GG 460 Geological Remote Sensing (Spring)
Lectures (TTh) and Labs (F)

Instructors:
Scott Rowland
POST 617A (63150)
scott@hawaii.edu
Rob Wright
POST 526A (69194)
wright@higp.hawaii.edu

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab or Lecture (SLO*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td></td>
</tr>
</tbody>
</table>
Class Organization, Overview and Examples of Remote Sensing (1)
The nature of light (generation and propagation of radiation; 1, 3, 5)
ENVI familiarization, Contrast Enhancements, Band Combinations, Subsampling (2) |
| **Week 2** |
The passage of light from source to the sensor (how much radiation is available for us to measure, and the composition of that radiation; 1, 3, 5)
The reflection of light from the target (interaction of radiation with matter; 1, 3, 5)
Digital Image Processing I: Spatial Resolution and Spatial Filters (2) |
| **Week 3** |
Data Collection I: Satellite Platforms and Orbits (1, 3, 5)
Data Collection II: Signal Collection, Data Depth, Image File Types (1, 3, 5)
Digital Image Processing II: Band Ratios, NDVI, Density Slices (2) |
| **Week 4** |
Image Co-Registration, Resampling, Geo-coding, and UTM (1, 3, 5)
The spectral reflectance properties of some common targets (the spectral fingerprints of Earth surface materials; 1, 3, 5)
Digital Image Processing III: Resampling, Co-Registration, Geo-Registration (2) |
| **Week 5** |
How well do remote sensing data capture real-world variability, spatially, spectrally, radiometrically, and temporally? (1, 3, 5)
Thermal remote sensing I: basic physics (heat, temperature, energy, and blackbody Radiation; 1, 3, 5)
Digital Image Processing IV: Reflected and Emitted Energy (2) |
| **Week 6** |
Thermal Infrared II: useful parameters that can be derived from thermal infrared data (emissivity, temperature; 1, 3, 5)
The effect of the atmosphere on the quality of a remotely sensed measurement (1, 3, 5)
Digital Image Processing V: Scatter Plots (2) |
| **Week 7** |
Intro to GPS (1, 3, 5)
Using a hand-held GPS, in-class exercise (2)
GPS Mapping (2) |
| **Week 8** |
Image Classification (1, 2, 3, 5)
MID-TERM EXAM #1
Digital Image Processing VI: Image Classification (2) |
| **Week 9** |
Principal Components (1, 2, 3, 5)
Introduction to Synthetic Aperture Radar (SAR) (1, 3, 5)
Digital Image Processing VII: Principal Components, Decorrelation Stretches (2) |
| **Week 10** |
Geological applications of SAR data (1, 3, 5)
Hyperspectral remote sensing (1, 3, 5)
Digital Image Processing VIII: Pan-sharpening, Hyperspectral Data (Scott gone; 2) |
Week 11
SPRING BREAK !!!!!!

Week 12
Detecting wildfires and volcanic eruptions from space (1, 2, 3, 5)
Digital Elevation Models and Interferometric SAR (InSAR) (1, 3, 5)
Distribute Data Sets for Big Island project, Intro. to Hawaiian Volcanic Products (1)

Week 13
Large-scale Topographic Change from InSAR (1, 3, 5)
Small-scale Topographic Change from InSAR (1, 3, 5)
Work on Big Island project

Week 14
Air Photos, parallax, distortion (1, 3, 5)
MID-TERM EXAM #2
Work on Big Island project anyway

Week 15
Components of a space mission (how spacecraft work to support remote sensing Missions; 1, 2, 5)
Computer Graphics Packages, Vector vs. Raster, Image Compression (1, 2, 3, 5)
Digital Image Processing IX: DEMs, Cross-Sections, and Perspective Views (2)

Week 16
High spatial resolution data, orthorectification (1, 2, 3, 5)
no class, but Preliminary Big Island projects due (start of Big Island field trip) (4)
Big Island Field Trip (1, 3, 5)

Week 17
no class – work on final projects
FINAL PROJECT DUE AT 4:00 PM! (4)
NO EXCEPTIONS!!!!

This course is partially supported by the Hawai‘i Space Grant Consortium and the Dept. of Geology & Geophysics; computer support kindly provided by Pat Townsend, Sharon Stahl, and Ross Ishida.

Labs are due at the beginning of the following lab – no late labs will be accepted, sorry.
The Big Island project is due twice. The first version, which will require the most work, is due on Thursday May 1 (before we get on the plane). No late final projects will be accepted, sorry.

Grading:
- homework 5%
- midterms 15% each
- lab assignments 40%
- Big Island project 25%
Useful Textbooks:
Ray RR (1960), Aerial photographs in geologic interpretation and mapping. US Geol Surv Prof Pap

Remote Sensing Journals:
International Journal of Remote Sensing
Remote Sensing of the Environment
IEEE Transactions on Geoscience and Remote Sensing

*SLOs - Student Learning Objectives
The Geology & Geophysics Dept. has decided that the following Student Learning Objectives are key goals for any G&G student:

1. Students can explain the relevance of geology and geophysics to human needs, including those appropriate to Hawai‘i, and be able to discuss issues related to geology and its impact on society and planet Earth.

2. Students can apply technical knowledge of relevant computer applications, laboratory methods, and field methods to solve real-world problems in geology and geophysics.

3. Students use the scientific method to define, critically analyze, and solve a problem in earth science.

4. Students can reconstruct, clearly and ethically, geological knowledge in both oral presentations and written reports.

5. Students can evaluate, interpret, and summarize the basic principles of geology and geophysics, including the fundamental tenets of the sub-disciplines, and their context in relationship to other core sciences, to explain complex phenomena in geology and geophysics.

If you have a disability and related access needs the Department will make every effort to assist and support you. For confidential services students are encouraged to contact the Office for Students with Disabilities (known as “Kōkua”) located on the ground floor (Room 013) of the Queen Lili‘uokalani Center for Student Services.