Play fairway analysis of geothermal resources across the state of Hawaii: 2. Resource probability mapping

Garrett Ito a,*, Neil Frazer a, Nicole Lautze b, Donald Thomas b, Nicholas Hinz c, David Waller d, Robert Whittier d, Erin Wallin b

a Department of Geology and Geophysics, SOEST, University of Hawaii, Manoa, Honolulu, HI 96822, USA
b Hawaiian Institute for Geophysics and Planetology, SOEST, University of Hawaii, Manoa, Honolulu, HI 96822, USA
c Safe Drinking Water Branch, Hawaii State Department of Health, USA
d Safe Drinking Water Branch, Hawaii State Department of Health, USA

A R T I C L E I N F O

Article history:
Received 28 May 2016
Received in revised form 7 October 2016
Accepted 4 November 2016
Available online 15 December 2016

Keywords:
Volcanic islands
Resource prospecting
Data analysis
Geology
Geophysics
Geochemistry
Probability and statistics

A B S T R A C T

We develop a new geostatistical method to combine evidence provided by diverse geological data sets and produce maps of geothermal resource probability. The application is to the State of Hawaii, and the data sets include the locations and ages of mapped volcanic centers, gravity and magnetotelluric measurements, groundwater temperature and geochemistry, ground surface deformation, seismicity, water table elevation, and groundwater recharge. Using the basic principles of Bayesian statistics, these data and expert knowledge about the effects and importance of the data are used to compute the probabilities of the primary resource qualities of elevated subsurface heat, reservoir permeability, and reservoir fluid content. The product of these marginal probabilities estimates the joint probability of all three qualities and hence the probability of a successful geothermal prospect at each map point. An analogous set of algorithms is used to quantify the confidence in the probability at each point. Not surprisingly, we find that successful geothermal prospects are most probable on the active volcanoes of Hawaii Island, including the area of Hawaii’s single geothermal energy plant. Probability decreases primarily with shield volcano age, being relatively moderate in select locations on Maui and Lanai, relatively low on Oahu, and minimal on Kauai. Future exploration efforts should consider these results as well as the practical, societal, and economic conditions that influence development viability. The difficulties of interisland power transmission mean that even areas with moderate to low probabilities are worth investigating on islands with population centers.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We conducted an assessment of geothermal resource potential across the state of Hawaii, updating the last assessment which was done three decades ago (Thomas, 1985). The overall goal is to identify the plays, or probable areas for geothermal energy development in the fairway, of the Hawaiian volcanic island chain. The first of three manuscripts (Lautze et al., 2016a) summarizes the geologic conditions that support geothermal resources in Hawaii and the datasets selected to provide evidence for these conditions. The third paper (Lautze et al., 2016b) describes the essential practical and economic criteria needed to assess development viability and, with the results of the geologic considerations presented in this paper, recommends a prioritized list of sites for future exploration. This manuscript—the second paper in the series—describes our methods and the results of processing the various geoscientific datasets into probabilities of geothermal resources across the state.

Methods used to map the spatial distributions of geothermal resource potential can be categorized as knowledge-driven or data-driven (Bonham-Carter, 1994). Knowledge-driven, or deterministic, models rely on the judgment of experts to assign the relative importance of different data types to resource potential. These methods are needed especially in the reconnaissance phase of exploration when few or no resources have been found (e.g., Prol-Ledesma, 2000). Techniques of combining the evidence provided by the data include Boolean operators (Noorollahi et al., 2008; Yousefi et al., 2010), index quantification and weighting (Noorollahi et al., 2008; Tüfekçi et al., 2010; Trumpy et al., 2015), and quantification with fuzzy or continuous functions (Prol-Ledesma, 2000; Siler et al., 2016). In contrast, data-driven models incorporate data on
known resource locations or training sites to relate observational evidence to resource potential. These methods use statistical techniques including weight-of-evidence (Bonham-Carter et al., 1989; Coolbaugh and Bedell, 2006; Coolbaugh et al., 2007), logistic regression (Coolbaugh et al., 2002, 2005), and evidence belief functions (Carranza and Hale, 2003). Data-driven methods have been used even more extensively in mineral resource exploration (e.g., Porwal and Kreuzer, 2010). In this context, the method developed here is knowledge-driven, uses continuous quantities for the influence of different data types, but like some of the data-driven techniques, the core algorithm is based on the principles of Bayesian statistics. Unlike earlier methods used, that produced measures of resource “favorability”, our method predicts relative probabilities.

A successful geothermal prospect must have all of three primary qualities: elevated heat \(H \), elevated permeability \(P \), and adequate fluid \(F \) to deliver the heat. Table 1 lists the data types used for Hawaii as indicators of each of quality, and summarizes the evidence each data type provides as discussed in detail by Lautze et al. (2016a). Section 2 of this paper reviews the theory of our method, our approach to eliciting expert knowledge, and the algorithm by which this knowledge and the data are combined to compute probabilities. Section 3 details the specific parameters and functions used for each data type and their individual effects on the marginal probabilities of the three resource qualities. Section 4 presents the resulting resource probabilities and their associated confidence measures for the main Hawaiian Islands. Finally, we close with a discussion of the strengths and weaknesses of our method, and the role our results could play in Hawaii’s exploratory decision-making process.

2. Methods of data processing and modeling probability and confidence

2.1. Overview

The first building block of our method is a generalized linear model (e.g., McCullah and Nelder, 1983) in which the evidence provided by each data type is weighted and summed in the logistic link function (e.g., Bonham-Carter et al., 1989),

\[
Pr(x) = \left[1 + \exp \left(-w_0 - \sum_{i=1}^{m} w_i z_i(x)\right)\right]^{-1}.
\]

Here \(Pr(x) \) is the probability of just one of the resource qualities (elevated heat \(H \), permeability \(P \), fluid \(F \)) at location \(x \) on the map. A similar equation is used for each of the two other qualities. This equation implicitly includes a reference probability, or prior probability \(Pr_0 \), represented on the right-hand side by the quantity \(w_0 \). We refer to Eq. (1) as the “voter equation” because it allows each data type to influence the outcome (positively or negatively) depending on its weight \(w_i \).

The general behavior of the voter equation can be understood through a qualitative discussion. Suppose \(z_1 \) is a quantity representing the gravity anomaly at location \(x \), and \(z_2 \) represents a measure of electrical resistivity beneath the ground at \(x \). Because high positive values of gravity are interpreted as indicating dense intrusive source rock (and \(z_1 \) is positive when the gravity anomaly is relatively high), the associated weight \(w_1 \) will be positive. In contrast, unusually low resistivity (indicated by a negative value of \(z_2 \)) is associated with hot rock and therefore \(w_2 \) will be negative. Thus, a large positive value of the sum \(\Sigma = w_0 + w_1 z_1 + w_2 z_2 \) indicates a high favorability of elevated heat. Clearly as more data types contribute positively to the sum, the sum increases monotonically. However, if there are five strong positive data contributions of elevated heat from five different data types for example, then adding a sixth positive contribution does not provide much new information. This aspect is taken into account with the logistic link, or \(\expit \) function, \(Pr = \expit(\Sigma) = e^{\Sigma} / [1 + e^{\Sigma}] = [1 + e^{-\Sigma}]^{-1} \) (Eq. (1)), which spans 0–1 as does a true probability. In another location the sum \(\Sigma \) could be large and negative, in which case the probability of heat will be small. In yet another location where there are no data, the data votes will be zero, but the probability will not be: it will equal the prior probability \(Pr_0 = \expit(w_0) = [1 + e^{-w_0}]^{-1} \). The probabilities of elevated permeability and fluid are computed in the same way.

Using the marginal probabilities of all three resource qualities \(Pr_H, Pr_P, Pr_F \), we approximate the probability of a viable resource \(Pr_R \) by the product of the marginals,

\[
Pr_R(x) = Pr_H(x)Pr_P(x)Pr_F(x).
\]

This equation is the second building block of our method; like Eq. (1), it is based on a conditional independence assumption that has a long record of surprising robustness in Bayesian learning (e.g., Domingos and Pazzani, 1997; Porwal et al., 2006). We refer to Eq. (2) as the “veto equation” because if any one quality has a low probability, so will the probability of a viable resource. The output probabilities are evaluated at each 200 m × 200 m cell of the model grid, the centers of which define \(x \). The calculations were performed primarily and displayed entirely using Generic Mapping Tools (GMT) (Wessel et al., 2013). Some of the calculations, prior to visualization, were done using Matlab (www.mathworks.com).

2.2. Specifics: expert elicitation and defining weights \(w_i \)

The voter Eq. (1) requires converting the starting data value \(D_i \) to its processed form \(z_i(x) \) and relating the importance of the data, quantified by its weight \(w_i \), to the probability of a given resource quality. In this knowledge-driven, reconnaissance application, we use expert elicitation (e.g., O’Hagan et al., 2006; O’Leary et al., 2009). As such, the prospecting algorithm incorporates the expertise of our research team, and is thus able to “think” like an expert with years of experience. To understand how we do this, consider first the baseline probability value \(Pr_0 \) for a given resource quality (\(H, P, \) or \(F \)). We ask the expert for the probability of that quality at an unknown location. The expert knows only that the location is in Hawaii, and is free to solve the question in any way he or she wishes. We then set the expert’s estimated probability \(Pr_0 \) equal to \(\expit(w_0) \) and solve for \(w_0 \), using the inverse function,

\[
w_0 = \logit(Pr_0) = \ln \left(Pr_0 / (1 - Pr_0) \right).
\]

To incorporate input from multiple experts, we weight by years of experience and take the weighted average of their respective values of \(w_i \).

Now consider how to elicit the effects of the first data type \(D_1 \) (e.g., gravity) on the probability of a resource quality, for example heat \(Pr_H \). We seek to define \(z_1 \) and \(w_1 \) so that with only that data type appearing in the sum of the voter Eq. (1), the resulting values of \(Pr_H \) at one or two values of \(D_1 \) are consistent with the expert’s intuition. (I) First, we give each expert in our team a particularly promising data value in either its starting \(D_i^0 \) or processed \(z_i^0 \) form (whichever is more intuitive to the expert), and ask them to estimate the corresponding probability \(Pr_H^0 \). (II) Second, we then ask the expert to estimate the value, \(D_i \) for which the data has no effect on probability. Question (I) is used to establish the location property—i.e., what \(Pr_H \) is at a given \(D_1 \) (or \(z_1 \))—for the dependence of \(Pr_H \) on \(D_1 \) alone. With the answer to question (I), question
Table 1
Summary of data types used in this study and evidence they provide as explained by Lautze et al. (2016a).

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Evidence Pertaining to Elevated Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>High values indicate dense intrusive source rock</td>
</tr>
<tr>
<td>Geologic mapping of rift zones and calderas</td>
<td>Probable location of intrusive source rocks</td>
</tr>
<tr>
<td>Geologic mappings of volcanic vents</td>
<td>Possible locations of intrusive source rock</td>
</tr>
<tr>
<td>Groundwater Cl/Mg</td>
<td>High values occur in geothermally altered seawater due to the preservation of dissolved Cl but loss of Mg to precipitated minerals</td>
</tr>
<tr>
<td>Groundwater SiO₂</td>
<td>High values can indicate greater solubility of SiO₂ in geothermal water</td>
</tr>
<tr>
<td>Groundwater temperature</td>
<td>Values elevated compared to local ambient temperatures indicate mixing with geothermal fluids</td>
</tr>
<tr>
<td>Electrical resistivity</td>
<td>Low values can indicate hot water, rock, or magma</td>
</tr>
</tbody>
</table>

Data Type	Evidence Pertaining to Elevated Permeability
Gravity	High values indicate dense intrusions above which faulting and rifting occur
Geologic mapping of rift zones and faults	Where permeability is enhanced by fracturing.
GPS measurements of ground displacement	Areas of dilation indicate where permeability is being enhanced by fracturing
Seismicity	High seismicity occurs where the crust is already weak and permeable, or where fracture permeability is being enhanced

Data Type	Evidence Pertaining to Adequate Fluid
Water table elevation	High values increase the probability of high fluid pressure and thus hotter water near the source rock
Ground water recharge	High values indicate enhanced fluid content and pressure
Resistivity	Low values can indicate high fluid content

(II) is used to establish the scale property of the function—i.e., how quickly $P_{ft}\text{H}$ varies with D_1. In all cases, we require question (I) to be answered. For some data types, however, question (II) cannot be confidently answered, in which case, the scale parameter comes from the data themselves as the variation within the population of measurements obtained. With both questions addressed, D_1 is transformed and scaled to produce $z_i^2 = \logit$ transformed D_1, and then we solve for w_i using the logit function defined in Eq. (3). We repeat this process for data type 2, then data type 3, and so forth, continuing in this way until we obtain all the necessary data weights.

2.3. Specifics: data transformation and scaling (converting D_1 to z_i)

Transformation and scaling are done to facilitate the process of accurately producing a dependence of probability on D_1, consistent with the expert knowledge. Transformation ensures that the processed data, z_i, is unbounded (theoretically spanning $\pm\infty$) as is needed by the voter Eq. (1); scaling normalizes the values of z_i for the different data types so that they have comparable meaning, even though the starting data may be given in different units and widely different numerical values. To illustrate, we describe the transformation and scaling functions for two example data types.

The first example is how the probability of permeability P_{ft} is influenced by the frequency of earthquakes on Hawaii Island. Seismicity is an indication of fracturing, a promoter of fracture permeability (Tilling et al., 1987; Martel and Langley, 2006; Ingebritsen and Manning, 2010), and is more likely to occur where the crust is already weak and permeable (P. Okubo pers. comm. 2015). Consequently, our experts estimated that the P_{ft} should be high ($P_{ft} = 0.8$) where seismicity is unusually high (question (I)). However, they could not estimate the rate at which P_{ft} should change with seismicity (question (II)). With seismicity (events per km² per yr) within each geographic grid being the starting data value D_2, the transformation is

$$ d_2 = \ln(D_2), $$

and scaling is done by standardization,

$$ z_2 = \frac{d_2 - \hat{d}_2}{\sigma_2}. $$

Here \hat{d}_2 is the median value of the transformed seismicity, and σ_2 is given by the median absolute deviation:

$$ \sigma_2 = 1.482 \times \text{median}(|d_2 - \hat{d}_2|), $$

in which the factor 1.482 reproduces the standard deviation if d_2 is normally distributed. Eq. (4) transforms the population of starting measurements, which is bounded on one side by 0, to the domain $(-\infty, +\infty)$ with a more symmetric distribution about the median. The unusually high value of seismicity in question (I) was defined by the experts in terms of the standardized value, $z_2 = 1.5$ and establishes the location property of the dependence of P_{ft} on seismicity. The variability within the transformed data population, σ_2, sets the scale property that controls how quickly P_{ft} varies with D_2, again because question (II) could not be answered. Finally, we obtain the weight w_2 as the solution to $P_{ft} = 0.8 = \expit(w_0 + w_2 + 1.5)$, using the logit function, $w_2 = \logit(0.8) - w_0$ / 1.5.

The second example addresses how P_{ft} is influenced by the proximity to a mapped rift zone together with the time since the rift zone was active. With distance to the nearest rift zone being the starting data value denoted as D_3, and the age of the end of the shield volcanic stage of that volcano denoted as t, the transformation function is

$$ z_3 = \logit \left\{ \frac{r_0}{d_3 + r_0} \right\}^2 \left(\frac{r_0}{r + r_0} \right), $$

where $d_3 = \max(D_3, d_{min})$ and $t = \max(t, t_{min})$.

The argument of the logit function in Eq. (7) has the range $(0, 1)$ if the lower limits, r_{min} and t_{min}, are both zero, in which case the logit maps its argument into $(-\infty, +\infty)$. The singularities that occur when $D_3 = 0$ km and $t = 0$ Myr are avoided by setting non-zero lower limits on d_3 and t. Within the argument, the inverse square relation with d_3 represents a reduction in the frequency of intrusive source rock, and hence P_{ft}, with distance from a rift zone. The mathematical form of this decay follows that of the decay of stress perturbation away from a two-dimensional (2-D) (infinitely long in one direc-
Fig. 1. Marginal probability functions of elevated heat (a)–(c), permeability (d)–(e), and fluid (f)–(g) due solely to the individual data types labeled on the horizontal axes. Two data types shown in a panel are distinguished by colors of the curves and axis labels. Stars indicate promising data values \(D_i^+ \) at which the probabilities \(P_i^+ \) were estimated by experts.

2.4. Confidence

A simple measurement of the confidence in the marginal probability estimate for each resource quality \((H, P, F) \) uses a modified form of the voter equation.

\[
C(x) = \left[1 + \exp \left(-w_0 - \sum_{i=1}^{m} w_i z_i^+ q_i(x) \right) \right]^{-1}
\]

(8)

Here the quality factor \((0 < q_i \leq 1) \) is assigned by the expert to data type \(i \); again \(z_i^+ \) is the transformed and scaled form of the promising data value \(D_i^+ \) used during expert elicitation, and the product \(w_i z_i^+ \) is always positive. The sum in (8) is over only the \(m \) data types that are present in the model grid cell centered on \(x \). A modified veto
Table 2
Quantities and equations for data processing and conversion to probability.

<table>
<thead>
<tr>
<th>Starting data, D</th>
<th>Transformation and scaling</th>
<th>Median & σ</th>
<th>Adjustments</th>
<th>Promising values,</th>
<th>Pr+</th>
<th>wi</th>
<th>qj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual gravity anomaly (mGal)</td>
<td>$d = D_0 - 0.1 \text{ Myr}^{-1}; f_0 = 0.1 \text{ Myr}^{-1}$</td>
<td>4.73; 9.63</td>
<td>none</td>
<td>66 mGal (1.5 σ at $t = 0 \text{ Myr}$); 6.40</td>
<td>0.8</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td>Distance from nearest caldera, rift zone, or rift-zone vent (km)</td>
<td>$z = \log \left(\frac{r_0}{d + r_0} \right)^2 \left(\frac{r_0}{r + r_0} \right)$</td>
<td>n/a</td>
<td>none</td>
<td>0 km; 4.8</td>
<td>0.6</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td>Groundwater temperature (°C)</td>
<td>$d = D - (T - 3 + 5.29 Z_k)$; T_k is ambient local surface temperature, Z is depth.</td>
<td>−0.100; 2.08</td>
<td></td>
<td>8°C; 3.9</td>
<td>0.9</td>
<td>1.7</td>
<td>0.25</td>
</tr>
<tr>
<td>SiO2 (ppm)</td>
<td>$d = \ln(D)$; then standardized (Eq. (5)) within each watershed to give z^*</td>
<td>3.85; 0.400</td>
<td></td>
<td>500 ppm; 5.9</td>
<td>0.6</td>
<td>0.64</td>
<td>0.25</td>
</tr>
<tr>
<td>Resistivity from MT (Ωm)</td>
<td>$d = \ln(D/250)$</td>
<td>n/a</td>
<td></td>
<td>3 Ωm; −4.42</td>
<td>0.9</td>
<td>−1.12</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Permeability, Pr+ = 0.14, w0 = −1.82

<table>
<thead>
<tr>
<th>Starting data, D</th>
<th>Transformation and scaling</th>
<th>Median & σ</th>
<th>Adjustments</th>
<th>Promising values,</th>
<th>Pr+</th>
<th>wi</th>
<th>qj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual gravity anomaly (mGal)</td>
<td>same as for heat</td>
<td>4.73; 9.63</td>
<td>none</td>
<td>66 mGal (1.5 σ for $t = 0 \text{ Myr}$); 6.40</td>
<td>0.6</td>
<td>0.35</td>
<td>0.75</td>
</tr>
<tr>
<td>Distance from nearest caldera, rift zone or fault (km)</td>
<td>same as for heat</td>
<td>n/a</td>
<td>none</td>
<td>0 km; 4.9</td>
<td>0.8</td>
<td>0.66</td>
<td>0.75</td>
</tr>
<tr>
<td>Mean ground displacement rates, (Mryr$^{-1}$)</td>
<td>$d = \left(\begin{array}{c} \nabla \psi \end{array} \right)_a$</td>
<td>0.19; 0.25</td>
<td>none</td>
<td>$d = 0.57 \text{ Myr}^{-1}$; 1.5</td>
<td>0.8</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Seismicity (number of events per km2 per yr)</td>
<td>$d = \ln(D)$</td>
<td>−4.52; 1.33</td>
<td>none</td>
<td>0.081 km2–yr$^{-1}$; 1.5</td>
<td>0.8</td>
<td>2.1</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Fluid, Pr+ = 0.78, w0 = −1.27

<table>
<thead>
<tr>
<th>Starting data, D</th>
<th>Transformation and scaling</th>
<th>Median & σ</th>
<th>Adjustments</th>
<th>Promising values,</th>
<th>Pr+</th>
<th>wi</th>
<th>qj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Recharge (cm/day)</td>
<td>$d = \ln(D)$</td>
<td>−2.96; 1.66</td>
<td>none</td>
<td>1.87 cm/day; 1.5</td>
<td>0.87</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>Water table elevation (m)</td>
<td>$d = \ln(D)$</td>
<td>4.76; 1.89</td>
<td>none</td>
<td>1970 m; 1.5</td>
<td>0.95</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Resistivity (Ωm)</td>
<td>$d = \ln(D/450)$</td>
<td>n/a</td>
<td>none</td>
<td>300 Ωm; −0.40</td>
<td>0.90</td>
<td>−2.3</td>
<td>0.75</td>
</tr>
</tbody>
</table>

a These values of t_0 in the shown functions cause probability to decay with time in proportion to the decay of heat with time at the center of an infinitely long prism having width and height of 5 km. 5 km is the approximate width of the P-wave tomography anomaly beneath Kilauea’s SW rift zone (Okubo et al., 1997).
b $r_0 = 25$ km leads to a reduction of probability to the prior Pr_0 at a distance of 10 km, or twice the characteristic width of Kilauea’s rift zone.
c $r_0 = 5$ km leads to a reduction of probability to the prior Pr_0 at a distance of 2 km away from the center of a post-shield or rejuvenated volcanic vent.
d This value of t_0 causes probability to decay with time approximately in proportion to the decay of heat with time at the center of a cubed shaped intrusion 1 km on a side.

The equation determines the confidence of the estimated probability of a geothermal resource,

$$C_g(x) = C_{q_1}(x)C_{q_2}(x)C_{q_3}(x).$$

Thus, each probability computed by our method has an associated confidence. For example, if a given location has many types of high quality data, and none of those data types suggest a resource, the probability of a resource at that location will be very small, but our confidence in that probability will be high. A low confidence equates to a lack of high quality data, a situation in which additional data are needed to adequately assess resource probability. Together with probability, confidence can be used to prioritize the locations and nature of future exploration efforts.
the inverse age relation is the same as in Eq. (7). A lower limit of \(t_{\text{min}} = 10^{-6} \) Myr (see Eq. (7)) and the time scale \(t_0 = 0.7 \) Myr leads to a decrease in probability with time in proportion to the decay of heat with time at the center of an infinitely long (2-D) prism having a thermal diffusivity of \(10^{-6} \text{ m}^2/\text{s} \) (Turcotte and Schubert, 2002) and square cross-section of dimension 5 km. The prism is a crude representation of the intrusive complex beneath a volcanic rift zone with a width comparable to that imaged seismically beneath Kilauea’s rift zone (Okubo et al., 1997). The same age decay was applied when modeling the effects of gravity on the probabilities of elevated heat as well as permeability. Permeability is expected to decay with age as pore-space is reduced due to erosion, mass-wasting, and mineralization. The transformed data \(d \) were then standardized (Eq. (5)).

The “favorable” condition for residual gravity anomaly is \(D^+ = 66 \text{ mGal} = 1.5\sigma \) at zero-age; the corresponding probabilities of heat and permeability were estimated to be \(P_{\text{RH}} = 0.8 \) and \(P_{\text{RP}} = 0.6 \), respectively. The resulting weights (Table 2) lead to the probability functions shown in Fig. 1a and e. Pertaining to heat, a map view of Hawaii Island, for example, shows that the active volcanoes, Mauna Loa and Kilauea, in the south have high gravity anomalies and high probabilities (Fig. 2). The older volcanoes \((t = 0.25 \) Myr for Mauna Kea; \(t = 0.3 \) Myr for Kohala) have comparably high gravity anomalies but lower probabilities reflecting the age correction.

The electrical resistivity used in this study are the inversion results of a magnetotelluric (MT) survey (Pierce and Thomas, 2009) just south of Mauna Kea on Hawaii Island. Near this location is the Humu’ula Saddle groundwater exploration well, where a geothermal system was discovered (Fig. 3b). The starting data are the mean resistivity values below the surface within 500 m of sea level. These data were normalized by a scaling factor determined from the answers to question (II) for heat and permeability, and then log-transformed and standardized (see Eqs. (4) and (5) and Table 2). The effects on the probability of excess heat and fluid are shown in Fig. 1a and g, respectively, and appear on Hawaii Island as locally high (and a couple of low) values along an arc wrapping around the southern flank of Mauna Kea volcano (Fig. 3b and h).

3.2. Proximity to calderas, rift zones, volcanic vents, and faults

Proximity to the shield-stage features—caldera, rift zone, and rift-zone volcanic vent—pertains to the probability of elevated heat \(P_{\text{RH}} \). Proximity to rift zones and faults pertains to the probability of permeability \(P_{\text{RP}} \). The starting data \(D \) is the distance of the map cell from the closest geologic feature. The age \(t \) is the time since the end of the shield stage associated with that feature. Data transformation and scaling are described by Eq. (7) and Table 2. For zero-age calderas and rift zones, \(r_{\text{min}} = 0.1 \) km and \(t_0 = 25 \) km lead to a reduction in probability from their promising values \(P_{\text{RH}} = 0.6; P_{\text{RP}} = 0.8 \) directly on the feature \((D = 0 \text{ km}) \) to the prior values at a distance of \(D \approx 10 \text{ km} \) (Fig. 1b and e). This distance is about twice the width of the P-wave seismic anomaly marking the intrusive zone beneath Kilauea’s east rift zone (Okubo et al., 1997). The age parameters \(t_{\text{min}} \) and \(t_0 \) are given in Table 2.

The probability of elevated heat \(P_{\text{RH}} \) is also influenced by the distance to the nearest post-shield and rejuvenated volcanic vents. The distance function (7) with \(r_{\text{min}} = 0.05 \) km and \(t_0 = 5 \) km leads to a decay of \(P_{\text{RH}} \) from the promising value \(P_{\text{RH}} = 0.45 \) on a vent, to the prior \(P_{\text{RH}} \) at a distance of \(D = 2 \text{ km} \) (Table 2, Fig. 1b) at zero age. The decay with age of the vent is quicker than that for a 2-D feature such as a rift zone (Table 2); the \(t^{-3/2} \) dependence comes from the Green’s function for time-dependent heat diffusion in three-dimensions (3-D) (Sommerfeld, 1964). Parameters \(t_{\text{min}} = 10^{-6} \) Myr and \(t_0 = 0.8 \) Myr lead to a rate of decay right on a vent \((D = 0) \) that is approximately proportional to the decay of heat at the center of a cube-shaped intrusive body 1 km on a side.

Fig. 2. (a) Residual gravity anomaly of Hawaii Island (outlined in black) is shown as colored circular patches, 3 km in diameter around each measurement. Topography is shown by illumination from the NW. White indicates no data. (b) The effects of gravity alone on the probability of heat \(P_{\text{RH}} \). Within the island boundary, white indicates the prior probability, \(P_{\text{RH}} = 0.06 \); gray shading darkens as values decrease below \(P_{\text{RH}} \). Shield volcanoes are labeled; stars indicate locations of the Saddle drill site (north) and the Puna Geothermal Ventures (PGV) geothermal power plant (south).
The final effect on P_{RH} is either that due to proximity to a shield stage feature or that due to a post-shield/rejuvenated stage vent, whichever feature is closer to the cell location x. On Hawaii Island, the most positive contributions to P_{RH} (Fig. 3(a)) as well as P_{RF} (Fig. 3(d)) occur on the active shield-stage volcanoes in the south, and less positively on the older volcanoes.

3.3. Well water data

Groundwater temperature is a direct indicator of elevated crustal heat at present-day. The transformation step involved first subtracting the mean local surface temperatures T_s from the measured water temperatures. We then found the best-fitting line to all excess temperatures versus depth Z, and subtracted that line from each measurement (Table 2). The resulting temperature anomalies d were then standardized.

We then made two adjustments. The first is a thresholding step in which we considered only standardized values exceeding unity; thus

$$z = \max(z', 1) - 1,$$ \hspace{1cm} (11)
Fig. 4. (a) Water well temperature in excess of surface temperature and corrected for depth (Table 2) are shown as colored patches at well locations. Red arrows show model groundwater flow directions. (b) Probability of heat due to water temperature anomaly after projecting the effects back up flow paths. Stars are as in Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in which the original standardized value is denoted here by z'. Preventing low values from impacting probability accounts for heat loss due to mixing and diffusion: we avoid reducing probability in the situation in which geothermal water is present but has been cooled. A threshold of 1 (i.e., excess temperature of 1°C) accounts for the typical fluctuations at each well, for example, related to seasonal variability. The resulting probability of excess heat decreases from $Pr_{T_H} = 0.9$ at $D' = 5$ km to the prior probability at the corresponding threshold temperature of 2.08°C (Fig. 1d).

The final adjustment accounts for the fact that Hawaii’s groundwater can flow many tens of km, and so the well location where the temperature was measured is a poor estimator of the actual location of the geothermal source. We therefore used groundwater flow models produced by the Hawaii State Department of Health (Rotzoll and El-Kadi, 2007; Whittier and El-Kadi, 2014) to estimate the flow path to the well (Fig. 4a). All grid locations on that path were then assigned the threshold-adjusted value of the standardized data z. These projected values were then used in the voter Eq. (1) to estimate the probability of elevated heat at all possible locations of the heat source. On Hawaii Island, the results show maximal values of Pr_{T_H} along Kilauea’s East Rift Zone, near the one geothermal power plant in Hawaii, which is run by Puna Geothermal Ventures (PGV) (Fig. 4b).

Cl/Mg and SiO$_2$ are the two groundwater chemical indicators of geothermal heat. The starting data D are the measured Cl/Mg ratio and SiO$_2$ in ppm (Table 2). For Cl/Mg (Fig. 1c), standardization was not needed because the experts estimated (question (II)) that its effects on Pr_{T_H} should be negligible at a ratio of $D' = 15$, the approximate upper-bound of the range of Hawaii’s normal groundwater (Cox and Thomas, 1979). The transformed and scaled data is $z' = \ln(D/D^{'})$, but only ratios of $D' > 15$ were considered to avoid any influence by normal groundwater. For SiO$_2$, the question (II) of scaling could not be answered so standardization was needed. In this case, standardization was done using only measurements within the local watershed to account for local processes other than geothermal activity such as agricultural practices that can influence groundwater silica concentrations. Thresholding was done for SiO$_2$ as well so that only standardized values in excess of 1.0 indicate positive evidence for geothermal heat, again to account for the effects of mixing. For both Cl/Mg and SiO$_2$, the threshold-corrected z values were projected up groundwater flow trajectories as was done for water temperature.

On Hawaii Island, the effect of groundwater chemistry and water temperature on Pr_{T_H} are discernable by comparing Fig. 3(c) to (a) and (b). Combined with the effects of the other data types, the water data contribute to maximal probabilities for excess heat along Mauna Loa’s, Kilauea’s, and Kohala’s rift zones, west and south of Mauna Kea, and around Kohala’s summit.

3.4. Ground deformation and seismicity

Ground deformation is associated with the creation of crustal permeability and is estimated based on the relative motion recorded by the permanent GPS network on Hawaii Island (Brooks et al., 2006). Most of the stations are on Kilauea and Mauna Loa, but there are a handful of stations around the perimeter of the island to the north. The GPS network is restricted to Hawaii Island, so that was the only island for which GPS data were used. Mean velocities were computed over the lifetime of each GPS station, and interpolated onto a regular grid using 2-D splines (Wessel et al., 2013). The east and north component of the gradients of the east and north velocities ($\partial u_e/\partial x$ and $\partial u_n/\partial y$) were then computed at each grid point on Hawaii Island. The sum of the two is the horizontal part of the divergence ($\nabla \cdot \mathbf{v}$), which is >0 for expansion and <0 for contraction. These transformed data $d = (\nabla \cdot \mathbf{v})$, where then standardized. Using only divergence, the probability of permeability decreases from the favorable value of $Pr_p = 0.8$ at $(\nabla \cdot \mathbf{v}) = +0.57$ Myr$^{-1}$ ($z' = 1.5$) to the prior probability of elevated permeability, $Pr_0 = 0.14$ at $(\nabla \cdot \mathbf{v}) = +0.19$ Myr$^{-1}$ ($z = 0$) (Fig. 1f, Table 2).

Seismicity is another indicator of permeability. Our treatment of seismicity was summarized above in Section 2.3 and is detailed here. Specifically, we used the earthquakes identified and relocated by Matzoa et al. (2013) on and around Hawaii Island for the period of 1989–2009. For the other islands, seismicity was not studied and is not used here. As we are interested in the shallow crust, the data are restricted to the ~40,000 events at depths <5 km. Seismicity, S, is the starting data D. It is the number of earthquakes per unit of geographic area per year estimated using the distance-weighted average.

$$S(\mathbf{x}) = \sum_i \frac{f(|\mathbf{x} - \mathbf{x}_i|)}{R_s 2\pi} \Delta t \int_0^r \frac{f(r)}{r} dr dr$$

Here $r = |\mathbf{x} - \mathbf{x}_i|$ is the radial distance between the cell location \mathbf{x} and seismic event i within the averaging window of radius $R_s = 5$ km;
\(\theta \) is azimuth and \(\Delta t = 17.25 \) yrs is the time span of the earthquake record. The distance weighting function \(f (|x - x_i|) = f (r) \) is a cosine taper that decreases from 1 to 0 as \(r \) increases from 1 to \(R_c \) and vanishes for \(R > R_c \). Again, transformation involved taking the natural log of \(S \) and scaling was done by standardization. The resulting dependence of \(Pr_F \) on seismicity is shown in Fig. 1f.

On Hawaii Island, the combined effects of ground deformation and seismicity are to produce maximal probabilities \((Pr_F \sim 0.9) \) in the actively deforming areas of Mauna Loa and Kilauea volcanoes (Fig. 3e). They also reduce probabilities below \(Pr_0 \) in areas of little activity to the south and north of Kohala volcano.

3.5. Water table elevation and groundwater recharge

The height of the water table above sea level is important in evaluating fluid content because the higher the water table, the greater the water pressure is likely to be in the heat reservoir, and higher pressure increases the boiling point so that water is hotter at a given drilling depth. The importance of water table elevation is based on our assumption that for Hawaii, hydrostatic pressure plays a greater role in reservoir temperature and fluid circulation than do confining layers (e.g., a clay cap) in the stratigraphic section (Lautze et al., 2016a). Water table elevations measured at individual water wells were interpolated on to the model grid of the state using 2-D splines (Wessel et al., 2013). We then took the natural log of these interpolated elevations and standardized relative to the well (not the interpolated) data. Considering only water table elevation, the probability of elevated fluid content decreases from \(Pr_F = 0.95 \) at \(D^+ = 1971 \text{ m} \) (1.5 \(\sigma \) to \(Pr_F = Pr_0 = 0.78 \) at an elevation of \(120 \text{ m} \) (Fig. 1h, Table 2).

The rate of groundwater recharge also influences fluid availability and fluid pressure on the reservoir rock. Recharge models are based on rain gauge data as well as estimates of evapotranspiration and surface water transport; they were produced by the U.S. Geological Survey for the islands of Oahu (Engott et al., 2015) and Maui (Johnson et al., 2014) and from the Hawaii Dept. of Health for the other islands (Whittier, R. pers. comm. 2015). Data processing involved log transformation and standardization (Table 2). Due only to recharge, the probability of elevated fluid content decreases from \(Pr_F = 0.87 \) at \(D^+ = 0.62 \text{ cm/day} \) (1.5 \(\sigma \) to \(Pr_F = Pr_0 = 0.78 \) at a rate of 0.05 \(\text{cm/day} \) (Fig. 1h, Table 2).

On Hawaii Island, the water table is highest in the elevated topography between Mauna Loa and Mauna Kea, and recharge is highest on the eastern (windward) slopes of the island. The combined effects on the probability of fluid show high values in the central-eastern part of the island (Fig. 3i).

4. Results: probability of elevated heat, permeability, fluid, and probability of a resource

4.1. Hawaii Island

The marginal probabilities of elevated heat, permeability, and fluid for Hawaii Island are shown in Fig. 3(c), (f), and (i). We emphasize here that the following probability results should be interpreted in terms of their relative, not absolute, values. The probability of elevated heat is greatest at the summits and along the rift zones of the active Mauna Loa and Kilauea volcanoes. Relatively high values are also predicted on the west and southwest flank of Mauna Kea. This prediction is consistent with the findings of the Saddle groundwater drill site of hot (140°C) water at a depth of 1700 m and a geothermal gradient of \(\sim 165 \text{ °C/km} \) in the bottom 700 m of the hole. Relatively high values of \(Pr_I \) are also present over Kohala’s summit and southeast rift zone (i.e., northeast of Mauna Kea). \(Pr_I \) is lowest to the east and west of Mauna Kea, in areas far from any mapped rift zones or calderas. The probability of elevated
permeability P_{k} is highest over the whole south and southeast side of the island, largely due to youth as well as the active seismicity and deformation of Mauna Loa and Kilauea. P_{k} is lowest east and west of Mauna Kea and on north Kohala. Finally, the probability of elevated fluid is highest in the central and eastern part of the island and lowest along coasts in the northwest, south, and far east.

The probability of a viable geothermal resource P_{R} is the product of the three marginal probabilities as stated by the veto Eq. (2) (Fig. 3(j)). Near the PGV geothermal plant, resource probability is predicted to be relatively moderate (~0.4). Confidence (Fig. 3(k)) in this estimate is relatively high (>0.9), owing to the numerous data types in the area, including the overlapping groundwater flow paths associated with well-water indications of elevated heat. The probability of a quality resource is higher further up Kilauea’s rift zone and over large areas of Mauna Loa volcano, the highest values being as much as twice that near PGV. Confidence is also relatively high over Kilauea’s east rift zone and moderate-to-high (0.5–0.8) on much of Mauna Loa’s southwest rift zone. Near the Saddle drill site, P_{R} is low-to-moderate (0.05–0.2), being 10–50% of that near PGV, and confidence is high, especially due to the agreement of the MT survey line as well as the projected water temperature and chemical anomalies. Moderate probabilities, comparable to but less than those at PGV, as well as relatively moderate confidence levels (0.7–0.9) also occur on Mauna Kea’s northeast flank and over the summit of Hualalai. P_{R} is minimal with moderate-to-high confidence on Kohala volcano and west of Mauna Kea. P_{R} is minimal with relatively low (<0.5) confidence east of Mauna Kea.

4.2. Maui, Lanai, Kahoolawe, and Molokai

Four islands now make up what was once a much bigger island called Maui Nui. Of these islands, data coverage is most extensive on Maui, as it is the only member of the group for which groundwater flow, recharge, or water table elevation have been evaluated. There are some water well temperatures and chemistry on Lanai and Molokai but not on Kahoolawe. As groundwater flow has not been estimated for Lanai and Molokai the probabilities associated with the groundwater data are estimated only at the locations of the wells on these smaller islands.

The marginal probabilities of elevated heat, permeability, and fluid are shown for these islands in Fig. 5(a)–(c). The mean probability of heat is much lower than that for Hawaii Island due to the greater shield volcano ages (0.6 Myr for Haleakala to 1.6 Myr for East Molokai). On Haleakala, numerous young (0.2–0.6 Myr) post-shield volcanic vents as well as evidence from well-water data lead to moderate-to-high (0.5–0.8) probabilities of elevated heat on the three rift zones. On the south flank of West Maui and central Lanai, water chemistry and temperature lead to elevated values of P_{H}. Probabilities of elevated permeability are also much reduced relative to Hawaii Island due to the greater ages as well as to the lack of seismic or deformation data (and presumably the much lower activity any such data would measure). Of these islands, the younger volcanoes of Kahoolawe and Haleakala show the largest P_{k} values, which are about a factor of two larger than the prior probability of 0.14. The highest probabilities of elevated fluid content are comparable to those on Hawaii Island and occur on the
northeast side of Haleakala, and the summits of West Maui, Lanai, and East Molokai.

The probabilities of a viable resource and confidence in those estimates are shown in Fig. 5(d) and (e). The highest probabilities are 15–20% of that near PGV on Hawaii Island and are comparable to that near the Saddle drill site; these probabilities occur on the southwest, north, and eastern rift zones of Haleakala, on the south flank of West Maui, and in central Lanai. Confidence in those values is relatively moderate (0.6–0.8) on north Halakala and Lanai, and relatively low (<0.5) on West Maui (Fig. 5e). Geothermal resources are least probable between West Maui and Haleakala and on Molokai, especially West Molokai with moderate confidence.

4.3. Oahu

Results for Oahu (Fig. 6) show marginal probabilities of the three resource qualities that span values comparable to those predicted for Maui Nui. Despite the even greater age of Oahu, water temperature and chemistry lead to moderate-to-high probabilities of excess heat in localized areas on the south and southeast of the Koolau shield volcano and the Waianae caldera. The southern edge of the Koolau shield has numerous areas of relatively young (ages <0.1 Myr) rejuvenated volcanism, which may supply this heat. In contrast, Waianae has no such rejuvenated volcanism. The probability of elevated permeability is low overall, whereas the probability of elevated fluid is high overall, and comparable to that of the other islands.

Resource probabilities on Oahu are predicted to be lower than on Maui and much lower than on Hawaii Island. The highest probabilities with moderate confidence occur on the south flank of the Koolau shield. Here, resource probabilities are about 5% that of the PGV area on Hawaii Island and ~20% that of the Saddle drill site. Slightly lower probabilities at moderate confidence are predicted in the southern part of the Waianae caldera. Probabilities near zero occur in the central part of the island between the two shield volcanoes with moderate confidence.

4.4. Kauai

The results for Kauai—the oldest of the main Hawaiian islands—show the lowest marginal probabilities of elevated heat and permeability across the state (Fig. 7). As a result, the probabilities of a geothermal resource on this island are minimal. Two groundwater flow trajectories extending from the south and east part of the island to the center show Pr0 values just above the prior probability of 0.006, or ~2% of the probability at PGV. The trajectory that starts in Lihue basin on the eastern side of the island has moderate confidence, whereas the southern trajectory has low confidence. Probabilities are near zero elsewhere, especially around the perimeter of the island. Confidence in the probabilities is moderate in all but the most elevated areas of the center part of the island where data coverage is sparse.

5. Discussion and conclusions

We have developed a method of incorporating numerous disparate data types in a quantitative play fairway analysis of natural resources, here applied to geothermal energy in Hawaii. A generalized linear model (i.e., the voter equation) is used to combine evidence provided by the data with expert knowledge, and to cal-
ulate probabilities of the key resource qualities of elevated heat, permeability, and fluid. The joint probability of the three qualities, assuming conditional independence (i.e., the veto equation), is then the probability of a successful geothermal prospect. Our method for evaluating the confidence in our results is simple, computationally fast, and based on the number of data types associated with each point on the map as well as the experts’ estimates of the quality of those data.

Textbooks on statistics often quote Box’s aphorism (Box and Draper, 1987), Rule 1: “All models are wrong but some are useful.” However, these textbooks often omit Box’s equally useful, if harshly stated, Rule 2: “over-parameterization is often a sign of mediocrity.” We have strived to avoid both over-parameterizing our model as well as over-interpreting its results. With the experts’ estimates of probability for a favorable value of a given data type, and in some cases, insight as to how quickly probability should change with the data, only one, or at most two independent parameters define the relationship between the data and probability. The forms of the mathematical relationship are chosen based on physical processes (e.g., decay of stress from a 2-D crack or diffusive cooling) that are assumed to resemble nature. The main results, however, are insensitive to these choices; in developing the method we explored a variety of different mathematical functions and found only minor differences in the final outcomes. We are thus confident that—for better or worse—the predictions of probability honor the knowledge of the experts.

A weakness of the current application is in our mapping of the evidence for excess heat from groundwater temperature and chemistry. First, the results are only as robust as the groundwater flow models, and those have large uncertainties due to the variable spatial distribution of well data used to constrain the models. Second, the method of mapping the effects of the heat indicators back up the groundwater flow trajectories does not account for dispersion. An improvement would be to incorporate dispersion so that the associated trajectory of probability widens with distance up the flow path. Addressing these issues and collecting new groundwater data should be of high priority given that groundwater indicators provides one of the most direct ways to detect present-day heat.

Our final results indicate that geothermal resources are most probable and have highest confidence on the active volcanoes of Hawaii island, with some areas showing even greater probability than predicted near Hawaii’s PGV geothermal plant on the lower part of Kilauea’s East Rift Zone. The implication is that geothermal energy resources are even more numerous in parts of the summit regions of Kilauea and Mauna Loa than in the area of the active PGV plant. This inference is supported by the findings of high-temperature steam vents and fumaroles (>100 °C) in Mauna Loa’s summit caldera, and on Kilauea’s upper and middle East Rift Zone (Casadevall and Hazlett, 1979, 1983), but a lack of such venting on the lower East Rift Zone around the PCV plant. Probabilities are less than those near PGV at select locations on or near the older shield volcanoes of Mauna Kea, Haleakalā, West Maui, and Lanai; relatively low on south and west Oahu; and minimal on Kauai.

Whereas the resource potential is highest on the active volcanoes of Hawaii Island, there are problems with pursuing development at those locations including elevated risks of natural hazards, the difficulties of permitting in national park lands, the sparsity of utility infrastructure, as well as the remoteness from large populations that would use the power generated. Furthermore, there are high costs and significant engineering challenges involved in transporting power between the islands to meet the large differences in island populations and energy demand. This means that areas with even moderate to low probabilities on the other islands should be considered for further investigation. Ultimately, the decisions about where to pursue further exploration should consider the results of the current analysis as well as issues pertaining to the practical, economic, as well as societal viability of geothermal power development. These aspects are addressed in the third paper of this series (Lautze et al., 2016b).

Acknowledgements

This project was funded by U.S. Department of Energy’s Geothermal Technologies Program award number DE-EE002729. We appreciate the generous input provided by John Sinton, Jane Foster, Stephen Martel, and Ormat geologists, and thank B.S. student Hannah Schuchmann as well as Mahany Lindquist for their enthusiastic participation. Valuable reviews were provided by John Shervais, an anonymous reviewer, and Associate Editor, David Bruhn.

References

