Analytical Groundwater Flow Solutions

Aly I. El-Kadi

Steady One-Dimensional Flow

For ground water flow in the x-direction in a confined aquifer:
\[\frac{dh}{dx} = 0 \]
Integrate twice:
\[h = Cx + h_0 \]
\[dh/dx = -q/K, \text{ according to Darcy's law (} q = Q/A) \]
This states that head varies linearly with flow in the x-direction.

Response of ideal aquifers to pumping

- Assumptions:
 - Governing equation:
 - compressibility is strictly vertical
 - water release is instantaneous as head drops
 - vertically integrated flow equation (vertical gradients are negligible)
Response of ideal aquifers to pumping
• Aquifer characteristics
 ■ homogeneous and isotropic aquifers
 ■ constant thickness
 ■ hydraulic head is uniform prior to pumping
 ■ aquifer is horizontal and infinitely large in the horizontal direction
• Well and pumping characteristics
 ■ single, fully penetrating well pumping at a fixed rate
 ■ well diameter is infinitesimally small

Steady Radial Flow to a Well-Confined
For horizontal flow, Q at any radius r, from Darcy’s law,

\[Q = -2\pi rbK \frac{dh}{dr} \]

for steady radial flow to a well where Q, b, K are const

Steady Radial Flow to a Well-Confined
Integrating after separation of variables, with \(h = h_w \) at \(r = r_w \) at the well, yields Thiem Eqn

\[Q = 2\pi Kb\left(\frac{h-h_w}{(\ln(r/r_w))}\right) \]
Steady Radial Flow to a Well-
Confined

- Near the well, transmissivity, \(T \), may be estimated by observing heads \(h_1 \) and \(h_2 \) at two adjacent observation wells located at \(r_1 \) and \(r_2 \), respectively, from the pumping well

\[
T = Kb = \frac{Q \ln(r_2 / r_1)}{2\pi(h_2 - h_1)}
\]

Steady Radial Flow to a Well-
Unconfined

- Using Dupuit’s assumptions and applying Darcy’s law for radial flow in an unconfined, homogeneous, isotropic, and horizontal aquifer yields:

\[
Q = -2\pi K h \frac{dh}{dr}
\]

integrating,

\[
Q = \pi K (h_2^2 - h_1^2) / \ln(r_2 / r_1)
\]

solving for \(K \),

\[
K = \frac{Q}{\pi(h_2^2 - h_1^2)} \ln \left(\frac{r_2}{r_1} \right)
\]

\(h_1 \) and \(h_2 \) are observed at adjacent wells, distances \(r_1 \) and \(r_2 \) from the pumping well.
Transient condition: The Theis solution

Two-dimensional groundwater flow in a confined aquifer with transmissivity T and storativity S:

$$
\frac{\partial}{\partial x} \left(\frac{K_x}{h} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{K_y}{h} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{K_z}{h} \frac{\partial h}{\partial z} \right) = S \frac{\partial h}{\partial t}
$$

Saturated 3-D equation

Can be written as:

$$
\frac{\partial h}{\partial r} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial h}{\partial r} \right) + \frac{\partial^2 h}{\partial \theta^2} + \frac{\partial^2 h}{\partial \phi^2} = \frac{S}{T} \frac{\partial h}{\partial t}
$$

Initial condition:

$h(r,0) = h_0$ for all r

Boundary condition at $r=\infty$:

$h(r,t) = h_0$ for all t

At the well face (Darcy’s law):

$$
\frac{\partial h}{\partial r} = \frac{Q}{2\pi T r} \quad \text{for} \quad r > 0
$$
Transient condition: The Theis solution

\[s = \frac{Q}{4\pi T} \int_0^r \left(\frac{1}{2} - \frac{1}{6} \frac{t}{r^2} - \frac{1}{12} \frac{t^2}{r^4} \right) \, dr \]

\(s \) = drawdown = \(h_0 - h \); \(h_0 \) = initial head; \(h \) = head at time \(t \); \(Q \) = pumping rate; \(T \) = transmissivity

\(\mu = \frac{S\pi}{4T} \)

\(S \) = storativity (storage coefficient); \(r \) = distance from the well; \(t \) = time; \(W(\mu) \) = well function

Multiple-Well Systems
Impermeable boundary

Perennial stream

Injection-Pumping Pair of Wells
When pumping starts from a well in a leaky aquifer, drawdown of the piezometric surface can be given by:

\[s = \frac{Q}{4\pi T} W(u, r/B) \]

\[r/B = r/ T/(K' / b') \]

- \(T \) = transmissivity of the aquifer
- \(K' \) = vertical hydraulic conductivity
- \(b' \) = thickness of the aquitard
Other well analytical solutions

- Partially penetrating well
- Two or 3 layer system
- Large diameter well
- Unsaturated/saturated condition