

How do we know about the Earth's Interior?

- By studying Meteorites
- Direct observation (rocks originating from depth)
- Experiments at high pressure
- By studying earthquake waves (Seismology)

Meteorites have struck the Earth in the past.

Many are probably pieces of proto-planets similar in composition to Earth.

Iron meteorites are made of iron and nickel

Earth's interior (core) is similar

Types of Meteorites - I

- Stones
 - Primarily silicates (like Earth's crust and mantle)
 - >90% of all meteorites
- Irons
 - Iron-nickel alloys
- Stony irons
 - Combination of stony and iron meteorites

Types of Meteorites - II

- Falls
 - Meteorites observed falling to the ground
 - Primarily stones (suggests they are more common)
- Finds
 - Meteorites discovered on the ground
 - Primarily irons (collected because they are unusual looking)

How do we know about the Earth's Interior?

- By studying Meteorites
- Direct observation (rocks originating from depth)
- Experiments at high pressure
- By studying earthquake waves (Seismology)

How do we know about the Earth's Interior?

- By studying Meteorites
- Direct observation (rocks originating from depth)
- Experiments at high pressure
- By studying earthquake waves (Seismology)

Seismology

- Study of the propagation of mechanical energy released by earthquakes.
- When energy is released, waves of motion (like the effect of a pebble tossed into a pond) are set up in the Earth.

Structure of the Earth

- Seismic velocity (how fast earthquake waves travel through rocks) depends on the composition of material and pressure.
- We can use the behavior of seismic waves to tell us about the interior of the Earth.

Layers of the Earth

Data on the Earth's Interior				
	Density (g/cm')			
	Thickness (km)	Тор	Bottom	Types of rock found
Crust	30	2.2	_	Silicic rocks.
		-	2.9	Andesite, basalt at base.
Upper mantle	720	3.4	-	Peridotite, eclogite, olivine, spinel, garnet, pyroxene.
		-	4.4	Perovskite, oxides.
Lower mantle	2,171	4.4	_	Magnesium and
		-	5.6	silicon oxides.
Outer core	2,259	9.9	_	Iron+oxygen, sulfur,
		_	12.2	nickel alloy.
Inner core	1,221	12.8	_	Iron+oxygen, sulfur,
		-	13.1	nickel alloy.
Total thickness	6,401			

Earth's CORE

- Outer Core Liquid Fe, ~2200 km thick, No S-waves transmitted -> S-& P-wave Shadow Zones
- Inner Core solid Fe (some Ni, Co, S, C), ~2500 km thick
- How do we know? Meteorites, Seismology, Magnetic field

Origin of Earth's magnetic field: the geodynamo

- The basic idea: an electric motor is a dynamo
- Motion of the liquid outer core -- a conductor -in a magnetic field generates current
- The current generates a stronger magnetic field

Mantle Tomography

- Uses numerous seismic data
- Uses small changes in speed of seismic waves
- Faster wave motion may correspond to denser or colder regions
- Slower wave motion may correspond to buoyant or warmer regions

