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Surface waves and normal modes

Our treatment to this point has been limited to body waves, solutions to the seismic
wave equation that exist in whole spaces. However, when free surfaces exist in a
medium, other solutions are possible and are given the name surface waves. There
are two types of surface waves that propagate along Earth’s surface: Rayleigh waves
and Love waves. For laterally homogeneous models, Rayleigh waves are radially
polarized (P/SV) and exist at any free surface, whereas Love waves are transversely
polarized and require some velocity increase with depth (or a spherical geometry).
Surface waves are generally the strongest arrivals recorded at teleseismic distances
and they provide some of the best constraints on Earth’s shallow structure and
low-frequency source properties. They differ from body waves in many respects –
they travel more slowly, their amplitude decay with range is generally much less,
and their velocities are strongly frequency dependent. Surface waves from large
earthquakes are observable for many hours, during which time they circle the Earth
multiple times. Constructive interference among these orbiting surface waves, to-
gether with analogous reverberations of body waves, form the normal modes, or
free oscillations of the Earth. Surface waves and normal modes are generally ob-
served at periods longer than about 10 s, in contrast to the much shorter periods
seen in many body wave observations.

8.1 Love waves

Love waves are formed through the constructive interference of high-order SH
surface multiples (i.e., SSS, SSSS, SSSSS, etc.). Thus, it is possible to model Love
waves as a sum of body waves. To see this, consider monochromatic plane-wave
propagation for the case of a vertical velocity gradient in a laterally homogeneous
model, a situation we previously examined in Section 6.4. In this case, a plane
wave defined by ray parameter p will turn at the depth where β = 1/p. Along the
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X(t)

surface the plane wave will propagate with horizontal slowness defined by p. If the
surface bouncepoints are separated by a distance X(t), then the travel time along the
surface between bouncepoints is given by pX(p). This follows from our definition
of a plane wave and does not depend upon the velocity model. In contrast, the travel
time along the ray paths is given by T(p) and is a function of the velocity–depth
profile. Because these travel times are not the same, destructive interference will
occur except at certain fixed frequencies. Along the surface, the phase (0 to 2π) of
a harmonic wave will be delayed by ωpX(p), where ω is the angular frequency of
the plane wave. The phase along the ray path is delayed by ωT(p)−π/2, where the
−π/2 comes from the WKBJ approximation for the phase advance at the plane-
wave turning point (see Section 6.4). The requirement for constructive interference
is thus

ωpX(p) = ωT(p) − π

2
− n2π, (8.1)

where n is an integer. Rearranging, we obtain

ω = n2π + π/2
T(p) − pX(p)

= n2π + π/2
τ(p)

, (8.2)

where the delay time τ(p) = T(p) − pX(p) (see Section 4.3.2). The wave travels
along the surface at velocity c = 1/p; thus (8.2) defines the c(ω) function for the
Love waves, often termed the dispersion curve. The values of ω given for n = 0
are termed the fundamental modes; higher modes are defined by larger values of
n. The frequency dispersion in the Love waves results from the ray geometry and
does not require any frequency dependence in the body wave velocity β. Love
wave dispersion is much stronger than the small amount of dispersion in S-wave
velocities that results from intrinsic attenuation (see equation (6.91)).

The velocity defined by c = 1/p is the velocity with which the peaks and troughs
at a given frequency move along the surface and is termed the phase velocity. When
the phase velocity varies as a function of frequency, as in (8.2), the wave is dispersed
and the group velocity (the velocity that energy propagates) will be different from
the phase velocity. In this example, the energy must move along the actual ray paths
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Figure 8.1 Love waves can be constructed as a sum of S surface multiples.The dashed lines
show the group and phase velocities at a fixed value of the ray parameter p; the phase velocity is
faster than the group velocity.

and thus the group velocity U is defined by

U = X(p)

T(p)
. (8.3)

For a prograde travel time curve (concave down), U will always be less than c. The
relationship between phase and group velocity for Love waves is shown graphically
in Figure 8.1 as a sum of SH surface multiples.

The group velocity is also often defined directly from the c(ω) dispersion rela-
tionship. To obtain this form, rewrite (8.1) in terms of the wavenumber k = ωp,
producing

ωT − kX = π/2 + n2π. (8.4)

Taking the derivative of this expression, we obtain

dω T + ω dT − dk X − k dX = 0
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r1b1

r2b2

Figure 8.2 Love waves within a homogeneous layer can result from constructive interference
between postcritically reflected body waves.

or

dω T − dk X + ω dX(dT/dX − k/ω) = 0. (8.5)

Since p = k/ω = dT/dX, the rightmost term drops out, and we have

dω

dk
= X

T
= U, (8.6)

and we see that the group velocity is also given by dω/dk.
Equation (8.2) is not very accurate at small values of n since a high frequency

approximation was used to determine the phase shift at the turning point. However, it
does give some understanding of how Love waves are formed through the positive
interference of S surface multiples. More accurate Love wave calculations are
generally performed using homogeneous layer techniques. In these methods, the
plane wave response of a stack of layers is computed at a series of values of ray
parameter; the frequencies of the different Love wave branches are then identified
as the eigenvalues of the resulting set of equations.

8.1.1 Solution for a single layer

An exact equation may be derived for Love wave dispersion within a homogeneous
layer. Consider a surface layer overlying a higher velocity half-space (Fig. 8.2).
Equation (8.2) is still applicable, provided we replace the approximate π/2 phase
shift at the turning point with the phase shift, φS̀Ś , resulting from the SH reflection
off the bottom of the layer:

ω = n2π − φS̀Ś

τ(p)
. (8.7)

From (4.33), we may express the delay time τ as

τ(p) = 2h

√
1/β2

1 − p2, (8.8)
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where h is the layer thickness and β1 is the shear velocity in the top layer. For
postcritical reflections, it can be shown from (6.46) and (6.59) that

φS̀Ś = −2 tan−1

⎡

⎢⎣
µ2

√
p2 − 1/β2

2

µ1

√
1/β2

1 − p2

⎤

⎥⎦ . (8.9)

Substituting (8.8) and (8.9) into (8.7), we have

2hω

√
1/β2

1 − p2 − n2π = 2 tan−1

⎡

⎢⎣
µ2

√
p2 − 1/β2

2

µ1

√
1/β2

1 − p2

⎤

⎥⎦

or

tan
[
hω

√
1/β2

1 − p2
]

=
µ2

√
p2 − 1/β2

2

µ1

√
1/β2

1 − p2
. (8.10)

This defines the dispersion curves for Love wave propagation within the layer.
Note that the phase velocity, c = 1/p, varies between β1 and β2 (c > β2 is
not postcritical). For every value of c, there are multiple values of ω because of
the periodicity in the tangent function. The smallest of the ω values defines the
fundamental mode, the second smallest is the first higher mode, etc. There is no
analytical solution to (8.10) for c; the c(ω) values must be determined numerically
(see Exercise 8.1).

8.2 Rayleigh waves

For SH polarized waves, the reflection coefficient at the free surface is one, and the
interference between the downgoing SH waves and those turned back toward the
surface produces Love waves. The P/SV system is more complicated because
the surface reflections involve both P and SV waves. In this case, the upgoing
and downgoing body waves do not sum constructively to produce surface waves.
However, a solution is possible for inhomogeneous waves trapped at the interface;
the resulting surface waves are termed Rayleigh waves. The displacements of Love
and Rayleigh waves are compared in Figure 8.3.

Let us begin by examining what occurs when P and SV waves interact with a
free surface. For a laterally homogeneous medium, the displacements for harmonic
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Figure 8.3 Fundamental Love (top) and Rayleigh (bottom) surface wave displacements (highly
exaggerated) for horizontal propagation across the page. Love waves are purely transverse
motion, whereas Rayleigh waves contain both vertical and radial motion. In both cases, the wave
amplitude decays strongly with depth.

plane waves propagating in the +x direction are given by

u = Ae−iω(t−px−ηz), (8.11)

where p is the horizontal slowness and η =
√

1/c2 − p2 is the vertical slowness for
wave velocity c. From Section 3.3.1, recall that we may express the displacement
in terms of a P-wave scalar potential φ and a S-wave vector potential''', that is,

u = ∇φ + ∇ ×'''. (8.12)
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Now from (8.11), consider plane wave solutions for φ and 'y (the only part of '''
that produces SV motion for plane wave propagation in the x direction):

φ = Ae−iω(t−px−ηαz), (8.13)

'y = Be−iω(t−px−ηβz), (8.14)

where A and B are the amplitudes of the P and SV waves respectively, and the
vertical slownesses are given by

ηα = (1/α2 − p2)1/2, (8.15)

ηβ = (1/β2 − p2)1/2. (8.16)

The ray parameter p is constant; both P and SV are assumed to have the same
horizontal slowness. Noting that ∂y and uy are zero for our P/SV plane wave
geometry, the P-wave displacements are

uP
x = ∂xφ= pAiωe−iω(t−px−ηαz), (8.17)

uP
z = ∂zφ= ηαAiωe−iω(t−px−ηαz), (8.18)

and the SV-wave displacements are

uS
x = −∂z'y = −ηβBiωe−iω(t−px−ηβz), (8.19)

uS
z = ∂x'y = pBiωe−iω(t−px−ηβz). (8.20)

Now consider the boundary conditions at a free surface z = 0. Both the normal and
shear tractions must vanish: τxz = τzz = 0. From (3.13), we have

τxz = µ(∂zux + ∂xuz), (8.21)

τzz = λ(∂xux + ∂zuz) + 2µ∂zuz. (8.22)

Substituting (8.17)–(8.20) into (8.21) and (8.22), we obtain

τP
xz = −A(2µpηα)ω

2e−iω(t−px−ηαz), (8.23)

τP
zz = −A

[
(λ+ 2µ)η2

α + λp2
]
ω2e−iω(t−px−ηαz), (8.24)

τSxz = −Bµ
(
p2 − η2

β

)
ω2e−iω(t−px−ηβz), (8.25)

τS
zz = −B(2µηβp)ω2e−iω(t−px−ηβz). (8.26)
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At the free surface, we require

τxz = τP
xz + τS

xz = 0, (8.27)

τzz = τP
zz + τS

zz = 0. (8.28)

Substituting (8.23)–(8.26) into (8.27) and (8.28) at z = 0, and canceling the com-
mon terms, we obtain

A(2pηα) + B
(
p2 − η2

β

)
= 0, (8.29)

A
[
(λ+ 2µ)η2

α + λp2]+ B(2µηβp) = 0. (8.30)

The equations for τzz can be written in terms of the P and S velocities by substituting
λ+ 2µ = ρα2, µ = ρβ2, and λ = ρ(α2 − 2β2) to give

A[2pηα] + B
[
p2 − η2

β

]
= 0, (8.31)

A
[
α2 (η2

α + p2)− 2β2p2]+ B[2β2ηβp] = 0. (8.32)

This coupled set of equations describes the free surface boundary condition for P-
and SV -waves with horizontal slowness p. Recall that the vertical slownesses are
given by ηα = (1/α2 −p2)1/2 and ηβ = (1/β2 −p2)1/2. When p < 1/α, there are
two real solutions, a positive value of ηα for downgoing P waves and a negative
value for upgoing P waves (assuming the z axis points downward). Similarly, when
p < 1/β, then ηβ is real and there exist both downgoing and upgoing SV waves.
By defining different amplitude coefficients for the downgoing and upgoing waves,
one could use (8.31) and (8.32) to solve for the P/SV reflection coefficients at the
free surface.

However, our interest is in the case where p > β−1 > α−1 and both ηα and ηβ
are imaginary. From (8.11), if we factor out the depth dependence, we obtain

u = Aeiωηze−iω(t−px), (8.33)

and we see that imaginary values of ηwill lead to real values in the exponent. In this
case we have the evanescent waves discussed in Chapter 6, for which amplitude
grows or decays exponentially as a function of depth. The sign of η is chosen to
give the solution that decays away from z = 0. For single imaginary values of ηα
and ηβ, the linear system of equations for A and B given in (8.31) and (8.32) has a
non-trivial solution only when the determinant vanishes, that is, when

(
p2 − η2

β

) [
α2(η2

α + p2) − 2β2p2
]

− 4β2p2ηαηβ = 0. (8.34)
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Substituting for ηα and ηβ, we can express this entirely in terms of p and the P and
S velocities:

(
2p2 − 1

β2

)2

+ 4p2
(

1
α2 − p2

)1/2 ( 1
β2 − p2

)1/2

= 0, (8.35)

after canceling a common factor of β2. For imaginary ηα and ηβ (p > β−1 > α−1),
this can be rewritten as

(
2p2 − 1

β2

)2

− 4p2
(

p2 − 1
α2

)1/2 (
p2 − 1

β2

)1/2

= 0. (8.36)

This is termed the Rayleigh function and has a single solution, with the exact value
of p depending upon β and α. The corresponding phase velocity, c = 1/p, is always
slightly less than the shear velocity, with c = 0.92β for a Poisson solid. This result,
obtained by Rayleigh over 100 years ago, shows that it is possible for two coupled
inhomogeneous P and SV waves to propagate along the surface of a half-space.

By substituting the solution for p into (8.15), (8.16), (8.31), and (8.32), we may
obtain the relative amplitudes of the P and SV components, and then substitution
into (8.17)–(8.20) will give the vertical and horizontal displacements. Rayleigh
wave particle motion for the fundamental mode is shown in Figure 8.4. The vertical

Figure 8.4 Particle motion for the fundamental Rayleigh mode in a uniform half-space,
propagating from left to right. One horizontal wavelength (!) is shown; the dots are plotted at a
fixed time point. Motion is counter clockwise (retrograde) at the surface, changing to purely
vertical motion at a depth of about !/5, and becoming clockwise (prograde) at greater depths.
Note that the time behavior at a fixed distance is given by looking from right to left in this plot.
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and horizontal components are out of phase by π/2; the resulting elliptical motion
changes from retrograde at the surface to prograde at depth, passing through a node
at which there is no horizontal motion. For Rayleigh waves propagating along the
surface of a uniform half-space there is no velocity dispersion (since there is no
scale length in the model). However, in the Earth velocity dispersion results from
the vertical velocity gradients in the crust and upper mantle; longer period waves
travel faster since they sense the faster material at greater depths. As in the case of
Love waves, Rayleigh wave dispersion curves for vertically stratified media may
be computed using propagator matrix methods.

8.3 Dispersion

When different frequency components travel at different phase velocities, pulse
shapes will not stay the same as they travel but will become dispersed as the
frequencies separate. This leads to interference effects that cancel the wave energy
except at particular times defined by the group velocity of the wave. This may
be illustrated by considering the sum of two harmonic waves of slightly different
frequency and wavenumber:

u(x, t) = cos(ω1t − k1x) + cos(ω2t − k2x). (8.37)

Relative to an average frequency ω and wavenumber k, we have

ω1 = ω − δω, k1 = k − δk, (8.38)

ω2 = ω + δω, k2 = k + δk. (8.39)

Substituting into (8.37), we obtain

u(x, t) = cos(ωt − δωt − kx + δkx) + cos(ωt + δωt − kx − δkx)

= cos [(ωt − kx) − (δωt − δkx)] + cos [(ωt − kx) + (δωt − δkx)]

= 2 cos(ωt − kx) cos(δkx − δωt), (8.40)

where we have used the identity 2 cos A cos B = cos(A + B) + cos(A − B).
The resulting waveform consists of a signal with the average frequency ω whose
amplitude is modulated by a longer period wave of frequency δω (Fig. 8.5).

In acoustics, this phenomenon is termed beating and may be observed when two
musical notes are slightly out of tune. The short-period wave travels at velocityω/k

and the longer period envelope travels at velocity δω/δk. The former is the phase
velocity c; the latter is the group velocity U. In the limit as δω and δk approach
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Figure 8.5 The sum of two
waves of slightly different
frequencies results in a
modulated wave.The group
velocity is the velocity of the
wave packets; the phase velocity
is the velocity of the individual
peaks.

zero, we thus have

U = dω

dk
, (8.41)

which agrees with our previous result in (8.6). Using the various relationships
between the harmonic wave parameters (see Table 3.1), the group velocity may be
alternatively expressed as

U = dω

dk
= c + k

dc

dk
= c

(
1 − k

dc

dω

)−1

. (8.42)

For Earth, the phase velocity c of both Love and Rayleigh waves generally in-
creases with period; thus dc/dω is negative and from (8.42) it follows that the
group velocity is less than the phase velocity (U < c). Figure 8.6 plots Love
and Rayleigh dispersion curves computed from the PREM model. A minimum or
maximum point on the group velocity dispersion curve will result in energy from
a range of periods arriving at nearly the same time. This is termed an Airy phase
and occurs in Earth for Rayleigh waves at periods of about 50 and 240 s.
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Figure 8.6 Fundamental Love and Rayleigh dispersion curves computed from the isotropic
PREM model (courtesy of Gabi Laske).

8.4 Global surface waves

Love and Rayleigh waves in Earth travel along great circle paths radiating away
from the source. Since they are confined to the surface of a sphere, geometrical
spreading effects are reduced compared to body waves (which spread within a
volume). At a given receiver location, the first surface wave arrival will travel
along the minor (shorter) great circle arc and a later arrival will result from the
major arc path on the opposite side of Earth (Fig. 8.7). The second arrival is due
to surface waves that have passed through the antipode, the point directly opposite
the source. The first and second arriving Love wave arrivals are termed G1 and G2,
respectively, while the corresponding Rayleigh waves are called R1 and R2. The
waves do not stop at the receiver, but continue traveling around the globe and these
multiple orbits produce a series of later arrivals that can be observed for many hours
following large earthquakes. The odd-numbered surface waves (e.g., R1, R3, R5,
etc.) leave the source in the minor arc direction, while the even numbered waves
depart in the major arc direction.

This is illustrated in Figure 8.8, which plots three components of motion from an
earthquake at 230 km depth in the Tonga subduction zone recorded by the IRIS/IDA
station NNA in Peru. Notice that the SH polarized Love wave arrivals appear most
prominently on the transverse component, while theP/SVpolarized Rayleigh waves
are seen mostly on the vertical and radial components.Attenuation of surface waves
can be seen in the decay of the amplitude of the arrivals with time.
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Figure 8.7 Ray paths for the first
three Rayleigh wave arrivals.
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Figure 8.8 The vertical, radial, and transverse components of motion for a March 11, 1989,
earthquake at 230 km depth in the Tonga trench recorded at IRIS/IDA station NNA in Peru. P, SV,
and Rayleigh waves are most visible on the vertical and radial components; SH and Love waves
appear on the transverse component.
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At long periods, Rayleigh waves are sufficiently coherent that it is possible to
stack records from many different events to produce a global picture (Fig. 8.9) of
the seismic wavefield that images the surface wave arrivals (Shearer, 1994). This
vertical-component image illustrates many of the concepts that we have developed
in this chapter. The dispersion of the Rayleigh waves is clearly apparent, particularly
in the later part of the image. Very long period (≥ 300 s) waves travel the fastest,
arriving before the pronounced shorter-period banding in the Airy phase. The high
amplitude of the Airy phase results from a local minimum in the group velocity
dispersion curve near 240 s. The difference between phase and group velocity can
be seen clearly in the image of the Airy phase. The lines of constant phase, defined
by the peaks and troughs in the seismograms, are not parallel to the overall direction
of energy transport. Rather, they cut across at a slightly more horizontal orientation,
since the phase velocity is higher than the group velocity.

The major P and SV body-wave phases can also be seen in this image, in the
triangular shaped region before the first Rayleigh wave (R1).Additional body-wave
arrivals are visible between R1 and the second Rayleigh wave (R2). These include
some P phases, but most prominent are the high-order S surface multiples and the
families of S-to-P converted phases that they spawn upon each surface reflection.
These can be traced to beyond 720◦ and are the major source of seismic energy
between the Rayleigh wave arrivals. In the surface wave literature, these arrivals are
termed overtone packets and are sometimes referred to as X phases (e.g., Tanimoto,
1987).

8.5 Observing surface waves

Surface waves are generally the strongest arrivals at teleseismic distances and con-
tain a great deal of information about crust and upper mantle structure as well as
the seismic source. Much of the power of surface wave observations comes from
the fact that velocity can be measured at a number of different frequencies from a
single seismogram, providing direct constraints on the velocity versus depth pro-
file everywhere along the source–receiver path. In contrast, the corresponding body
wave observations provide only a single travel time per phase, and recovering the
complete velocity structure requires stations at a wide range of source–receiver
distances.

A major goal in most surface wave studies is to determine the group or phase
velocity at a number of periods. This can be done in several ways. If the location
and origin time of the source are known, then the group velocity may be estimated
from a surface wave record at a single station by measuring the travel time to the
station for energy at a particular frequency. This can be done by applying narrow
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Figure 8.9 An image of Earth’s long-period seismic response on vertical component
seismographs as a function of time and distance to an earthquake. Positive amplitudes are
shown as black, and negative amplitudes are shown as white.The Rayleigh wave arrivals R1 and
R2 are visible in the left panel showing the first 3 hours of data, whereas R3 and R4 are seen on
the right panel.
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passband filters to the record to isolate the wave packet for a target frequency,
or, more crudely, by measuring the time between successive peaks in a single
dispersed seismogram. The same approach can be used to determine the group
velocity between two stations along a great circle ray path through the source by
measuring the difference in the arrival times at the stations. In this case (the two-
station method), precise details of the source are not required, provided the location
is approximately correct.

Many modern surface wave analyses measure the phase velocity rather than the
group velocity. This is done by computing the Fourier spectrum of the record to
determine the phase of each frequency component. If the phase is known at the
source (this requires the focal mechanism or moment tensor for the event), then
phase velocity measurements are possible from a single receiver; alternatively the
two-station method can be used to determine the phase velocity between a pair of
receivers. The tricky part of phase velocity measurements is that the observed phase
φ at a particular frequency varies only between 0 and 2π and there will typically be
many cycles between observation points, so that the total phase shift - is actually
2πn + φ, where n is an integer.

For example, consider measuring the Rayleigh wave phase velocity in Fig. 8.9
at a period of 240 s (close to the dominant period of the high-amplitude Airy phase)
using stations at 90◦ and 120◦. Phase measurements at these ranges alone do not tell
us how many cycles, n, occurred between the stations; the phase velocity cannot be
determined without independent knowledge of n.At long periods this is not a signif-
icant problem since n can be accurately estimated from standard one-dimensional
Earth models. However, at shorter periods it becomes increasingly difficult to cal-
culate n with confidence, since lateral velocity variations in the upper mantle cause
n to vary with position as well as range. In this case, a useful approach is to measure
the phase velocity at the longest periods first, and then gradually move to shorter
periods, keeping track of the total accumulated phase shift -. This will work pro-
vided the phase velocity dispersion curve is a smooth and continuous function of
frequency.

Comprehensive studies of surface wave phase velocities, using a global distri-
bution of sources and receivers, can be used to invert for maps of phase velocity
for both Love and Rayleigh waves. This is done separately for each period using
techniques analogous to the body-wave velocity inversion problem discussed in
Chapter 5. The structure seen in these maps is related to Earth’s lateral velocity
variations; the depth dependence in this heterogeneity is constrained by the results
at different periods. Inverting surface-wave phase velocity observations is currently
one of the best ways to resolve three-dimensional velocity variations in the upper
few hundred kilometers of the mantle.



Thus far we have considered the propagation of body and surface waves largely
as if the Earth were of infinite extent. However, the Earth is a finite body in which
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Figure 8.10 Rayleigh wave phase velocity at (top) 50 s and (bottom) 150 s period.The right
panels have been corrected for crustal thickness variations using the model CRUST 2.0 (Laske
et al., http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html).Velocity perturbations are contoured
at 2.5% intervals, with black indicating regions that are 2.5% faster than average, and white
indicating velocities over 2.5% slower than average. Maps produced by Guy Masters (personal
communication) using measurements from Ekström et al. (1997).

Figure 8.10 plots maps of Rayleigh wave phase velocity at 50 and 150 s period.
Notice the ocean-continent signal is enhanced after corrections are applied for varia-
tions in crustal thickness. In general, the thicker crust beneath continents compared
to the oceans causes slower surface-wave velocities, but this is counteracted by
generally faster upper-mantle velocities beneath continents, which are especially
strong in shield regions. When corrections for variations in crustal properties are
applied (to obtain what the velocity would be for a globally uniform crust), the
fast continental roots become even more prominent, particularly at shorter periods,
which are more sensitive to shallow structure. Global mantle tomography mod-
els rely heavily on surface-wave analyses to constrain upper-mantle heterogeneity.
Notice the similarity between the 50 s crustal-corrected phase velocity map and the
velocity structure at 150 km depth in Figure 1.7.

8.6 Normal modes
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Figure 8.11 The first four modes of vibration of a string between fixed endpoints.

all wave motions must be confined. Body waves are reflected from the surface;
surface waves orbit along great circle paths. At a particular point on the Earth’s
surface, there will be a series of arrivals of different seismic phases. The timing
between these arrivals will result in constructive and destructive interference such
that only certain frequencies will resonate over long time intervals. These resonant
frequencies are termed Earth’s normal modes and provide a way of representing
wave propagation that is an alternative to the traveling wave approach.

The vibrations of a string fixed at both ends provide an analogy that may be
familiar from your physics classes. The string will resonate only at certain frequen-
cies (Fig. 8.11). These are termed the standing waves for the string and any motion
of the string can be expressed as a weighted sum of the standing waves. This is
an eigenvalue problem; the resonant frequencies are termed the eigenfrequencies;
the string displacements are termed the eigenfunctions. In a musical instrument
the lowest frequency is called the fundamental mode; the higher modes are the
overtones or harmonics. For the vibrating string, the eigenfunctions are sines and
cosines and it is natural to use a Fourier representation.

Normal modes for the Earth are also specified by their eigenfrequencies and
eigenfunctions. A detailed treatment of normal mode theory for the Earth is beyond
the scope of this book, and computation of eigensolutions for realistic Earth models
is a formidable task. However, it is useful to remember some of the properties of
the eigenfunctions of any vibrating system:

1. They are complete. Any wave motion within the Earth may be expressed as a sum of
normal modes with different excitation factors.

2. They are orthogonal in the sense that the integral over the volume of the Earth of the prod-
uct of any two eigenfunctions is zero. This implies that the normal mode representation
of wave motion is unique.

What do Earth’s normal modes look like? For a spherically symmetric solid, it can
be shown that there are two distinctly different types of modes: spheroidal modes,
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which are analogous to P/SV and Rayleigh wave motion, and toroidal modes, which
are analogous to SH and Love wave motion. The Earth’s departures from spherical
symmetry mean that this separation is not complete, but it is a very good first-order
approximation. Toroidal modes involve no radial motion and are sensitive only
to the shear velocity, whereas spheroidal modes have both radial and horizontal
motion and are sensitive to both compressional and shear velocities. Spheroidal
mode observations at long periods are also sensitive to gravity and provide the best
direct seismic constraints on Earth’s density structure.

The lateral variations in normal mode eigenfunctions are best described in terms
of spherical harmonics, which provide an orthogonal set of basis functions on a
spherical surface (spherical harmonics are useful in many areas of geophysics for
representing functions on the surface of a sphere, and descriptions are available in
many of the standard texts; see Aki and Richards (1980, 2002) or Lay and Wallace
(1995) for treatments focusing on seismology). A common normalization for the
spherical harmonics is

Ym
l (θ,φ) = (−1)m

[
2l + 1

4π
(l − m)!
(l + m)!

]1/2

Pm
l (cos θ)eimφ (8.43)

where θ and φ are spherical polar coordinates (θ is the polar angle) and Pm
l is the

associated Legendre function. The spherical harmonic function is written as Ym
l ,

where l is termed the angular order number and m is the azimuthal order number.
The index l is sometimes also termed the spherical harmonic degree and is zero
or a positive integer up to any value. The angular order number, m, may take on
2l + 1 integer values between ±l. The order numbers determine the number of
lines of zero crossings that are present in the function. The total number of zero
crossings is given by l; the number of zero crossings through the pole is given by
|m|. Figure 8.12 plots examples of Ym

l for some of the lower harmonic degrees.
Note that the harmonics are defined relative to a particular coordinate system

and depend upon the location of the poles. If the coordinate system is rotated, any
spherical harmonic function in the old coordinate system may be expressed as a
sum of spherical harmonics of the same l but differing m in the new coordinate
system. A rotation of coordinates does not affect the angular order number but will
change the relative weights of the azimuthal order numbers. For example, a rotation
of 90◦ can change Y0

1 to Y1
1 .

Expansions of global observations in terms of spherical harmonics are common
in geophysics. Examples include Earth’s surface geoid and seismic velocity per-
turbations at a particular depth. For Earth’s normal modes, we are interested in
displacement, which is a vector quantity and most conveniently expressed in terms
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l = 0 l = 1 l = 2 l = 3

m = –3

m = –2

m = –1

m =  0

m =  1

m =  2

m =  3

Figure 8.12 Spherical harmonic functions Ym
l up to degree l = 3. Positive values are shown as

white, negative as black, with near-zero values as gray.There are 2l + 1 values of m at each
degree. Note that the negative m harmonics are rotated versions of the positive m harmonics.
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of the vector spherical harmonics, which are defined as

Rm
l (θ,φ) = Ym

l r̂ (8.44)

Sm
l (θ,φ) = 1√

l(l + 1)

[
∂Ym

l

∂θ
θ̂θθ + 1

sin θ
∂Ym

l

∂φ
φ̂φφ

]
(8.45)

Tm
l (θ,φ) = 1√

l(l + 1)

[
1

sin θ
∂Ym

l

∂φ
θ̂θθ − ∂Ym

l

∂θ
φ̂φφ

]
(8.46)

where r̂, θ̂θθ, and φ̂φφ are unit vectors in the r, θ, and φ directions, respectively. The
vector fields associated with Earth’s spheroidal motions can be expressed in terms
of R and S, while the toroidal motions are are expressed with T.

Earth’s normal modes are specified in terms of the spherical harmonic order
numbers l and m and a radial order number, n, that describes the number of zero
crossings in radius that are present. Toroidal modes are thus designated nT

m
l and

spheroidal modes as nS
m
l . The solutions for n = 0 are called the fundamental

modes; the solutions for n > 0 are termed overtones. For a spherically symmetric
Earth the eigenfrequencies at constant n and l are identical for all values of m and
it is common to denote modes only by their radial and angular order numbers, that
is, as nTl and nSl and the corresponding frequencies as nωl.

The fundamental spheroidal mode 0S0 is termed the “breathing’’ mode and rep-
resents a simple expansion and contraction of the Earth. It has a period of about
20 minutes. 0S1 is not used in seismology since it describes a shift in the center of
mass of the Earth; this cannot result from purely internal forces. 0S2 has a period of
about 54 minutes and represents an oscillation between an ellipsoid of horizontal
and vertical orientation (Fig. 8.13). This is sometimes termed the “rugby’’ mode

Figure 8.13 A highly exaggerated picture of the normal mode 0S2.This mode has a period of
about 54 minutes; the two images are separated in time by 27 minutes.
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for obvious reasons. The toroidal mode 0T1 represents a change in Earth’s rotation
rate; this can happen but occurs at such long time intervals that it is unimportant in
seismology. The toroidal mode 0T2 has a period of about 44 minutes and describes a
relative twisting motion between the northern and southern hemispheres. Because
of the fluid outer core, toroidal modes do not penetrate below the mantle.

Although theoretical solutions for the normal modes of a solid sphere date back to
Lamb in 1882, definitive observations for the Earth did not occur until the great 1960
earthquake in Chile. The enormous size of this event (the largest since seismographs
began recording about a century ago), together with improvements in instrument
design at long periods, made it possible to identify a few dozen normal modes.
The next two decades were perhaps the golden age in normal mode seismology as
over a thousand modes were identified (e.g., Gilbert and Dziewonski, 1975) and
new methods were derived for inverting the observations for Earth structure (e.g.,
Backus and Gilbert, 1967, 1968, 1970).

The normal mode eigenfrequencies are identical for different azimuthal order
number m only for a spherically symmetric solid (this is called degeneracy in the
eigenfrequencies). Earth’s small departures from spherical symmetry (e.g., ellip-
ticity, rotation, general 3-D velocity variations) will cause the eigenfrequencies to
separate. This is termed splitting; a single spectral peak will split into a multiplet
composed of the separate peaks for each value of m. Earth’s rotation rate and el-
lipticity are well known, but splitting due to 3-D structure is also observed, so
measurements of mode splitting can be using to constrain three-dimensional veloc-
ity variations.

As an example of normal mode observations, Figure 8.14 plots the spectrum of
240 hours of data from the 2004 Sumatra-Andaman earthquake recorded on the
vertical component of station ARU in Russia. The low-order spheroidal modes
(labeled) are seen with excellent signal-to-noise because of the size of this earth-
quake (MW = 9.1, the largest since the 1964 Alaskan earthquake and the first
giant subduction zone earthquake to be recorded by modern broadband seismome-
ters). Many of the modes are clearly split and 0S2 is shown at an expanded
scale to illustrate its splitting into five peaks, corresponding to its five m val-
ues, i.e., 0S

−2
2 , 0S

−1
2 , etc. The regular spacing of these peaks in the 0S2 multi-

plet is characteristic of splitting due to Earth’s rotation. Modes 3S1 and 1S3 have
slightly different center frequencies but overlap so much that they cannot be
separately resolved.

Since wave motion in the Earth can be described to equal precision with either
traveling waves or normal modes, what is the advantage of the normal mode ap-
proach? Largely it comes from analysis of long time series from large events, where
the multiplicity of different phase arrivals makes a traveling wave representation
awkward. For example, it would be extremely difficult to attempt to model all of the
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Figure 8.14 Low-order spheroidal modes visible in the spectrum of 240 hours of data from the
2004 Sumatra-Andaman earthquake (MW = 9.1) recorded at station ARU at Arti, Russia (courtesy
of Guy Masters). Mode 0S2 is plotted at an expanded scale from 0.29 to 0.33 mHz to show its
splitting into a five-peaked multiplet, corresponding to azimuthal order number (m) values from
-2 to 2.

arrivals visible in Figure 8.9 with a time domain approach. However, by taking the
Fourier transform of individual records and measuring the position of the spectral
peaks (and any splitting that can be observed), it is possible to identify the various
modes and use them to constrain Earth structure. This is the only practical way to
examine records at very long periods (> 500 s) and provides information about the
Earth’s density structure that cannot be obtained any other way. Normal modes also
are able to examine Earth properties, such as the shear response of the inner core,
that are difficult to observe directly with body waves. Attenuation causes the mode
amplitudes to decay with time, and so normal mode observations help to constrain
Q at very long periods. Finally, normal modes provide a complete set of basis
functions for the computation of synthetic seismograms that naturally account for
Earth’s sphericity. Computing synthetic seismograms by summing normal modes
is standard practice in surface-wave and long-period body-wave seismology. The
number of modes required increases rapidly at higher frequencies, but with mod-
ern computers, normal mode summation is an increasingly attractive alternative to
other methods.


