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Abstract. This study aims at quantifying the effect of
rheology on plan-view shapes of lava flows using frac-
tal geometry. Plan-view shapes of lava flows are impor-
tant because they reflect the processes governing flow
emplacement and may provide insight into lava-flow
rheology and dynamics. In our earlier investigation
(Bruno et al. 1992), we reported that flow margins of
basalts are fractal, having a characteristic shape regard-
less of scale. We also found we could use fractal di-
mension (D, a parameter which quantifies flow-margin
convolution) to distinguish between the two endmem-
ber types of basalts: a’a (D: 1.05-1.09) and pahoehoe
(D: 1.13-1.23). In this work, we confirm those earlier
results for basalts based on a larger database and over
a wider range of scale (0.125 m-2.4 km). Additionally,
we analyze ten silicic flows (SiO,: 52-74%) over a sim-
ilar scale range (10 m—4.5km). We note that silicic
flows tend to exhibit scale-dependent, or non-fractal,
behavior. We attribute this breakdown of fractal be-
havior at increased silica contents to the suppression of
small-scale features in the flow margin, due to the
higher viscosities and yield strengths of silicic flows.
These results suggest we can use the fractal properties
of flow margins as a remote-sensing tool to distinguish
flow types. Our evaluation of the nonlinear aspects of
flow dynamics indicates a tendency toward fractal be-
havior for basaltic lavas whose flow is controlled by in-
ternal fluid dynamic processes. For silicic flows, or bas-
altic flows whose flow is controlled by steep slopes, our
evaluation indicates non-fractal behavior, consistent
with our observations.
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Introduction

Plan-view shapes of lava flows reflect the processes
governing flow emplacement; they are frozen snap-
shots of the final moments of flow. As such, they pro-
vide insight into the final stages of lava-flow dynamics
and rheological state. Plan-view shapes and other mor-
phological characteristics have been studied extensive-
ly and important quantitative parameters have been
developed to extract rheological properties and erup-
tion and emplacement processes of lava flows. Useful
parameters include flow length and width as indicators
of eruption rate and duration (Walker 1973; Hulme
and Fielder 1977); widths and thicknesses of flows to
estimate yield strengths (Hulme 1974); widths of distal
lobes to deduce rheological properties and SiO, con-
tent (Wadge and Lopes 1991); channel depth and
width and surface speed to estimate viscosity (Shaw et
al. 1968); total area and volume to estimate maximum
flow rates and minimum emplacement times (Shaw
and Swanson 1970); flow length and width coupled
with levee and channel width to yield effusion rate
(Crisp and Baloga 1990); average thickness and the ra-
tio of maximum width to maximum length to calculate
eruption duration (Lopes and Kilburn 1990); and ridge
heights and spacings to estimate viscosity of flow inter-
iors (Fink and Fletcher 1978; Fink 1980). Use of these
measurements has led to improved insight into lava-
flow dynamics and planetary volcanism, but many
questions about their quantitative use remain.

We have been using a new approach to quantita-
tively characterize lava-flow morphology: the fractal
properties of flow margins. In our preliminary report
(Bruno et al. 1992), we showed that the perimeters of
basaltic flows are fractal, and have characteristic fractal
dimensions. Fractals are objects (real or mathematical)
that look the same at all scales (Mandelbrot 1967,
1983). Many geologic features exhibit such ‘self-simi-
lar’ behavior (e.g. rocky coastlines, topography, river
networks). A qualitative example of self-similar behav-
ior of a lava-flow margin appears in Fig. 1. We believe
that measurement of fractal properties of lava flows
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Fig. 1. Margin of a typical pahoehoe flow from the 1972 eruption
of Mauna Ulu, Kilauea volcano with small section enlarged to
show self-similarity. The similar shapes of the entire flow margin
and the enlarged section at different scales suggests fractal behav-
ior
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Fig. 2 Fractal dimensions (D) of selected curves: a D=1.00; b
D=1.01; ¢ D=1.10. The complex curves (b, c) are longer and are
more plane-filling than (a) and thus have D>1. Since these
curves are contained in a plane (D =2), they have D between 1
and 2 (following Garcia 1991)

will shed light on flow dynamics, eruption rates, and
rheology, and will prove to be a useful method for
quantifying the morphology of lava flows in inaccessi-
ble areas of the Earth as well as on other planets by
means of remote sensing.

The key parameter we derive is fractal dimension.
Fractal dimension (D) is based on a similar concept as
topological dimension (D). For example, a line can be
contained in a plane; thus a line (Dr=1) has a lower
topological dimension than a plane (D+=2). Similarly,
a plane can be contained in a volume; thus a volume
has a greater topological dimension (Dt=3) than a
plane. Fractal dimensions are also measures of the
amount of space occupied, but they do not have integ-
er values. The following example illustrates the differ-
ence between D and Dy. Any curve, such as those
shown in Fig. 2, can be contained in a plane; thus
Dr=1. However, the complex curves (Fig. 2b, ¢) have
a much greater length than do simple curves (Fig. 2a);
therefore, these convoluted and involuted curves have
D>1. As curves becomes increasingly complex (i.e.
plane-filling) in a self-similar fashion, D continues to
increase, approaching an upper limit at the topological
dimension of a plane (since no curve can take up more
space than a plane). Thus, the fractal dimensions of all

plan-view shapes of self-similar objects are in the
range: 1<D<2. The method by which fractal dimen-
sion is calculated is described below.

Bruno et al. (1992) showed that the flow margins of
both endmember types of basaltic lavas (a’a and pa-
hoehoe) are fractal, with the scale of self-similarity ex-
tending from about 0.5 m to over 2 km. This suggests
that the processes that control the shapes of basaltic
flows at a small (say, 1 m) scale are dynamically similar
to the processes that control flow shapes at a 10 m or
100 m scale. For pahoehoe flows, this implies that the
same factors that control the outbreak of a small toe
control the outbreak of a larger eruptive unit. For a’a
flows, which have crenulation-like features superim-
posed upon larger flow lobes, self-similarity implies
that the same factors that cause these crenulations to
form (presumably related to differential shear stress)
are also responsible for forming the lobes themselves;
i.e. the lobes are large-scale crenulations. Kilburn
(1990) made a similar point in describing the fractal
properties of the surfaces of a’a flows. Also, Bruno et
al. (1992) discovered that the margins of a’a and pa-
hoehoe flows have different fractal dimensions. Pahoe-
hoe margins have higher D (typically =1.15) than do
a’a flows (usually <1.09). This is consistent with our
observation that outlines of pahoehoe margins are
qualitatively different from a’a margins (Fig. 3); pahoe-
hoe margins tend to have many more embayments and
protrusions than the more ‘linear’ a’a margins.

These differences in geometry do not reflect differ-
ences in composition, but rather differences in rheolo-
gy and emplacement mechanisms. Whether an erupt-
ing basalt becomes a’a or pahoehoe depends on a crit-
ical relationship between volumetric flow rate (largely
controlled by effusion rate and ground slope), effective
viscosity and shear strength (Shaw et al. 1968; Shaw
1969; Peterson and Tilling 1980; Kilburn 1981). Pahoe-
hoe flows are associated with low terminal volumetric
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Fig. 3. Digitized outlines of typical a’a and pahoehoe flows from
the 1935 eruption of Mauna Loa volcano. The pahoehoe margin
is more convoluted than the a’a margin, and would be expected
to have a higher D (following Bruno et al. 1992) )




flow rates (typically <10 m?/s for Hawaiian eruptions)
and/or fluid lavas (Rowland and Walker 1990). They
tend to be thin (<2 m) and advance with a smooth
rolling motion (Cas and Wright 1987). Pahoehoe flows
are formed in compound flow fields composed of nu-
merous thin overlapping units. In contrast, a’a flows
form at higher terminal flow rates. They are generally
associated with higher effusion rates (typically
>10 m*/s for Hawaiian eruptions) and/or viscous lavas
(Rowland and Walker 1990). A’a flows are generally
thicker (typically a few meters), and have massive in-
teriors and clinkery exteriors. Unlike most pahoehoe
flows, they are erupted as a single unit. A’a and pahoe-
hoe lavas also differ in mode of transport. Lava tubes
can play crucial roles in transport of pahoehoe lavas,
enabling flow over long distances with small radiative
heat losses; a’a lavas typically flow in open channels.
All of these differences in terminal flow rates, flow
styles and emplacement mechanisms lead to different
fractal dimensions for a’a and pahoehoe flows.

One of the objectives of investigations of flow mor-
phology is to determine rheological properties and per-
haps lava-flow composition, particularly SiO, and vola-
tile content. So, in addition to basalts, we have studied

Fig. 4a—d. Plan-view shapes of lava flows of various compositions
(in order of increasing silica content): a basalt (Galapagos Islands);
b basaltic andesite (Hekla, Iceland); ¢ andesite (Mount Shasta,
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more silicic flows with SiO, contents ranging from 52
to 74 wt %. Silicic flows can erupt as single-flow units
characterized by a blocky morphology. They are also
often associated with channel formation. Thus, in
terms of both morphology and emplacement mecha-
nism, some high-silica flows are similar to a’a flows and
different from pahoehoe flows. We have found that
higher silica contents and the accompanying increase
in viscosity and presumable yield strength lead to qual-
itative as well as quantitative differences in plan-view
shapes. Figure 4a shows a basaltic a’a flow, character-
ized by fairly linear margins, superimposed upon which
are small-scale features that resemble crenulations.
Figure 4b (basaltic andesite) has finger-like lobes,
hundreds of meters in diameter, and appears less ‘lin-
ear’. Like basaltic a’a, this basaltic andesite has a cre-
nulated appearance. Figure 4c (andesite) also has mul-
tiple lobes. Here, the lobes appear shorter, stubbier
and wider (approaching 1km), and the crenulations
appear to be absent. Figure 4d (dacite) is characterized
by the highest silica content. Here the lobes are still
wider (>1 km) and protrude less from the main mass
of the lava flow, causing the flow to assume a more
bulbous appearance. We note that silica content is just

US); d dacite (Chao, Chile). As silica content increases, flow lobes
tend to widen, thicken and protrude less from the main mass of
the lava flow, and the smaller-scale features become suppressed
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one controlling factor on plan-view shape; there are
many other controlling factors (e.g. overall volume, vo-
latile content, eruption rate). Nevertheless each range
of silica content (basalts, basaltic andesites, andesites,
and dacites/rhyolites) appears to show qualitative dif-
ferences in plan-view shape. In this paper, we quantify
the effect of rheology on perimeters of lava flows using
fractal analysis. Our objective is to define quantitative
parameters that vary with rheology, which in combina-
tion, can be used to remotely distinguish flow types.

Methodology

The fractal analysis employed in this study uses three
quantitative parameters: correlation coefficient (R?),
fractal dimension (D), and quadratic coefficient (a).
These parameters are all calculated in accordance with
the ‘structured-walk’ method (Richardson 1961). Al-
ternative methods include ‘equipaced polygon’, ‘hybrid
walk’ and ‘cell-count” methods; these are discussed in
detail in Longley and Batty (1989). We selected the
structured-walk method because it can be readily ap-
plied, both in field measurements and from remote-
sensing images. According to the structured-walk
method, the apparent length of a lava-flow margin is
measured by walking rods of different lengths along
the margin. For each rod length (r), flow margin length
(L) is determined according to the number of rod
lengths (N) needed to approximate the margin; that is,
L =Nr. By plotting log L vs log r (called a ‘Richardson
plot’, after Richardson 1961), fractal behavior can be
determined.

Calculating correlation coefficient (R)

A linear trend on a Richardson plot indicates the data
form a fractal set, indicating self-similarity over the
range of rod lengths used. Our criterion for linearity
(i.e. fractal behavior) is an R? value exceeding 0.95,
where R is the correlation coefficient of the linear least
squares fit. This criterion is chosen somewhat arbitrari-
ly, but follows that used by Mueller (1987). Care was
taken to ensure that the data array did not artificially
flatten out at long rod lengths as a result of choosing
rod lengths that are so large such that they approach
the length of the object. One can avoid this problem
altogether by letting r approach the length of the ob-
ject (that is, letting N approach 0) and plotting all the
data on a Richardson plot. One can then visually select
the linear portion of the curve and fit a least squares
line to the selected segment. Although we have found
this technique suitable in measurements of lava flows
taken from aerial photographs, it is quite impractical in
the field, as it would involve a large number of time-
consuming measurements. We have found that choos-
ing our longest rod length such that it can be placed at
least five times along a flow margin (i.e. N=5 is a min-
imum value) is sufficient to prevent this artifact from
compromising our results.

Calculating fractal dimension (D)

The fractal dimension of a curve (such as a lava-flow
margin) is a measure of the curve’s convolution, or de-
viation from a straight line. The fractal dimension (D)
can be calculated as: )

D=1-m,

where m is the slope of the linear least squares fit to
the data on the Richardson plot (see Turcotte 1991 for
derivation and more detailed discussion). Because
lava-flow margins are characterized by embayments
and protrusions and smaller rods traverse more of
these features, L increases as r decreases. Thus, the
Richardson plot has a negative slope (m<0) and
D>1.

Calculating quadratic coefficient (a)

In the above discussions of calculating fractal dimen-
sions and correlation coefficients, the data on the Rich-
ardson plot are fit with a least squares line. Alternate-
ly, the data can be approximated by a second-order
least squares fit and the quadratic coefficient () can
provide insight into fractal tendency. An ideal fractal
would be expected to have a=0. (We tested this meth-
odology on an ideal, computer-generated fractal and
found a=0.002). A negative value of a on a Richard-
son plot (concave-downward) translates to an increase
in slope with increasing rod length, indicating a relative
lack of small-scale features. A positive value of a (con-
cave-upward) correlates with a decrease in slope with
increasing rod length, or a relative lack of large-scale
features.

Field measurement technique

We applied our methodology to lava-flow margins
both in the field and on aerial photographs and other
images. The field technique requires two people, a tape
measure, and measuring rods of various lengths. We
use wooden dowels to define the smaller rod lengths
(1/8,1/4,1/2 and 1 m) and lightweight chains to define
the longer rod lengths (2, 4, 8 and 16 m). First, we iso-
late a section of flow margin to be measured and,
somewhat arbitrarily, choose a point along the margin
as the starting point. When the selected section of flow
margin is sufficiently long to permit, the measurement
begins with one person holding one end of the 16 m
chain at the starting point (a). A second person walks
along the flow margin until the other end of the taut
chain exactly intersects the outline. This new point (b)
becomes the next starting point. Now, as the second
person holds the end of the 16 m chain fixed over point
b, the first person walks along the boundary until the
next intersection point (c) is found. This process con-
tinues until a given number of lengths (N) are mea-
sured, and the ending point is marked. To maximize

accuracy, the measurement is replicated using the same



Table 1. Directional analysis. N values obtained by replicating
field measurement in opposite direction
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Table 2. Error analysis (field data of 1972 Mauna Ulu pahoehoe,
segment 1)

r (meters) N, N, Trial number D R?
16 5.00 5.02 1 1.163 0.980
8 11.52 10.81 2 1.173 0.977
4 26.73 25.55 3 1.177 0.988
2 63.61 63.63 4 1.182 0.980
1 140.10 140.19 5 1.182 0.990
Mean D value: 1.175

chain length, but this time the persons walk in the op-
posite direction (from the ending point to the starting
point). We have found that the N values from both di-
rections match well (Table 1). The results (N) are aver-
aged and L (in meters) is calculated as L=Nr. Ideally,
this first length calculation (L;) will be based on five
lengths of a 16 m chain, so L, =80 m.

We then recalculate the length of the same segment
(L>), using a chain half of the original length (r=8 m).
Since the 8 m chain will, in all probability, record some
undulations in the flow margin that were not encoun-
tered by the 16 m chain, L,>L,, implying N,>10.
Note that it is possible (and likely) that N, will be a
fraction. We continue dividing the chain length by two
and repeating the procedure until at least five measur-
ements of L have been made using five different rod
lengths, i.e. the Richardson plots have a minimum of
five data points.

For sufficiently long flow-margin segments, these
data points generally correspond to chain lengths of 1,
2,4, 8, and 16 m. In some cases, we included an addi-
tional rod length of 0.5 m. For shorter flow-margin seg-
ments that cannot accommodate five lengths of a 16 m
chain, the first (longest) chain length we chose is the
longest chain length that can be walked along the flow
margin at least five times. In these cases, rod lengths
smaller than 1 m are necessarily used to meet the min-
imum requirement of five measuring rods/chains, sepa-
rated by a factor of two in length. The smallest rod
lengths used were 0.25 m for a’a flows and 0.125 m for
pahoehoe flows.

Error and variation analyses of field measurement
technique

We conducted analyses, based on field measurements,
to confirm both the field measurement technique’s
precision (‘error analysis’) as well as its applicability to
the entire flow margin (‘variation analysis’). To assess
the precision, we conducted five replicate measure-
ments of a typical Hawaiian pahoehoe margin: a por-
tion of the 1972 Mauna Ulu pahoehoe flow (Kilauea
Volcano). We began each measurement at the same
starting point, and measured off five lengths of a 16 m
chain. Therefore, the ending points of each measure-
ment did not necessarily coincide, but instead were
chosen such that L, =80 in each case. Each measure-
ment consisted of five data points, corresponding to
chain lengths of 1, 2, 4, 8 and 16 m. The results of this

Standard deviation: 0.008

Table 3. Variation analysis (field data of 1972 Mauna Ulu, pahoe-
hoe)

Segment number D R?

1 (avg.) 1.175 0.987
2 1.207 0.958
3 1.315 0.960
4 1.186 0.997
S 1.183 0.984
6 1.161 0.980
it 1.185 0.956 .
Mean D value: 1.202

Standard deviation: 0.052

error analysis are summarized in Table 2. Note the ne-
gligible variance of D: 0=0.008. Although this error
analysis implies that the technique is precise, it does
not suggest that the calculated D of a given flow-mar-
gin segment is representative of the entire flow. Differ-
ent segments of a flow margin may have different frac-
tal dimensions, and this error analysis does not meas-
ure this segment-to-segment variation. Therefore, we
performed an additional analysis on the 1972 Mauna
Ulu pahoehoe flow to rigorously study variation along
a flow margin. We measured D of seven adjacent seg-
ments of a flow margin in the field, with each segment
defined as five lengths of a 16 m chain (L; =80). These
results, summarized in Table 3, show a significantly
larger variation, with =0.05.

Photographic measurement technique

A form of the same ‘structured-walk method’ was uti-
lized to determine fractal dimensions of lava flows
from aerial photographs and radar images, at scales
ranging from 1:6000 to 1:70000. We tried to use flow
margins in the centers of the images to avoid distor-
tion.

The margins were digitized and the fractal dimen-
sions calculated using the EXACT algorithm (Hay-
ward et al. 1989). Computerization facilitates changing
the rod lengths in small increments, improving the pre-
cision of the calculated D. We used. 30 rod lengths,
equally spaced on a log scale. (Using more than 30 rod
lengths did not significantly improve the calculated D.)
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Consistent with the field methodology, the minimum
flow-margin segment included in the aerial photogra-
phic data set corresponds to N=5 for the longest rod
length, and fractional N-values were permitted for sub-
sequent rod lengths. The actual length of this longest
rod depends on the scale of the image, and ranges up
to 2.4 km. The minimum rod length was chosen to be
sufficiently large as to exceed both the noise inherent
in the digitization process as well as the spatial resolu-
tion of photographic images.

Error and variation analyses of photographic
measurement technique

Analogous with our analyses of the field technique, we
conduct error and variation analyses to confirm the
photographic measurement technique. Since this tech-
nique is computerized, it is perfectly reproducible; ev-
ery measurement taken from a given starting point
will, after a certain amount of rod lengths are mea-
sured, result in the exact same ending point. Thus, any
error analysis of fractal dimension would necessarily
yield o=0. In order to assess variation of fractal di-
mension among different segments of flow margin, we
select the longest flow margin in the photographic da-
tabase (Hell’s Half Acre, pahoehoe). We divide this
margin, which contains over 8000 data points, into sev-
en overlapping flow-margin segments. Each of these
segments contains 2000 points and overlaps adjacent
segments by 1000 points. Thus segments 1, 3, 5, and 7
are non-overlapping, as are segments 2, 4 and 6. To be
consistent with our field variation analysis, we would
ideally like to have seven non-overlapping flow seg-
ments. However, data limitations prevent this. The re-
sults of this analysis, summarized in Table 4, show a
comparable variation, with o=0.04.

Data

The database consists of 55 lava flow margins (or seg-
ments thereof). The selected margin may be of an indi-
vidual eruptive unit or a compound flow field. In
choosing suitable candidates for measurement, we

Table 4. Variation analysis (photographic data of Hell’s Half
Acre, pahoehoe)

Segment number D R

1 1.204 0.970
2 1.263 0.953
B 1.243 0.936
4 1.188 0.954
5 1177 0.969
6 1.218 0.960
7 1.270 0.953
Mean D value: 1.223

Standard deviation: 0.036

used the following ‘simple-case’ criteria: (1) The mar-
gin is continuous, well-preserved and unambiguous
(e.g. not obscured by forest or younger flows); (2) It is
unaffected by external controls, such as a steep ground
slope or preexisting topography; (3) The segment is
representative of the entire margin. We categorize the
analyzed flows based on composition, separating the
basalts from the more silicic flows. We further divide
the more silicic flows based on silica content. This da-
tabase is an extension of that considered by Bruno et
al. (1992), which included 28 basaltic lava flows.

Basaltic lava flows

This analysis of basaltic lava flows is based on two
types of data: (1) field studies of 27 lava flows on Ki-
lauea, Mauna Loa and Hualalai volcanoes on Hawaii.
These flows have different morphologies, and include
seven a’a, 16 pahoehoe and four ‘transitional’ flows,
i.e. flows with morphologies intermediate between a’a
and pahoehoe; (2) aerial photographs of 18 lava flows
in Hawaii, the western US, Iceland, and the Galapagos
Islands. These flows include eight pahoehoe and ten
a’a. No transitional flows are included in the photo-
graphic database. Scales of photographs range from
1:6000 to 1:60000, which determine the rod lengths
which range from 12 m to 2.4 km. Including the field
data, the scale extends down to 0.125 m for pahoehoe
flows and 0.25 m for a’a flows. The database for basal-
tic flows is summarized in Table 5a.

Silicic lava flows

This analysis of silicic lava flows is based exclusively on
data obtained from aerial photographs and radar
images; no field data have been taken to date. The da-
tabase, summarized in Table 5b, consists of ten flows
with silica contents ranging from 52 to 74%. We divide
these flows into two categories based on silica content:
basaltic andesites (SiO,: 52-58%) and more silicic
flows (SiO,: 61-74% ), the latter being primarily dacites
and rhyolites. These images have scales ranging from
1:8250 to 1:70000, which determine the lengths of
rods used (10 m—4.5 km).

Results and discussion: basaltic lava flows
Basaltic lava flow margins are fractals

Our preliminary results (Bruno et al. 1992) indicated
that both a’a and pahoehoe flow margins are fractals
within the range of scale studied (r: 0.5 m-2.4 km).
Richardson plots are linear (Fig. 5), demonstrating
self-similarity. The present analysis confirms that con-
clusion based on a larger database (45 flows) and over
a wider range of scale (r: 0.125 m-2.4 km). Further-
more, transitional flows have also been shown to be

fractal. The only cases where the margins of basaltic *
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Table 5a. Database of basaltic flows
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Flow description Flow type D R? Data type Substrate
(field data only)

Kilauea Volcano, Hawaii

1971 Mauna Ulu pahoehoe 1.19 0.962 field ash

1972 Mauna Ulu pahoehoe 1.20 (avg) 0.994 field pahoehoe

1972 Mauna Ulu pahoehoe 1.18 0.973 field pahoehoe

1972 Mauna Ulu pahoehoe 1.21 0.987 field pahoehoe

1972 Mauna Ulu pahoehoe 1.20 0.982 field pahoehoe

1972 Mauna Ulu a’a 1.05 0.990 field pahoehoe

1972 Mauna Ulu a’a 1.06 0.988 field pahoehoe

1974 Mauna Ulu pahoehoe 1.15 0.963 field pahoehoe

1974 Mauna Ulu transitional 1.10 0.975 field pahoehoe

1974 Mauna Ulu transitional 1.12 0.977 field pahoehoe

1974 Mauna Ulu a’a 1.07 0.987 field pahoehoe

1974 Mauna Ulu a’a 1.09 0.963 field pahoehoe

1974 Mauna Ulu a’a 1.08 0.965 field pahoehoe

1977 Pu’u O’o a’a 1.05 0.967 photo

1982 Kilauea pahoehoe 1.21 0.989 field ash

1990 Pu’u O’o pahoehoe 1.18 0.995 field pahoehoe

Mauna Loa Volcano, Hawaii

prehistoric, nr Saddle Rd pahoehoe 1.23 0.988 field a’a

prehistoric, nr Pu’'u Ki pahoehoe 1.23 0.997 field a’a

prehistoric, nr Pu’u Ki pahoehoe 1.12 0.954 field pahoehoe

1843 Mauna Loa a’a 1.11 0.972 photo

1843 Mauna Loa pahoehoe 1.15 0.969 field pahoehoe °

1852 Mauna Loa pahoehoe 1.13 0.992 photo

1855 Mauna Loa pahoehoe 1.19 0.960 photo

1855 Mauna Loa pahochoe 1.17 0.986 field pahoehoe

1855 Mauna Loa pahoehoe 1.19 0.979 field a’a

1855 Mauna Loa transitional 1.09 0.961 field a’a

1859 Mauna Loa a'a 1.07 0.965 photo

1859 Mauna Loa pahoehoe 1.14 0.970 field a’a

1881 Mauna Loa pahoehoe 1.17 0.970 photo

1899 Mauna Loa a'a 1.13 0.981 photo

1935 Mauna Loa a'a 1.08 0.973 photo

1935 Mauna Loa pahoehoe 1.20 0.956 photo

1935 Mauna Loa pahoehoe 1.15 0.988 field a’a

1942 Mauna Loa a'a 1.07 0.973 photo

Hualalai Volcano, Hawaii

1800 Hualalai a’a 1.06 0.968 photo pahoehoe

1800 Hualalai transitional 1.15 0.992 field pahoehoe

1800 Hualalai a’a 1.09 0.967 field pahoehoe

1800 Hualalai a’a 1.08 0.995 field pahoehoe

Non-Hawaiian Volcanoes

Hell’s Half Acre, Idaho pahoehoe 1.21 0.981 photo

Volcano Peak, California pahoehoe 123 0.963 photo

Fernandina, Galapagos a’a 1.07 0.972 photo

Fernandina, Galapagos a’a 1.09 0.952 photo

Fernandina, Galapagos a’a 1.05 0.985 photo

Krafla, Iceland pahoehoe 1.16 0.971 photo

flows are not fractal are on steep slopes. In these cases
where the margin is externally controlled by a steep
ground slope, the margin becomes more linear, with
fewer convolutions.

The fractal behavior of pahoehoe and a’a flows
might be predicted by their basaltic composition. Low
viscosities of the order of 1000 Pa-s for typical eruption
temperatures of 1150°C, coupled with a negligible
yield strength for most basalts, offers no obstacle to
prevent self-similar features from being formed on a
wide range of scales. We note that at some small scale

below the detection limit of this study, fractal behavior
will eventually break down due to material proper-
ties.

Pahoehoe and a’a have different D

We find that over a wide range of geographic locations
(Hawaii, Iceland, western US, Galapagos Islands), bas-
altic lavas divide into two populations with regard to
their fractal dimensions. A’a flows generally have D
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Table 5b. Database of silicic flows

Scale of image

Reference

1:27000 Thorpe et al. (1984)

1:13500 P Francis (personal communication)
1:8250 Gudmundsson et al. (1991)

1:21500 Gudmundsson et al. (1991)

1:36000 Ulrich and Bailey (1987)

1:30000 Smith and Carmichael (1968)

1:8250 Nicholson (personal communication)
1:8250 Sigmarsson (personal communication)
1:70000 Guest and Sanchez (1969)

1:12000 Eichelberger (1975)

Flow description SiO, (%) Flow type
1 Andes Mountains 52 Bas. Andesite
2 Andes Mountains 52 Bas. Andesite
3 1980 Hekla, Iceland 55 Bas. Andesite
4 1991 Hekla, Iceland 55 Bas. Andesite
5 SP Flow, Arizona 57 Bas. Andesite
6 Lava Park Flow, California 61 Andesite
7 Ludent, Iceland 65 Dacite
8 1104 Hekla, Iceland 65 Dacite
9 Chao, Chile 66 Dacite
10 Glass Mountain, California 74 Rhyolite
Basalts
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Fig. 5. Richardson plots of typical a’a and pahoehoe flows, in me-
ters, based on field data. High R? values (>0.95) indicate fractal
behavior. The more convoluted margins of pahoehoe flows trans-
late to higher D

5
Basaltic flows W Aa
O Pahoehoe
[},
w
3
= 3F . ™
bS]
[ 5
2
E 2
b
Z
1F
0‘ 1 =T L O L L )
100 1.05 110 115 1.20 125

Fractal dimension (D)

Fig. 6. Histogram of D values of a’a and pahoehoe flows based on
field and photographic data. Both field and photographic meas-
urements show pahoehoe flows have higher D than a’a flows.
Transitional flows (not shown) tend to have intermediate D

ranging between 1.05 and 1.09 whereas pahoehoe flows
typically have D ranging between 1.15 and 1.23. Figure
6 summarizes our results for basaltic flows. Most (12 of
14) of the Hawaiian a’a flows have D between 1.05 and
1.09; all have D between 1.05 and 1.13. Most Hawaiian
pahoehoe flows (18 of 21) have D between 1.15 and
1.23; all have D between 1.12 and 1.23. The two pahoe-
hoe flows in the western US yield measurements of
1.21 and 1.22, consistent with the range of Hawaiian
pahoehoe flows. Similarly, the Krafla, Iceland basalt
(pahoehoe) falls into the Hawaiian pahoehoe range,
with a fractal dimension of 1.16. The three Galapagos
flows measured, all a’a, yield D values of 1.05, 1.07 and
1.09, in agreement with the range of Hawaiian a’a
flows. This is good evidence that regardless of the ex-
act nature of the eruption, the pahoehoe flows consis-
tently have higher D than a’a flows.

By definition, fractals should have constant ranges
of fractal dimensions, regardless of the rod lengths
used to measure D. Thus, if lava flows are fractals over
the range of scale studied, the fractal dimensions ob-
tained at the field scale (0.125-16 m) should be similar
to the range of fractal dimensions obtained at the aer-
ial photographic scale (12 m-2.4 km) for a’a as well as
pahoehoe. This is confirmed by our results. All seven
a’a flows measured in the field have D between 1.05
and 1.09 (Fig. 6), the same range we find for photo-
graphic data of a’a flows (Fig. 6). All 16 pahoehoe field
measurements have D between 1.12 and 1.23, com-
pared with a range of 1.13-1.23 for photographic data
of pahoehoe flows.

For three flows (all pahoehoe), we measured mar-
gins of the same flow in the field and from aerial pho-
tographs. The fractal dimensions as measured from
aerial photographs are 1.19 (1855 Mauna Loa), 1.14
(1859 Mauna Loa) and 1.20 (1935 Mauna Loa). Field
measurements yielded corresponding D of 1.17, 1.16
and 1.15, respectively. These variations in D are within
the variation of Table 3, and indicate fractal behav-
ior.

Flows that we have determined to be transitional
between a’a and pahoehoe based on field observations
tend to have intermediate fractal dimensions, as might
be expected. Of the four field measurements of transi-
tional flows, three have D between 1.09 and 1.12; the
fourth has a slightly higher D of 1.15.

Niimalbear Af €lAawwe



Substrate type
3l A'a
B Ash
B Pahoehoe
Y]
£ 2f
]
@
fa)
€
z r
0 \

172 124, 116 118 120 122 124
Fractal dimension (D)

Fig. 7. Histogram of D values of pahoehoe flows on three differ-
ent substrates — preexisting a’a or pahoehoe flow, or ash — based
on field data. There is no apparent correlation between D and
substrate type

One might expect that the fractal dimensions of
flow margins would be affected by the nature of the
substrate over which they flowed. A pahoehoe margin
might be different on a preexisting a’a flow compared
to a preexisting pahoehoe flow. However, a detailed
analysis shows that D values are unaffected by differ-
ences in substrate. We took 16 field measurements of
Hawaiian pahoehoe flows. Some of these lavas flowed
upon preexisting a’a lava flows (5), others upon preex-
isting pahoehoe flows (9), still others atop ash deposits
(2). Figure 7 shows the lack of correlation between D
and substrate for these 16 flows. In one case (1855
Mauna Loa pahoehoe), we performed a controlled ex-
periment on the effect of substrate on D. We measured
D in one location where this pahoehoe flowed over a
preexisting pahoehoe, and again nearby (within
100 m), where the same flow covered an a’a substrate.
The D values obtained for this flow overlying pahoe-
hoe and a’a substrates (1.17 and 1.19, respectively) are
well within the observed variation of D along a flow
margin with a constant substrate (see Table 3).

Clearly, a pattern emerges for the fractal dimen-
sions of terrestrial basaltic lava flows. Regardless of
geographic location, lengths of rods used, or substrate
material, pahoehoe flow margins consistently have
higher D than a’a flow margins within the range of
scale studied. This is consistent both with the prelimi-
nary results of Bruno et al. (1992) and also the obser-
vation that the outlines of pahoehoe and a’a flows are
qualitatively different.

A note about topographically controlled flows

Topographically controlled flows have been excluded
from this analysis because these external controls can
have a significant effect on D. Positive topography (e.g.
hills) may deflect or bifurcate flows, increasing the de-
gree of flow-margin convolution and therefore increas-
ing D. Negative topography (e.g. channels) serves to
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Table 6. Slope analysis. Effect of slope on fractal properties of
1972 Mauna Ulu a’a flow (field data)

Flow Description Flow type D R? Slope
1972 Mauna Ulu a’a 1.046 0.990 11.6°
1972 Mauna. Ulu a’a 1.055 0.988 14.7°
1972 Mauna Ulu a’a 1.023 0.778 27.8°

confine or channelize flows, causing the margin to be-
come more linear and thus decreasing D. In many
cases, these external controls interfere with the devel-
opment of self-similar features, and prevent fractal be-
havior. Similarly, we have found fractal behavior to
break down, with an accompanying decrease in D, on
steep (>15-28°) slopes (see Table 6). This tendency
toward nonfractal behavior as the gravity-driven force
on the flow increases is consistent with the results pre-
sented in Baloga et al. (1992).

Implications for flow dynamics

The fractal properties of lava flows may offer insight
into the dynamics of flow emplacement because frac-
tals reflect nonlinear processes (e.g. Campbell 1987).
We have made a preliminary evaluation of the nonli-
near aspects of flow dynamics to obtain a qualitative
indication of the tendency toward fractal behavior.
Following earlier fluid dynamic models (e.g. Baloga
and Pieri 1986; Baloga 1987), we depict variations in
the free surface of a lava flow as due to a balance be-
tween a gravitational transport term and the fluid dy-
namic (‘magmastatic’) pressure gradient. Baloga et al.
(1992) define two dimensionless parameters (p and q)
to describe the relative importance of these two in-
fluences. The parameter p is the ratio of the pressure
gradient to gravitational terms; the parameter q is an
absolute measure of the gravitational force on the
flow. Baloga et al. (1992) developed a governing equa-
tion for the three-dimensional surface of a lava flow
during emplacement, based on simplifying assump-
tions:

oh/dt +qh?(8h/dx) = pq 8/dy [h* (ah/dy)]
where

p =cotfhyL/(3w?)

q=gsin6hgT/(vL)

and where x and y are the downstream and cross-
stream directions respectively, h=flow thickness,
t=time; hy, L, w and T are scales for thickness, length,
width and time, respectively; #=slope, v=Xkinematic
viscosity and g=gravitational acceleration.

By assuming dh/ot is on the order of 1, Baloga et al.
(1992) evaluated this equation for selected values of p
and q (Fig. 8). High p values (right column of the ma-
trix) indicate the magmastatic pressure gradient is im-
portant relative to gravity. Low q values (top row of
matrix) indicate a weak gravitational term. Thus, in
case 1c (large p, small q), the gravitational term is the
least important, both relatively (to the pressure gra-
dient) and absolutely, and the magmastatic pressure
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p<<1 p=1 p>>1
q<<1 Case 1a Case 1b Case 1c
oh/ot=0 oh/ot=0 Assume pq = 0(1)
oh/dt = 3/dy[h3(3h/dy)]
q=1 Case 2a Case 2b Case 2¢

oh/ot + h2(oh/dx) = 0

oh/ot + h2(9h/ox) = 9/dy[h3(dh/dy)]

0 = 9/3y[h3(3h/dy)]

Fig. 8. Matrix of special cases of the
governing equation for selected val-

q>>1 Case 3a Case 3b
Assume pq = 0(1) h2(3h/dx) = 3/dy[h3(3h/dy)]

h2(9h/dx) =0

ues of p and g, obtained by assuming
dh/dt is on the order of 1. Some of
Case 3¢ the equations in the matrix are linear;
others are nonlinear. The linear
equations would not be expected to
produce fractals, whereas the non-
linear equations could be expected to
produce fractals. See text for details

0= 0/9y[h3(@h/dy)]

gradient dominates. Thus, since the lava flow is being
largely driven by internal fluid dynamic forces in case
Ic, we predict that this combination of p and q is likely
to produce fractal behavior. As expected, the resulting
diffusion equation is explicitly nonlinear.

For the same q (q<1), consider the cases corre-
sponding to p values that are low (case 1a) and moder-
ate (case 1b). Both of these equations are linear, and
would therefore not be expected to produce fractals.
Since p is proportional to the ratio of magmastatic
pressure gradient to gravitational driving force, this has
important implications for the effect of gravity on frac-
tal behavior. When gravity plays a non-negligible role
(small or moderate p), the matrix predicts that the
lava-flow margin would not be fractal. This is consis-
tent with our field observations on Hawaii that flow
outlines are not fractals when slopes are steep.

Case 2b is nonlinear diffusion with a kinematic
transport term. Case 3b is the steady-state nonlinear
diffusion equation. These are also likely candidates for
producing fractals. Cases 2c and 3c are both nonlinear
and are dominated by the pressure gradient term
(p>1). These cases may be expected to produce fractal
behavior, but are difficult to interpret physically.

This analysis suggests that nonlinear processes are
common in lava flows, particularly in those cases
where the magmastatic pressure gradient influence is
significant relative to the influence of gravitational
transport. These nonlinear equations are candidates
for producing fractals, provided they are physically
plausible. Further studies are underway to (1) test this
physical plausibility by continued comparison of theor-
etical prediction and field measurements and (2) ex-
tend the underlying physics to include more complex
rheologic properties for lava flows of different compo-
sitions.

Results and discussion: silicic lava flows

Silicic lava flows are generally not fractals

Silicic lava flows are generally not fractals within the
range of scale studied (r: 10m—4.5 km). Typical Rich-
ardson plots for basalt, basaltic andesite, and dacite are
shown in Fig. 9. Unlike the basaltic case, the Richard-
son plots for basaltic andesite and dacite are nonlinear,
characterized by relatively low R? values. Instead of
fractal behavior, these Richardson plots exhibit scale-
dependent behavior: longer rod lengths have steeper
slopes, most notably for the dacite. Thus, D tends to
increase as r increases, contradicting the definition of
D as a scale-independent parameter. This breakdown
of fractal behavior at increased silica content is pre-
sumably related to the higher viscosities and yield
strengths, which suppress smaller-scale features and
thus prevent self-similarity over a wide range of
scales.

Quantifying the effect of silica content on D

We seek to develop parameters that can be used re-
motely to quantify the effect of increasing silica con-
tent on fractal properties by comparing basalts, basaltic
andesites, and dacites/rhyolites for two main purposes:
(1) to gain insights into yield strength and rheological
processes, and (2) to develop a remote-sensing tool
that can differentiate flow type based on plan-view
shape. Our approach is to use the study of basaltic
flows as a benchmark for comparison with the more
silicic flows. However, we restrict our basaltic ‘bench-
mark’ to a’a flows, which are similar to silicic flows in
terms of both morphology and emplacement mecha-
nism.
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Fig. 9a-c. Richardson plots of representative a a’a basalt (Gala-
pagos Islands); b basaltic andesite (Hekla, Iceland); e dacite
(Chao, Chile), based on image data. Note that the data in (a) are
closely approximated by a straight line, whereas the data for the
higher silica flows (b, c) are not linear

Ideally, we would like to compare D of silicic flows
to basaltic flows, to see how D changes with silica con-
tent. However, this approach is tricky because, as
noted above, silicic flows are generally not fractals; in-
stead D tends to increase with r for the majority of the
silicic flows. Hence, the concept of a scale-independent
fractal dimension for silicic flows is not valid. However,
small regions of logr can be locally fit with a line. Here
we introduce the concept of a ‘local fractal dimension’.
This does not imply the data set is fractal, nor that the
local fractal dimension is scale-independent. It simply
exploits our observation that select regions of the data
can be fit by a line and we can estimate locally the de-
gree of convolution for a selected range of rod lengths.
Here we describe two methods used to compare silicic
and basaltic flows. Both of these methods are sensitive
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to — and based on — our observation that silicic flows
do not have scale-independent fractal dimensions.

Method 1: disjoint subsets of logr

This method dissects the abscissa of the Richardson
plot into disjoint subsets of logr. The specific choice of
subsets (summarized in Table 7a) is constrained by the
data. Each of these subsets is fit locally by a least
squares line; that is, the Richardson plot is fit by a se-
ries of lines. For each line, the slope (m) is calculated,
and local fractal dimension D is calculated as 1 — m,
consistent with our methodology for basaltic flows.
Since this method can be used to describe fractals as
well as non-fractals, it can be employed to compare
basaltic and silicic lava flows.

Figure 10 shows sample Richardson plots of basalt,
basaltic andesite and dacite, with the abscissa dissected
according to the methodology described above. The
data on these plots are the same as shown in Fig. 9; the
only difference is the number of lines used to fit the
data. Note that for the basalt, the three segments have
essentially the same slope. This is consistent with our
conclusion that basalts are fractals. Unlike the basalts,
the basaltic andesite and dacite show noticeable differ-
ences in slope among the various subsets.

By plotting D of these segments vs. logr for the en-
tire database of silicic flows, patterns begin to emerge
among the basaltic andesites and the more silicic flows
(primarily dacites and rhyolites). The basaltic andesites
have roughly the same D values for the first two sub-
sets (Fig. 11). At rod lengths of about 100m
(logr=2m), D starts to increase, and the values also
have a greater scatter. For the first three subsets of
logr, the dacites/rhyolites have D plotting in a rather
compact area, showing only negligible differences
among the various ranges. At logr~2.5m, D appar-
ently begins to increase. We can use this technique to
distinguish basaltic andesites from the more silicic
flows. Both have a general increase in D with longer r,
but the basaltic andesites tend to have greater D for
each of these categories. Furthermore, the fact that da-
cites/rhyolites show negligible changes within the first
three subsets (logr<2.5 m), whereas the basaltic ande-
sites only remain relatively constant for the first two

Table 7. Ranges of logr (meters) for a Method 1 and b Meth-
od2

a METHOD 1
Log r (meters)

Range 1: <15

Range 2: 1.5-2.0
Range 3: 2.0-25
Range 4: 2.5-33

b METHOD 2
Log r (meters)

Range 1: 1.7-2.8
Range 2: 1.7-2.5
Range 3: 1.3-2.0
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Fig. 10. Dissected Richardson plots of representative samples of a
a’a basalt (Galapagos Islands); b basaltic andesite (Hekla, Ice-
land); ¢ dacite (Chao, Chile), based on photographic data (same
data as Fig. 9). Here, the abscissa is dissected into ranges of logr
(Table 7a), and each range is locally fit with a straight line. Local
fractal dimension is calculated as D=1—m, where m is the local
slope as calculated according to Method 1. From left to right of
these Richardson plots (increasing r), these local fractal dimen-
sions are: a D=1.07 for each segment; b D=1.17, 1.19, 1.19, 1.46.
(c) 1.02, 1.03, 1.05, 1.20. Note that D values are constant for (a),
but not for (b) and (c). See text regarding Method 1

subsets (logr<2.0 m), is apparent. Figure 11 also em-
phasizes that D is not a constant function of logr for
both basaltic andesites and dacites/rhyolites, indicating
scale-dependent (non-fractal) behavior. Fractals such
as basalts have relatively constant fractal dimensions
across the various subsets. However, a sufficiently
large range of logr is needed to discern fractal and
non-fractal behavior. Note that a’a basalts and dacites
have a similar range of fractal dimensions for the first
three categories. Since data limitations often prevent
obtaining such a large range of logr, we invoke a sec-
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Fig. 11. Summary of ‘local fractal dimension’ (D) based on photo-
graphic data for entire database of silicic flows. Basaltic andesites
are shown as open circles, whereas dacites and rhyolites are
shown as solid triangles. Note that D is not a constant function of
logr indicating non-fractal behavior

ond method to differentiate a’a basalts from dacites,
described below.

Method 2: overlapping subsets of logr

Like Method 1, this method dissects the abscissa of the
Richardson plot into distinct regions of logr. However,
it is different from the previous method in two re-
spects. First, the selected ranges (as summarized in Ta-
ble 7b) of logr are overlapping. Although the exact
choice of ranges is again constrained by the data, they
were intentionally chosen to overlap. This is to expli-
citly show the effect of a restricted range of rod lengths
on local fractal dimension. For example, by comparing
Region 1 (logr: 1.7-2.8 m) and Region 2 (logr: 1.7-
2.5m), we can explicitly see the effect of a restricted
range of logr (2.5-2.8 m) on D and R? Second, as
these regions span a greater range of logr than those in
Method 1, we have sufficient data points to fit a sec-
ond-order least squares curve to the data, in addition
to the standard first-order least squares line. In this
method, we fit a curve of the form y=ax?*+bx+c, and
note the value of the leading (or quadratic) coefficient
a. In summary, this method compares three quantita-
tive parameters (D, R?, @) for three overlapping ranges
of logr.

Applying Method 2 to dacites and rhyolites, we
note systematic variation in D, R? and a with range of
rod length. In four out of five cases, the longest rod

lengths (Range 1) have the highest D and the lowest
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corresponding R? values, whereas the shortest rod
lengths (Range 3) have the lowest D and the highest
R? values. Fitting a quadratic curve to Range 1 in each
case yields a negative a. For Range 3, a can be either
positive or negative. The D, R? and a for the dacites/
rhyolites provide remarkably consistent results: all sug-
gest scale-dependent (or non-fractal) behavior, charac-
terized by an increase in D with increasing r. We attri-
bute this to the suppression of small-scale features, due
to the higher viscosities and yield strengths of silicic
flow. We suggest the margin appears ‘linear’ to a cer-
tain range of small rod lengths because the scale of fea-
tures they would otherwise detect are suppressed. This
explains a fractal dimension close to 1 for the shortest
range of rod lengths and, as expected, the correspond-
ing R? values are quite high. We interpret these results
to suggest that the shortest range of rod lengths (logr:
1.3-2.0 m) detects features in the flow margin that are
below the limit of self-similarity.

We now present the results of Method 2 applied to
basalts (i.e. those basalts which we measured using the
ranges of r shown in Table 7b). Fractal dimension and
the corresponding R* values show no systematic varia-
tion with range of rod length. The R? values are high,
generally exceeding 0.95. The parameter a can be posi-
tive or negative, is generally close to zero, and again
shows no systematic pattern among the various ranges.
These results for D, R? and a for basalts all suggest
fractal behavior.

We can use these fractal parameters to remotely dif-
ferentiate flow types. Basaltic a’a and basaltic ande-
sites can be distinguished primarily by their D values;
basaltic andesites generally have higher D (=1.15)
than basaltic a’a (D: 1.05-1.09) and are less likely to
exhibit fractal behavior. Although dacites/rhyolites
and basalts have similar fractal dimensions (1.05-1.10)
for extensive ranges of logr, dacites and rhyolites dis-
tinctly show non-fractal behavior. Systematic evalua-
tion of D, R?, and « at different range of rod lengths
(as done in Method 2) can be used to distinguish da-
cites and rhyolites from basalts remotely.

There may be a critical value of 1, related to silica
content, which serves as a boundary for self-similar be-
havior (i.e. a value of r above which the flow appears
fractal). This critical value may be related to lobe di-
mensions and/or the degree of suppression of smaller-
scale features. Note that Fig. 11 shows a marked in-
crease in D for dacites after about logr of 2.5m
(r=300m). This may be related to the lobe width of
dacites, typically hundreds of meters. If so, we would
expect the apparent D of basaltic andesites to increase
at shorter rod lengths. This may be suggested by Fig.
11 but our database is too small to be conclusive. We
believe that a larger database of silicic flows would re-
veal a critical value of breakdown of fractal behavior
related to silica content. The fact that basaltic andesites
appear to have relatively constant fractal dimensions
up to logr=2 m while dacites/rhyolites appear to have
relatively constant fractal dimensions up to
logr=2.5 m suggests an effect of yield strength which
is related to silica content. Our field observations
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shows that fractal behavior for basalts also breaks
down, but at r<10 cm.

The suppression of smaller-scale features in silicic
flows implies that nonlinear instabilities are also sup-
pressed inside the flows. Either the sluggish rheology
prevents their formation, or it prevents their growth by
rapidly damping out feedback mechanisms. The gener-
ally non-fractal nature of the margins of silicic flows is
consistent with our simplified flow model (Fig. 8). Vis-
cosities of silicic flows are very large, >10° for basaltic
andesites and >10® for dacites and rhyolites, so q is
certainly <1. Thus, unless the flows have very large
initial pressures, it is likely that their behavior would
tend to be linear.

Conclusions
1. Basaltic lava flows are fractals

Bruno et al. (1992) suggested that basaltic lava flows
are fractals, with pahoehoe flow margins having higher
fractal dimension (1.13-1.23) than a’a flow margins
(1.05-1.09). This study, based on a larger database (45
flows) and over a wider range of scale (0.125 m-
2.4 km), confirms that earlier conclusion. Richardson
plots are consistently linear, characterized by high R?
values. Furthermore, we have shown that basaltic lava
flows having transitional morphologies also exhibit
fractal behavior, and tend to have dimensions interme-
diate between a’a and pahoehoe. This indicates that
basaltic lavas, regardless of the emplacement mecha-
nism, exhibit self-similar behavior. We interpret this to
suggest that basalts are sufficiently fluid and lack a
sizeable yield strength, offering no obstacle to deter
the formation of small-scale self-similar features.

2. Silicic flows are generally not fractals

Unlike basalts, silicic lava flows tend to exhibit scale-
dependent (non-fractal) behavior within the range of
scale studied (r: 10 m—4.5 km). Typical Richardson
plots for basaltic andesites and (especially) the more
silicic dacites and rhyolites are non-linear. This break-
down of fractal behavior at increased silica content is
presumably related to the higher viscosities and yield
strengths, which suppress smaller-scale features.

3. Flow dynamics are nonlinear

Our observations that basaltic lava flows have fractal
outlines when they are internally controlled yet have
non-fractal outlines when they are controlled by gravi-
tational forces are consistent with our theoretical mod-
el. An assessment of flow dynamics suggests that nonli-
near processes operate for lava-flow emplacement on
relatively flat slopes. These nonlinear mechanisms are
damped out in silicic flows, leading to non-fractal mar-
gins, especially at small rod lengths.
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4. Quantifying the effect of rheology

One of the primary objectives of this study is to re-
motely distinguish flow types. We suggest that fractal
dimension (or local fractal dimension), correlation
coefficient, and quadratic coefficient can be used, in
combination, to attain this objective. We define ‘local
fractal dimensions’ for select ranges of logr, and find
that D tends to increase with increasing r after certain
critical rod lengths are exceeded. We can use local
fractal dimension to differentiate basaltic andesites
from dacites and rhyolites. Although basaltic a’a and
dacites have similar fractal dimensions over a wide
range of r, the parameters R? and a can be used to re-
motely differentiate between these flow types.
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