

Definition of Igneous Rocks

- Igneous rocks form from cooling and crystallization of molten rock- magma
 - Magma molten rock within the Earth
 - Lava molten rock on the Earth's surface
- Igneous rocks form the framework for the earth's crust

General Characteristics of Magma

- Igneous rocks form as molten rock cools and solidifies
- · General characteristics of magma:
 - Parent material of igneous rocks
 - Forms from partial melting of rocks
 - Magma at surface is called lava

General Characteristics of Magma

- General characteristics of magma:
 - Rocks formed from lava are extrusive, or volcanic rocks
 - Rocks formed from magma at depth are intrusive, or plutonic rocks

Nature of Magma

- Composed of three portions liquid, solid and gas
- Liquid portion = melt
 - Mobile ions in solution
 - Silicate ion, K+1, Ca+1, Na+1, Fe+2, Mg+2
- Solid component = silicate minerals
 - May contain silicate minerals
 - · Formed early or undergoing melting
 - Slow forming produces large crystals
- Gaseous portion = volatiles
 - Most commonly H2O, CO2 and SO2
 - May propel magma to surface
 - Can enhance melting

Magma

Usually a silicate melt (liquid) at high temperatures (650 to 1200°C)

Mixture of all the elements that make up minerals *plus* volatile components:

 H_2O , CO_2 , CI, F, S

These components form gases and will boil off when pressure is released

Origin of Magma

- Generating magma from solid rock
 - · Role of heat
 - Temperature increases with depth in the upper crust (geothermal gradient)
 - » Average between 20°C to 30°C per kilometer
 - Rocks in the lower crust and upper mantle are near their melting points
 - Additional heat may induce melting

Origin of Magma

- Role of pressure
 - Increases in confining pressure increases a rock's melting temperature
 - When confining pressures drop, decompression melting occurs
- · Role of volatiles
 - Volatiles (primarily water) cause melting at lower temperatures
 - Important factor where oceanic lithosphere descends into the mantle

Igneous rocks

Formed from the cooling and consolidation of magma

- Plutonic (intrusive) cooled below the surface
- Volcanic (extrusive) cooled on the surface

Classification of Igneous Rocks

Defined by texture:

- Fine-grained: extrusive or volcanic
- Coarse-grained: intrusive or plutonic

General Characteristics of Magma

- Crystallization of magma
 - Cooling of magma results in the systematic arrangement of ions into orderly patterns
 - Silicate minerals result from crystallization in a predictable order
 - Texture is the size and arrangement of mineral grains

Igneous Textures

- Texture is the overall appearance of a rock based on the size, shape, and arrangement of interlocking minerals
- Factors affecting crystal size:
 - · Rate of cooling
 - Slow rate = fewer but larger crystals
 - Fast rate = many small crystals
 - Very fast rate forms glass

Based on Mineral Composition and Texture

- · Phaneritic- mineral crystals are visible e.g. Granite & Gabbro
- · Pegmatite- exceptionally large crystals e.g. Pegmatite
- · Aphanitic- crystals not visible e.g. Rhyolites & Basalt
- Porphyritic- large crystals surrounded by small crystals-(indicate slow & abrupt rapid cooling) e.g. Porphyritic Granite
- Volcanic glass-very rapid cooling
 - Pumice (high gaseous silica rich lava) & obsidian

Coarsely Crystalline Granite

Based on Mineral Composition and Texture

- Phaneritic- mineral crystals are visible e.g. Granite & Gabbro
- · Pegmatite- exceptionally large crystals e.g. Pegmatite
- · Aphanitic- crystals not visible e.g. Rhyolites & Basalt
- Porphyritic- large crystals surrounded by small crystals-(indicate slow & abrupt rapid cooling) e.g. Porphyritic Granite
- Volcanic glass- very rapid cooling
 - Pumice (high gaseous silica rich lava) & obsidian

Based on Mineral Composition and Texture

- · Phaneritic-mineral crystals are visible e.g. Granite & Gabbro
- · Pegmatite- exceptionally large crystals e.g. Pegmatite
- · Aphanitic- crystals not visible e.g. Rhyolites & Basalt
- Porphyritic- large crystals surrounded by small crystals-(indicate slow & abrupt rapid cooling) e.g. Porphyritic Granite
- Volcanic glass-very rapid cooling
 - Pumice (high gaseous silica rich lava) & obsidian

Based on Mineral Composition and Texture

- Phaneritic- mineral crystals are visible e.g. Granite & Gabbro
- · Pegmatite- exceptionally large crystals e.g. Pegmatite
- · Aphanitic- crystals not visible e.g. Rhyolites & Basalt
- Porphyritic- large crystals surrounded by small crystals-(indicate slow & abrupt rapid cooling) e.g. Porphyritic Granite
- Volcanic glass-very rapid cooling
 - Pumice (high gaseous silica rich lava) & obsidian

Based on Mineral Composition and Texture

- Phaneritic- mineral crystals are visible e.g. Granite & Gabbro
- Pegmatite- exceptionally large crystals e.g. Pegmatite
- · Aphanitic- crystals not visible e.g. Rhyolites & Basalt
- Porphyritic- large crystals surrounded by small crystals-(indicate slow & abrupt rapid cooling) e.g. Porphyritic Granite
- Volcanic glass- very rapid cooling
 - Pumice (high gaseous silica rich lava) & obsidian

Igneous textures

Glassy - no minerals present

Crystalline - rocks made of mineral grains

Porphyritic - mixture of coarse and fine

Vesicular - with bubble holes

Texture of Igneous Rocks

- Controlled by cooling rate
 - Degree of crystallinity
 - Vesicularity

Igneous Textures

- Types of igneous textures
 - Pyroclastic texture
 - Fragmental appearance produced by violent volcanic eruptions
 - Often appear more similar to sedimentary rocks
 - Pegmatitic texture
 - Exceptionally coarse-grained
 - Form in late stages of crystallization of granitic magmas

Types of Igneous Rocks

Based on Silica Content

- · Ultramafic (low silica content < 40%)
 - Peridotite
- Mafic (low 45-55%)
 - Gabbro (plutonic)
 - Basalt (volcanic)
- Intermediate (55 65%)
 - Diorite (plutonic)
 - Andesite (volcanic)
- Felsic (high silica content > 65%)
 - Granite (plutonic)
 - Rhyolite (volcanic)

Classification of Igneous Rocks

Determined by composition (both chemical and mineralogical):

- magnesium (Mg) + iron (Fe) = mafic
- feldspar + quartz (Si) = felsic

Types of Igneous Rocks

Based on Silica Content

- Ultramafic (low silica content < 40%; Mgand Fe-rich)
 - Peridotite
- Mafic (low 45-55%; Mg- and Fe-rich)
 - Gabbro (plutonic)
 - Basalt (volcanic)
- Intermediate (55 65%; also rich in feldspar)
 - Diorite (plutonic)

Igneous Compositions

- Granitic versus basaltic compositions
 - Granitic composition
 - Light-colored silicates
- Termed felsic (feldspar and silica) in composition
 - High silica (SiO_2) content
 - Major constituent of continental crust

Igneous Compositions

- Granitic versus basaltic compositions
 - Basaltic composition
 - Dark silicates and calcium-rich feldspar
 - Termed mafic (magnesium and ferrum, for iron) in composition
 - Higher density than granitic rocks
 - Comprise the ocean floor and many volcanic islands

Classification by composition and texture

Extrusive Intrusive

basalt gabbro andesite diorite rhyolite granite

When we talk about the chemical composition of a rock we usually speak in terms of the oxides, e.g.,

~ · ·		_	· · · · · · · · · · · · · · · · · · ·
IVnical	nasait	IVnical	granite
, ypicui	Dusuii	<i>iypicui</i>	gi uiii i C
/ /		//	

SiO ₂	50%	70%
Al ₂ O ₃	15%	12%
FeO+MgO	15%	3%
CaO	8%	2%
K ₂ O+Na ₂ O	5%	8%

Composition of melts affects behavior while still fluid

- More SiO_2 will increase viscosity,
 - making strong temporary bonds in magma

Factors controlling the viscosity of magmas

- · Composition:
 - higher SiO₂; higher viscosity
 lower volatiles; higher viscosity
- Temperature:
 - lower temperature; higher viscosity

	Chemical Composition	Felsic (Granitic)	Intermediate (Andesitic)	Mafic (Basaltic)	Ultramafic	
Dominant Minerals		Quartz Potassium feldspar Sodium-rich plagioclase feldspar	Amphibole Sodium- and calcium-rich plagioclase feldspar	Pyroxene Calcium-rich plagloclase feldspar		
	Accessory Minerals	Amphibole Muscovite Biotite	Pyroxene Biotite	Amphibole Olivine	Calcium-rich plagioclase feldspar	
TEXTURE	Phaneritic (coarse-grained)	Granite	Diorite	Gabbro	Peridotite	
	Aphanitic (fine-grained)	Rhyolite	Andesite	Basalt	Komatiite (rare)	
	Porphyritic		"Porphyritic" precedes any of the above names whenever there are appreciable phenocrysts			
	Glassy	C	Obsidian (compact glass) Pumice (frothy glass)			
	Pyroclastic (fragmental)		Tuff (fragments less than 2 mm) Volcanic Breccia (fragments greater than 2 mm)			
	Rock Color (based on % of dark minerals)	0% to 25%	25% to 45%	45% to 85%	85% to 100%	

- A single volcano may extrude lavas exhibiting very different compositions
- · Bowen's reaction series
 - Minerals crystallize in a systematic fashion based on their melting points
 - During crystallization, the composition of the liquid portion of the magma continually changes

Bowen's reaction series

- Series of chemical reactions that take place in silicate magmas as they cool
- First investigated in the 1920s and 1930s by N. L. Bowen
- Important experiments that help us understand the evolution of magmas

- Processes responsible for changing a magma's composition
 - Magmatic differentiation
 - Separation of a melt from earlier formed crystals
 - Assimilation
 - Changing a magma's composition by incorporating surrounding rock bodies into a magma

Evolution of Magmas

- Processes responsible for changing a magma's composition
 - Magma mixing
 - Two chemically distinct magmas may produce a composition quite different from either original magma

- Partial melting and magma formation
 - Incomplete melting of rocks is known as partial melting
 - Formation of basaltic magmas
 - Most originate from partial melting of mantle rocks at oceanic ridges
 - Large outpourings of basaltic magma are common at Earth's surface

Evolution of Magmas

- Partial melting and magma formation
 - Formation of andesitic magmas
 - Produced by interaction of basaltic magmas and more silica-rich rocks in the crust
 - May also evolve by magmatic differentiation

- · Partial melting and magma formation
 - Formation of granitic magmas
 - Most likely form as the end product of crystallization of andesitic magma
 - Granitic magmas are more viscous than other magmas—tend to lose their mobility before reaching the surface.
 - Produce large plutonic structures

How Different Magmas Form

- Factors affecting melting of rocks- thus magma creation
 - Heat radioactive isotopes, friction, original Earth heat
 - Pressure increases melting point of minerals/rocks
 - Water lowers melting point of minerals
- Fractional Crystallization (Magma Differentiation)
 - Bowen reaction series
- · Magma Assimilation
- Magma Mixing

- Emplacement of magma
 - Magma at depth is much less dense than the surrounding rock
 - Increased temperature and pressure causes solid rock to deform plastically
 - The more buoyant magma pushes aside the host rock and forcibly rises in the Earth as it deforms the "plastic" host rock

- Emplacement of magma
 - At more shallow depths, the host rock is cooler and exhibits brittle deformation
 - Movement of magma here is accomplished by fractures in the host rock and stoping
 - Melting and assimilation of the host rock is greatly limited by the availability of thermal energy

- Most magma is emplaced at depth in the Earth
 - An underground igneous body, once cooled and solidified, is called a pluton
- Classification of plutons
 - Shape
 - Tabular (sheet-like)
 - Massive

- Classification of plutons
 - Orientation with respect to the host (surrounding) rock
 - Discordant—cuts across sedimentary rock units
 » Provides an important age relationship
 - Concordant—parallel to sedimentary rock units

- Types of intrusive igneous features
 - · Dike—a tabular, discordant pluton
 - e.g., Ka'ihalulu (Red Sand) Beach, Hana, Maui
 - Sill—a tabular, concordant pluton
 - e.g., Palisades Sill in New York
 - · Laccolith
 - Similar to a sill
 - Lens or mushroom-shaped mass
 - Arches overlying strata upward

- Types of intrusive igneous features
 - · Dike—a tabular, discordant pluton
 - e.g., Ka'ihalulu (Red Sand) Beach, Hana, Maui
 - · Sill—a tabular, concordant pluton
 - e.g., Palisades Sill in New York
 - · Laccolith
 - Similar to a sill
 - Lens or mushroom-shaped mass
 - Arches overlying strata upward

A Sill in the Salt River Canyon, Arizona Sill Sill

- · Intrusive igneous features
 - · Batholith
 - Largest intrusive body
 - Surface exposure of 100+ square kilometers (smaller bodies are termed stocks)
 - Frequently form the cores of mountains

Sierra Nevada Batholith

- Core of the Sierra Nevada mountain range in California
- Composed of many individual plutons
- Includes familiar granite peaks of the High Sierra
 - Mount Whitney, Half Dome and El Capitan
- Formed when Farallon Plate subducted below the North American Plate
 - Approximately 210-80 mya

Cooling Structure - Columnar Jointing

- Form when igneous rock cool near surface
 - Develop shrinkage fractures that produce these elongate pillar-like columns
 - · Giant's Causeway, Ireland; Sampson's Ribs, Scotland

Plate Tectonic & Igneous Rocks

Plate tectonic can be used to account for the global distribution of igneous rock types

- Basalt/Gabbros
 - most abundant igneous rocks in oceanic crust
 - · divergent plate boundary
- · Andesite/Diorite
 - found in subduction zones
- · Rhyolites/Granite
 - most abundant in continental crust
 - subduction zone

Economic values of Igneous rocks- gemstones, road construction, building decoration, etc.

Tectonic Settings of Igneous Activity PLATE DIVERGENCE Mid-ocean ridge Volcanic Island chain Subduction Zone Volcanic Island chain Subduction Zone Volcanic are Volcanic are Volcanic are Named Plants Subduction Zone Volcanic are Volcanic a

