correlation between the LIPs and the continental breakup is intriguing, and it is quite likely that regional variations in the composition and strength of the lithosphere have an important control on the location of magma eruption (King and Anderson, 1995, 1998).

A second alternative is that compositional, rather than thermal, effects cause the generation of excessive melt by, for example, the presence of eclogite or volatiles in the source rock (e.g., Anderson, 1994a, 2005; Cordery et al., 1997; Korenaga, 2004, 2005; Sobolev et al., 2011). Its strengths include that the lack of uplift at some LIPs, including the OJP, could be explained for the presence of dense eclogite. The main weakness of this alternative is that the primary source of melting is that eclogite is dense and requires some mechanism to stay near or be brought back to the surface. This would be more likely in the case that emplacement of the OJP involved both a thermal origin and a compositional origin. For purely compositional effects, the common LIP–hot spot connection (requiring continuous upwelling of more fertile mantle) further remains unexplained. An interesting alternative to a compositional cause for the lack of significant uplift at some LIPs, including the OJP, is the potential for lower crustal flow during magma emplacement (Flament et al., 2011).

The enigmatic nature of the OJP has also led to the suggestion that meteorite impacts could have been responsible for LIP emplacement (Ingle and Coffin, 2004; Rogers, 1982). A possible strength of this hypothesis is that the decompression of mantle following impact may generate extensive melting (Jones et al., 2002a). A weakness is that the strong connections with continental breakup and hot spot volcanism are unexpected. Furthermore, direct evidence for meteorite impact during LIP emplacement is rare. One of the few convincing observations is the Ir anomaly embedded in the Deccan Traps, but this impact signal postdates the start of volcanism and is most likely related to the Chicxulub impact located on the other side of the planet. There are also doubts whether the dynamics of meteorite impact can indeed cause sufficient melting, unless the mantle is already anomalously hot or fusible (Ivanov and Melosh, 2003). Another issue is that it has been shown to be statistically unlikely that the majority of Phanerzoic LIPs originated as impacts (Elkins-Tanton and Hager, 2005; Ivanov and Melosh, 2003).

Finally, delamination of continental lithosphere and secondary convection at rifted margins have been suggested as alternatives for LIP formation (Anderson, 2005; Hales et al., 2005; van Wijk et al., 2001). While these processes are likely to have occurred regularly in the past, the extent to which they can provide a consistent explanation for the rapid and massive outpourings of flood basalts remains to be quantitatively evaluated.

133.3.6 The Origin of OIB Geochemical Signatures

133.3.6.1 Tracing mantle heterogeneity by isotopic signatures of OIB

The geochemical signatures of ocean island basalts (OIBs) may provide key constraints on the composition of mantle reservoirs. Highlighting the differences between OIB and MORB, we have focused on 87Sr/86Sr, 206Pb/204Pb, and 3He/4He (Table 1). These ratios are key to tracing five different geochemical flavors in the OIB dataset, which have been associated with five different mantle reservoirs, each with distinct time-averaged chemical histories (e.g., Hanan and Graham, 1996; Hart et al., 1992; Zindler and Hart, 1986). Lavas with low 3He/4He and minimal 87Sr/86Sr and 206Pb/204Pb are derived from depleted mantle material (DM), referring to depletion in incompatible elements. Enriched (EM1 or EM2, i.e., high 87Sr/86Sr and HIMU (i.e., high 206Pb/204Pb) mantle sources are instead thought to be derived from subducted material – the former from ancient oceanic sediments or metamorphosed lithosphere and the latter from oceanic crust – that has evolved in the mantle for >1 Gyr and subsequently been recycled (e.g., Cohen and O’Nions, 1982; Hanuš et al., 2011; Hart et al., 1992; Hofmann, 1997; Hofmann and White, 1982; Sobolev et al., 2008; Zindler and Hart, 1986).

High 3He/4He, moderately low 87Sr/86Sr, and intermediate-to-high 206Pb/204Pb compositions mark the fifth geochemical end-member, which we will here refer to as FOZO (Hart et al., 1992). Its origin is perhaps least well understood. The ‘standard’ hypothesis implies that the high 3He/4He fingerprints primordial and relatively undegassed mantle material (Hart et al., 1992; see also Connermam and Mukhopadhyay, 2009). In a variant of this standard hypothesis, FOZO is not just a leftover of quasihomogenous primordial mantle, but has been enriched through a differentiation process occurring early in the Earth’s history (Coltice et al., 2011; Davies, 2010; Lee et al., 2010). The standard hypothesis, however, has recently altogether been challenged by suggestions that FOZO, in fact, has been depleted in highly incompatible elements during partial melting processes. In this scenario, helium degasses only incompletely during partial melting (Clay et al., 2005), and FOZO’s high 3He/4He ratio reflects a low 4He concentration as a result of low U and Th content (with U and Th being more incompatible than helium), which may occur in the most ancient mantle (Coltice and Ricard, 1999; Melibon et al., 2005; Parman et al., 2005; Stuart et al., 2003). However, any alternatives to the standard hypothesis do not satisfy constraints from other noble-gas systems such as 129Xe/130Xe and 28Ne/22Ne, which require that the relatively undegassed reservoir (i.e., FOZO)
formed within the first 100 million years of the Earth’s history and since then has not been homogenized with the other mantle reservoirs (Mukhopadhyay, 2012; Peto et al., 2013).

The key observation is that MORB appears to be characteristically similar to DM and to be relatively less influenced by subducted materials and FOZO, whereas hot spot lavas and many other intraplate basalts appear to be influenced substantially by all five components (albeit to different degrees for different volcano groups; cf. Figure 11). The dominant explanation for this observation is that the pressure/temperature dependence of mantle viscosity and mineralogy, as well as density differences between the different mantle materials, promotes large-scale (partial) layering in mantle geochemistry. DM is likely to be compositionally light and may tend to concentrate in the upper mantle where it is sampled by MOR magmatism (cf. Nakagawa et al., 2010) Mantle plumes, which feed hot spots, rise from deeper levels in the mantle and hence may incorporate the other materials in addition to DM. For example, geochemical reservoirs associated with subducted slabs that evolved in the mantle for >1 Gyr (EM, HIMU) or even the more ancient FOZO are likely to be stored in the lowermost mantle (e.g., Brandenburg et al., 2008; Christensen and Hofmann, 1994; Coltice and Ricard, 1999).

133.3.6.2 Constraining source materials from major-element characteristics of OIB

While the various mantle reservoirs are well traced by their isotopic signatures in OIB, understanding their major-element signatures is needed to define their physical properties as well as melting behaviors. As a first step toward this goal, Jackson and Dasgupta (2008) demonstrated that major-element concentrations of OIB are correlated with isotopic ratios using a global dataset. At a given MgO, HIMU-flavored volcano chains are systematically lower in SiO2 and Al2O3 and higher in TiO2, Na2O, FeO, and CaO than EM-flavored volcano chains, and both are distinct from MORB (Figure 27). Tholeiitic basalts from Hawaii, the Galápagos, and Iceland display major-element compositions intermediate to these two OIB subgroups and MORB. Thus, mantle reservoirs can in principle be distinguished not only by OIB isotopic signatures but also by OIB major-element concentrations.

To understand the composition of mantle reservoirs and OIB source lithologies, petrologists have compared experimental melts with typical alkalic OIB signatures. Although low-degree melting of ‘common’ mantle peridotites is able to produce alkalic melts, experimental evidence is so far lacking that such melts can match the specific major-element signature of OIB (Davis et al., 2011; Hirose and Kushiro, 1993; Mueller et al., 1998; Takahashi and Kushiro, 1983) Addition of CO2-rich liquid to peridotites would be required to better match these signatures (blue triangles in Figure 12; Dasgupta et al., 2007). The characteristic HIMU isotopic fingerprint of most alkalic OIB further calls for a subduction-related origin for the CO2-rich liquid (Jackson and Dasgupta, 2008).

Alternative materials for the OIB source are subduction-related lithologies such as basaltic oceanic crust that has transformed to eclogite and evolved in the mantle. While direct eclogite melting produces liquids that are much too high in SiO2, two-stage eclogite melting can reconcile the major-element characteristics of OIB. In the first step, highly silicic
Hornblendite veins are another viable source lithology for OIB, but these veins must be properly identified and sampled to confirm their presence (Farnetani and Hofmann, 2009; Huang et al., 2011; Niu et al., 1996; Phipps Morgan, 1999; Reiners, 2002; Saal et al., 1998; Salters and Dick, 2002; Stracke et al., 2003). As different materials melt over different depth ranges for a given mantle temperature (cf. Figure 26(a)), spatial differences in mantle temperature, lithospheric thickness, and the rate of mantle flow through the melting zone can influence the proportions, to which the materials are represented in the lavas. For example, MOR melting is expected to be dominated by the peridotitic DM matrix, a refractory yet the most abundant component, because the thin lithosphere at and near MORs allows for the greatest amount of decompression. Mainly due to the effects of a thicker lithosphere, hot spot magmatism away from MORs is instead predicted to be more heavily influenced by the less abundant but more fertile components, something that may reconcile the difference between OIB and MORB (Ito and Mahoney, 2005a, 2006). In such a framework, mechanisms for non-hot spot volcanism (see Sections 133.3.3.5–133.3.3.8) occurring well away from MORs would similarly generate OIB-like liquids (e.g., Ballmer et al., 2010). First-order global trends indeed display significant correlations of major and trace-element compositions of OIB with the thickness of the lithosphere at the time of volcanism (Dasgupta et al., 2010; Humphreys and Niu, 2009; Ito and Mahoney, 2005b; Keller et al., 2004).

At the regional scale of an individual Hawaiian island group, lateral gradients in temperature and mantle upwelling rate can also give rise to systematic geographic variations in lava chemistry, independent of any lateral compositional zonation of the mantle source (Bianco et al., 2008, 2011b, 2013; Ballmer et al., 2010, 2011; Shorttle et al., 2010; Shorttle and Maclennan, 2011; Ballmer et al., 2013a). For example, any lateral thermal gradient or plume dynamics of the rising plume at the surface (Castillo, 1988; Dasgupta et al., 2010; Humphreys and Niu, 2009; Ito and Mahoney, 2005b; Keller et al., 2004).

133.3.6.3 The origin of geographic variations in OIB geochemistry

The variability of hotspot geochemical signatures has typically been ascribed to mantle source heterogeneity. In the framework of plume theory, geographic patterns in OIB geochemistry, such as the large variability of isotopic signatures among South Pacific and Darwin Rise OIB (Koppers et al., 2003; Staudigel et al., 1991) or the distinction between the ‘Loa’ and the ‘Kea’ trends of Hawaiian volcanism (Abouchami et al., 2005), are thought to reflect heterogeneity in the deep mantle (Farnetani and Hofmann, 2009; Huang et al., 2011; Konter et al., 2008; Koppers and Watt, 2010; Weis et al., 2011). For example, deep mantle heterogeneity is expected to be directly reflected as lateral zonation of the plume conduit (Farnetani and Hofmann, 2009; 2010; Farnetani et al., 2012; Figure 26(b)). However, as major-element variations associated with such compositional zonation can severely affect the dynamics of the rising plume (see Section 133.3.3.3), mapping the deep mantle from geographic patterns of lava compositions is not straightforward (cf. Ballmer et al., in press). Moreover, plume pulsations in general and those induced by solitary waves (e.g., Whitehead and Helfrich, 1988) in particular may tend to homogenize material within the hottest parts of the plume.

Another important aspect to consider is the melting behavior of a heterogeneous source (Phipps Morgan, 1999). Geochemical evidence indicates that such source heterogeneity is present over a range of spatial scales, including scales much smaller than the size of upper mantle melting zones (e.g., Ellam and Stuart, 2004; Ingle et al., 2010; Jackson et al., 2012; Kogiso et al., 2004; Koornneef et al., 2012; Marske et al., 2007; Niu et al., 1996; Phipps Morgan, 1999; Reiners, 2002; Saal et al., 1998; Salters and Dick, 2002; Stracke et al., 2003). As different materials melt over different depth ranges for a given mantle temperature (cf. Figure 26(a)), spatial differences in mantle temperature, lithospheric thickness, and the rate of mantle flow through the melting zone can influence the proportions, to which the materials are represented in the lavas. For example, MOR melting is expected to be dominated by the peridotitic DM matrix, a refractory yet the most abundant component, because the thin lithosphere at and near MORs allows for the greatest amount of decompression. Mainly due to the effects of a thicker lithosphere, hot spot magmatism away from MORs is instead predicted to be more heavily influenced by the less abundant but more fertile components, something that may reconcile the difference between OIB and MORB (Ito and Mahoney, 2005a, 2006). In such a framework, mechanisms for non-hot spot volcanism (see Sections 133.3.3.5–133.3.3.8) occurring well away from MORs would similarly generate OIB-like liquids (e.g., Ballmer et al., 2010). First-order global trends indeed display significant correlations of major and trace-element compositions of OIB with the thickness of the lithosphere at the time of volcanism (Dasgupta et al., 2010; Humphreys and Niu, 2009; Ito and Mahoney, 2005b; Keller et al., 2004).

At the regional scale of an individual Hawaiian island group, lateral gradients in temperature and mantle upwelling rate can also give rise to systematic geographic variations in lava chemistry, independent of any lateral compositional zonation of the mantle source (Bianco et al., 2008, 2011b, 2013; Ballmer et al., 2010, 2011; Shorttle et al., 2010; Shorttle and Maclennan, 2011; Ballmer et al., 2013a). For example, any lateral thermal gradient or plume dynamics of the rising plume at the surface (Castillo, 1988; Dasgupta et al., 2010; Humphreys and Niu, 2009; Ito and Mahoney, 2005b; Keller et al., 2004).

133.3.7 Plumes in the Context of Mantle Convection and Plate Tectonics

Our discussion of plumes and alternative forms of mantle upwelling is set amid the background of larger-scale processes of plate tectonics and mantle convection. The cooling of the oceanic lithosphere ultimately drives mantle convection and plate motion. While the volume of mantle that participates in the plate tectonic cycle is still debated, a consensus model has emerged of moderated whole mantle convection, with significant material exchange across the 660 km discontinuity. Plumes naturally develop from the hot thermal boundary layer at the CMB and are displaced when rising through the convecting mantle (Husson and Conrad, 2012; Olson and Singer, 1985; Richards and Griffiths, 1989; Steinberger, 2000; Whitehead and Luther, 1975).

133.3.7.1 Connection of hot spots with thermochemical structures in the deep mantle

An important line of evidence for mantle plume theory is the connection of seismic structures in the deep mantle with occurrences of hot spot volcanism at the surface (Castillo, 1988; Williams et al., 1998). The locations of active hot spots, as well as reconstructed locations of extinct hot spots and LIPs,
have been shown to be spatially related to the margins of LLSVPs in the lowermost mantle (Burke and Torsvik, 2004; Torvik et al., 2006, 2010a; Figures 28(a) and 29(b)). This relation holds if the advection of the putative underlying plumes by ambient mantle flow is accounted for (Boschi et al., 2007). The LLSVPs are hot domes or ridges (Figure 28(b)) of chemically dense materials (one located beneath Africa, another beneath the South Pacific, with the western South Pacific another hot spot area) identified by seismic tomography. In cross section, colors denote increased seismic P-wave velocities (Garnero and McNamara, 2008). Figure 29(b) shows modeled chemically dense material (orange isosurfaces) accumulates as piles at the base of the mantle, a possible explanation for the LLSVPs. In cross section, colors denote temperature from red (hot) to blue (cold).

The origin of these large chemically distinct structures is related to the accretion and chemical differentiation of our planet. For example, they may represent primordial material that is unmodified by subsequent melting, or they may be the residuum of a basal magma ocean as formed very early in the Earth’s history (Deschamps et al., 2012; Kellogg et al., 1999; Labrosse et al., 2007; Mukhopadhyay, 2012). Along these lines, the LLSVPs have been identified as good candidates to host the FOZO reservoir, a common member in many hot spot lavas (see Section 133.3.6.1). As an alternative, or perhaps in addition to these ancient origins for the LLSVPs, subducted crust composed of dense eclogitic material is expected to settle and accumulate at the base of the mantle (Brandenburg and van Keken, 2007; Brandenburg et al., 2008; Nakagawa et al., 2010). Such a replenishment of the LLSVPs would further strengthen the connection of mantle plumes with LLSVPs, as subduction-related isotopic geochemical signatures are common in OIB (e.g., Hofmann, 1997). Both numerical and analogue models indicate that mantle plumes can indeed be anchored by the stable topography provided by high-density layers (such as the LLSVPs) (Davaille et al., 2002; Jellinek and Manga, 2002; McNamara and Zhong, 2004).

Global mantle convection models (e.g., McNamara and Zhong, 2005) indicate that any dense thermochemical material would be swept away from subduction zones and toward regions of diffuse upwelling. Using a realistic subduction history and assuming a compositional density difference of ~2%, the dense layer is shaped into structures similar to the imaged LLSVPs (e.g., Steinberger and Torsvik, 2012; Figure 29). The predicted diffuse upwellings forming above the LLSVPs may account for the broad dynamic uplift of the overlying lithosphere (i.e., the South Pacific and African Superswells (Adam et al., 2010; Cadio et al., 2011; Hillier and Watts, 2004; Nyblade and Robinson, 1994).

The details of the organization of such upwelling flow, however, remain to be understood (see also Chapter 136). Many models predict upward flow to focus near the crests of the thermochemical structures (Davaille, 1999; McNamara et al., 2010). Such a flow pattern could only be consistent with the spatial patterns of hot spot volcanism if the LLSVPs represented multiple ridges, swept together by ambient mantle flow to form complex structures (Figure 28(b)). However, other models show that plume-like upwelling can also occur from the margins of thermochemical structures. According to Steinberger and Torsvik (2012), large-scale mantle flow tends to sweep the thermal boundary layer toward the margins of the LLSVPs to trigger plume ascent. Plume ascent from the margins is further promoted by a lower compressibility in LLSVPs than in ambient mantle materials, which causes LLSVPs to form dome-like structures with steep sides, instead of ridgelike features with shallower sloping sides (Tan and Gurnis, 2007; Tan et al., 2011). Seismic constraints are insufficient to distinguish between dome-like and ridgelike geometries for the LLSVPs (cf. Bull et al., 2009; Lassak et al., 2007; Lay and Garnero, 2011).

133.3.7.2 Interaction of plumes with plate tectonic processes

Not only plate tectonic processes such as slab subduction do influence plume locations by piling up thermochemical material at the base of the mantle (Figures 28 and 29), but also they can directly interact with individual rising plumes. Recent analogue models (Druken, 2012; Kincaid et al., 2013) show that the regional flow field imposed by a sinking slab (cf. Long and Silver, 2009) can distort plume ascent, thereby strongly altering their surface expressions (Figure 30). For example, plume flow is predicted to be guided around a slab edge, as is evident, for example, by Samoan-plume geochemical signatures in the juxtaposed northern Lau back-arc basin (e.g., Jackson et al., 2010; Lupton et al., 2012; Lytle et al., 2012). Such a massive disruption of plume ascent could perhaps also give an explanation for the occurrence of extensive secondary volcanism on the Samoan Islands (cf. Hart et al., 2004; Konter and Jackson, 2012; Koppers et al., 2011b; Natland, 1980).
Slab–plume interaction is also likely to occur in the western United States. Although this region is well illuminated seismically (see Section 133.2.5.2), no consensus model has emerged for the origin of the Columbia River basalt (CRB) and YSRP hot spot track. The seismic images (Figure 17) have been interpreted as revealing warm mantle exploiting a slab gap in the remnant Farallon slab and rising through it when the gap first formed, approximately coinciding with CRB emplacement (James et al., 2011). This interpretation is supported by geodynamic modeling (Liu and Stegman, 2011, 2012). However, it remains controversial whether the mantle upwelling just arises from return flow through the slab gap driven by a local gradient in dynamic pressure (James et al., 2011; Liu and Stegman, 2011, 2012) or is rather a mantle plume driven by excess buoyancy of hot material (Darold and Humphreys, 2013; Obrebski et al., 2010; Sigloch, 2011). Dismissing a plume origin altogether appears to be at odds with observations of a deep-rooted low-velocity anomaly beneath Yellowstone, as well as with the coinciding upwarping of the 660 km discontinuity (Schmandt et al., 2012; Figure 17(b)).
The complex seismic structure of the anomaly, which continues to challenge any interpretations in the classical framework of plume theory, may be explained by plume bending around slab fragments and/or plume pulsations rising out of the lower mantle (Schmandt et al., 2012). Moreover, Kincaid et al. (2013) argued that some plume material is systematically entrained into the mantle wedge to explain age-progressive volcanism along the HLPs (Figure 8).

Another discussion involves whether segmentation of the Farallon slab occurred independently of (Sigloch, 2011) or was assisted by the putative Yellowstone plume (Obrebski et al., 2010). For example, the arrival of the plume head may have perturbed the slab enough to cause part of the slab to become convectively unstable, drip downward (i.e., the Farallon ‘curtain’, FC in Figure 17), and create the gap through which the plume rose (Darold and Humphreys, 2013). In this case, the segmentation and plume interaction would have been linked.
Slabs are not only able to guide plume ascent but may also trigger mantle upwellings. Small, hydrous slabs have been proposed to rise from the top of the subducted slab to support arc volcanism (Gerya and Yuen, 2003), as well as to hydrate the transition zone (Richard and Bercovici, 2009). Also, slabs stagnating at the base of the upper mantle may sweep material to cause plume-like upwelling and volcanism in the back-arc (Facenna et al., 2010). In turn, plume heads are able to lubricate or even to actively push plates (Cande and Stegman, 2011; van Hinsbergen et al., 2011).

Plumes also interact with divergent plate boundaries. For example, the Iceland plume alters plate geometries by inducing ridge jumps and ridge propagators to pin the spreading center to the hot spot (Brozna and White, 1990; Hardarson et al., 1997; Hey et al., 2010; Mittelstaedt et al., 2011; 2012). Similar interactions may have pinned the Réunion hot spot close to the Central Indian Ridge until ~30 Ma (cf. Tiwari et al., 2007).

In addition, a variety of geochemical and geophysical evidences show that plume material tends to be drawn toward as well as along seafloor spreading centers (e.g., Schilling et al., 1985; Schilling, 1991; Georgen et al., 2001; see also review by Ito et al., 2003). Geodynamic models show that a combination of self-gravitational spreading, sublithospheric topography, and a dynamic pressure low beneath the ridge facilitate this interaction, whereas divergent flow away from the ridge due to seafloor spreading tends to inhibit the interaction (Feighner and Richards, 1995; Ito et al., 1996, 1997; Ribe, 1996; Ribe and Delattre, 1998; Ribe et al., 1995; Sleep, 1996; Yale and Phipps Morgan, 1998). The depleted residue of hot spot melting and the downwelling curtain forming around a plume pancake may choke nearby MOR melting (Singh et al., 2011; Zhou and Dick, 2013).

133.3.7.3 Lithospheric controls on volcanism

In addition to their effects on mantle convective processes, the lithospheric plates can control how ascending magmas are focused to form discrete volcanic edifices. The weight of a volcano exerts stresses on the lithosphere that can redirect magma-filled cracks toward a volcano (Müller et al., 2001), but the effects of lithospheric damage (i.e., thermomechanical erosion of magma pathways and/or melting of the wall rock) are essential to stabilize near-vertical melt extraction directly beneath a volcano (Hieronymus and Bercovici, 2001a). Parameterized models of damage-enhanced lithospheric melt permeability predict the formation of chains with realistic volcano spacing, as distal tectonic stresses are perturbed by the load of the volcanic edifices (Hieronymus and Bercovici, 1999; 2000; 2001b). Perturbation by volcanic loading can also explain the volcanic patterns in the Hawaiian Islands (Hieronymus and Bercovici, 1999; ten Brink, 1991), which are expressed as a double chain of staggered volcanoes (Jackson et al., 1972).

Other studies have argued that the lithosphere not only acts as a spatial filter for melts derived from the mantle but also may control the occurrence and timing of volcanic activity itself. An important requirement for this theory is that magmas can be quasi-ubiquitously stabilized in the oceanic asthenosphere (Hirschmann, 2010) or at the base of the oceanic plates (Sakamaki et al., 2013). Such a stabilization has been advocated for to explain the seismic and electric properties of the asthenosphere and/or the sharpness of the lithosphere–asthenosphere boundary (Anderson and Sammis, 1970; Kawakatsu et al., 2009; Naif et al., 2013), an interpretation that however remains controversial (Faul and Jackson, 2005; Karato, 2012; 2013a,b; Karato and Jung, 1998; Stixrude and Lithgow-Bertelloni, 2005). Explaining these geophysical properties and intraplate volcanism at the same time by this mechanism, however, requires a mechanism for melt replenishment.

Volcanic ridges or island chains have been specifically related to intraplate deformation in response to regional (e.g., Clouard and Gerbault, 2008; Sandwell et al., 1995) and local (e.g., Mittelstaedt and Ito, 2005) tectonic stresses or thermal contraction (Cans et al., 2003; Sandwell and Elftok, 2004). For example, Clouard and Gerbault (2008) argued that regional transtensional stresses associated with the rapid subduction along the Tonga–Kermadec Trench damage the Pacific Plate to allow ascent of magmas along a belt across French Polynesia. Hieronymus and Bercovici (1999, 2000) had shown that perturbation of the stress field by volcanic loading (see preceding text) controls the propagation direction (i.e., parallel to deviatoric tensile stresses) of stress-induced volcanism with opportunities for rejuvenated volcanism on the second volcano of the self-propagating chain. Propagation speed and extent are predicted to be limited by the growth of the volcanic edifices and the abundance of sublithospheric melts, respectively. For example, the availability of melts (if not ubiquitous) as potentially controlled by large-scale mantle convection (e.g., diffuse upwelling beneath the South Pacific Superwell) or more localized asthenospheric upwelling (see Sections 133.3.3.5–133.3.3.8) may restrict the final length of the chain.

Accordingly, discrimination between lithospheric controls and other mechanisms for non-hot spot intraplate volcanism remains challenging. Whereas plume theory provides relatively clear and unique testable predictions in terms of geographic age patterns, predictions related to lithospheric controls, small-scale convection (Section 133.3.3.5), buoyant decompression melting (Section 133.3.3.6), and shear-driven upwelling (Section 133.3.3.7) are generally more complex. Distinguishing between these mechanisms thus requires sufficient geochronological data (and appropriate statistical analysis) and/or additional geophysical constraints (Harmon et al., 2011). Future such efforts are needed to understand whether it is melt production, extraction, or ascent that is the bottleneck that limits volcanic activity in the interior of oceanic as well as continental plates.

133.4 Conclusion

In the past few decades, our understanding of hot spots and melting anomalies has seen great advancements. It has been realized that not all melting anomalies are related to hot spot activity and that not all hot spots are necessarily underlain by a mantle plume. Many alternative mechanisms for sustaining mantle melting have been proposed and in some cases have been successfully tested with observations (see Sections 133.3.3.5–133.3.3.8 and 133.3.7.3). In particular, non-hot spot volcano
chains are best explained by non-plume mechanisms. Yet, plumes remain a viable explanation for large and long-lived hot spots and many LIPs.

Classical plume theory makes a range of specific testable predictions, some of which are successful, whereas others fail at a given hot spot. While the most robust predictions of plume theory have been confirmed to at least the first order at many hot spot chains, second-order departures of observations from predictions require revision of the classical concept. These departures may be related to, for example, thermochemical convection, variable mantle properties, and interaction of plumes with large-scale or regional mantle flow. That plumes may indeed rise from the lower mantle has been confirmed by the spatial correlation of hot spots with structures in the deep mantle and, for a subset of hot spots, by regional seismic tomography studies. Future advancements to understand mantle dynamics and composition by studying melting anomalies will require interdisciplinary efforts including geophysicists, geochemists, geologists, and mineral physicists.

Acknowledgments

We thank Dave Bercovici for editorial guidance and comments that helped to greatly improve the manuscript. M.D.B. and G.I. have been supported by NSF grant EAR-1141938.

References

Typeset SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

52 Hotspots, Large Igneous Provinces, and Melting Anomalies

Cheng C, Allen RM, Porritt RW, Ballmer MD (in press) Seismic constrains on a double-layered asymmetric whole-mantle plume beneath Hawai'i. In: Canev R, Poland M, Cayol V, Wei D (eds.) Hawaiian Volcanism, From Source to Surface. AGU.

40: 479–480.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and McNamara AK and Zhong SJ (2004) The influence of thermochemical convection on the
McDougall I and Duncan RA (1988) Age progressive volcanism in the Tasmantid
Mallik A and Dasgupta R (2012) Reaction between MORB-eclogite derived melts and
Mahoney JJ, Storey M, Duncan RA, Spencer KJ, and Pringle M (1993) Geochemistry

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPI. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Shatsky Rise oceanic plateau, northwest Pacific Ocean.

Hotspots, Large Igneous Provinces, and Melting Anomalies

Non-Print Items

Abstract:
This chapter describes the progress that has been made over the past decades in understanding observations of large-scale melting anomalies that are not readily explained by plate tectonic theory. Fundamental observations include the volume and geochemistry of flood basalts and ocean island basalts, the age progression of volcano chains, the geometry of hotspot swells, and the seismic imaging of crust and mantle structures. Observations of a subset of melting anomalies can be explained by classical plume theory, in which buoyancy-driven upwellings rise through the entire mantle to cause massive flood basalt volcanism that is trailed by an age-progressive hotspot volcano chain. However, a range of observations call for significant extensions to classical theory, and some sites of excess volcanism are better explained by alternative mechanisms, such as small-scale convection or shear-driven upwelling, than by plume theory. Detailed studies of upwelling and melting can provide constraints for heat and material fluxes through the mantle and provide a better understanding of the long-term thermal and chemical evolution of the Earth's interior.

Keywords: Decompression melting; Dynamic topography; Flood basalts; Hotspot; Hotspot swell; Intraplate volcanism; Large igneous provinces; Mantle plumes; Ocean island basalts; Seismic mantle tomography; Shear-driven upwelling; Small-scale convection; Thermochemical convection

Author and Co-author Contact Information:
Maxim D. Ballmer
Department of Geology and Geophysics
SOEST
University of Hawaii
Honolulu
HI
USA
E-mail: ballmer@hawaii.edu

Earth Life Science Institute
Tokyo Institute of Technology
Meguro-ku
Tokyo
Japan

Peter E. van Keken
Earth and Environmental Sciences
University of Michigan
Ann Arbor
MI
USA
E-mail: keken@umich.edu

Garrett Ito
Department of Geology and Geophysics
SOEST
University of Hawaii
Honolulu
HI
USA
E-mail: gito@hawaii.edu